

Table of Contents

DVEOUS Remote Protocol

9100-0288-00 - Dec 2000

i

Table of Contents

Introduction . 1

Ports . 2

SMPTE Protocol . 3

Sony Protocol . 11

Supported Transport Commands .11

Peripheral Bus I and II Interface Support 13

Peripheral Bus II Commands Supported 13
Peripheral Bus I Commands Supported13
Crosspoint Aux Bus Command —ABEKAS SPECIAL . . .13

A53 (Limited) RS-232 Control Command Set 15

Control Point Language . 16

Message Format . 16
Message Tokens .16
Communications .16
Command Message Format .17
DVEOUS to External Host .17
External Host to DVEOUS .18

Abekas LINC (slave) Protocol . 21

Overview .21
LINC Specifications .21
Data Format .22
LINC Commands .24
LINC Status Reply Format .27
LINC Command Format .28
LINC Commands from A83/A82 to Remote28
Commands/Responses from Slaves to the A83/A8231
LINC Protocol for a Slave. 33
LINC Key Numbers . 38

9100-0288-00 Dec 2000

In this Manual

SMPTE Protocol

Sony Protocol

Peripheral Bus I
and II

A53 Limited RS-232
Control Command

Set

Control Point
Language

Abekas LINC (slave)
Protocol
Serial Protocol

Introduction

This manual describes the software protocol used to
interface an external device to the Accom DVEOUS digital
effects system. Since DVEOUS can connect to editors,
switchers and other devices, a variety of protocols and
interface methods are offered. When interfacing a remote
device to DVEOUS, use this manual to find the protocol
and appropriate serial port for your device. In addition,
refer to the DVEOUS Technical Guide, which details the
various connectors and associated pinouts.

Interfacing methods fall into these categories:

• The DVEOUS appears as a VTR under SMPTE or Sony
protocol to the remote device. Use this method for
connection to an edit controller. Since DVEOUS can
compose keyframe sequences into Effects, the Effects can
be controlled as if they were a VTR. DVEOUS can
interface to external editors as a VTR by using either Sony
or SMPTE VTR protocols.

•The DVEOUS responds to external commands using
serial protocols such as A53 serial protocol (limited
command set), Peripheral Bus I and II (provides
DVEOUS effect save and recall from a switcher). Use this
method to control DVEOUS with a switcher.

• When DVEOUS is used with a protocol converter
module or an external controller, you can use GVG
Control Point Language (CPL) to control 4 Aux Bus
source selections and run timeline from both the
DVEOUS and the connected switcher (GVG Model
3000).
 1

DVEOUS Remote Protocol

Ports

Interfacing DVEOUS with an editor or switcher is possible using the three serial ports on the rear
DVEOUS chassis. However, each of the three ports can only be used with certain types of interface
protocols as summarized below:

Serial Port 1 (Editor)

•Sony (VTR)

•SMPTE (Transport commands supported, such as Speed and Goto)

•EMEM (Grass Valley Group Peripheral Bus I and II protocols)

•Switcher Aux bus crosspoint selection (Grass Valley Group Aux Bus protocol)

•Control Point Language (CPL)

Serial Port 2 (AUX)

•Sony (VTR)

•SMPTE (Transport commands supported, such as Speed and Goto)

•EMEM (Grass Valley Group Peripheral Bus I and II protocols)

•Switcher Aux bus crosspoint selection (Grass Valley Group Aux Bus protocol)

•Control Point Language (CPL)

Serial Port 3 (LINC)

•LINC protocol (slave only). External devices can control DVEOUS timelines by using LINC
protocol.
2 9100-0288-00 Dec 2000

SMPTE Protocol

DVEOUS Remote Protocol

SMPTE Protocol
The VTR SMPTE protocol has been extended to included EFFECT commands in the same serial
port as the TRANSPORT commands for VTR control. In this way the DVEOUS can be controlled
as a VTR and effects machine simultaneously.

This protocol is intended to follow the Ampex VPR implementation. See that protocol for the
specifics of the data bit format. To avoid confusion with the SMPTE protocol timeline, the
DVEOUS's timeline is referenced by “effect.”

The commands are listed on the following pages:

Status 01H

The STATUS command returns the current status of the device.

The STATUS command returns the following information to the host:
byte1 HR of current time
byte2 MIN of current time
byte3 SECS of current time
byte4 FRAMES of current time
byte5 bit0 1 = NTSC, 0 = PAL

bit1 1 = drop frame, 0 = non drop frame
bit2 not used
bit3 not used
bit4 not used
bit5 not used
bit6 1 = data not available, 0 data available
bit7 not used

byte6 VTR MODE
00 stopped
01 stopping
02 play
03 tso
04 shuttle
05 fast forward
06 rewind
07 syncing
08 source sync
09 not used
0A not used
0B not used
0C cueing
0D cued
0E searching
0F search complete
10 not used
11 not used
12 not used
13 not used
14 not used
15 not used
16 not used
9100-0288-00 Dec 2000 3

DVEOUS Remote Protocol

SMPTE Protocol

Xstatus Commands

The XSTATUS command returns the following information to the host:
byte1 machine type = 03H
byte2 msb of ID = 00H
byte3 lsb of ID = 36H (A57)
byte4 not used

Xstatus 02H

The XSTATUS command returns the machine ID of the device and error information.

Defer 03H

The DEFER command is used to defer TRANSPORT, and EFFECT commands until
a point on the timeline is reached. This command is implemented in the format of the
Ampex VPR3.

Tcue 04H

The TCUE command is used to cue the device to the first event on the timeline.

Tstop 05H

The TSTOP command is used to stop the running timeline. This command also clears
out the timeline buffers.

Tclear 06H

The TCLEAR command is used to clear out the timeline buffers.

Trun 07H
The TRUN command is used to load the timeline with its initial value and then run
the timeline.
4 9100-0288-00 Dec 2000

SMPTE Protocol

DVEOUS Remote Protocol

Transport 26H

The Transport commands are implemented much like the Ampex VPR3, VPR300
command set. Some commands, however, need special attention.

01H READY Turn on/off scanner
02H EE Tape/EE switch
03H CF Set color framer mode
06H EDMODE Set edit mode
07H ENABLES Set channel enables
08H TCMODE Control timecode generator
09H SPEED Control effect speed
0AH TCG Load timecode generator
0BH LDUBG Load user bit generator
0CH STOP Stop the effect
0DH PLAY Play the effect 1X
0EH ROLL Play and sync to external reference
0FH TSO Tape speed override
10H VAR Variable play speed
11H SHUTTLE Shuttle speed
12H PREROLL Set the preroll amount
13H SYNC Mark sync point for cue command
14H CONTROL Mark sync point for non play speed
15H CUE Cue to "park" position
16H SEARCH Search to exact position
17H ENTRY Channel record entry
18H EXIT Channel record exit
1AH RDREADY Read ready status
1BH RDEE Read EE status
1CH RDCF Read CF status
1FH RDEDMODE Read edit mode status
20H RDENABLE Read enable status
25H FJOG Jog forward 1 frame
26H RJOG Jog reverse 1 frame
27H ACCURACY Sync accuracy window
28H TMLOAD Load current time source
29H NBASE Read machine standard
2AH CFSEL Color framer source selection
2BH RDCFSRC Read color framer source
2CH TMSEL Select current time source
2DH RDTMSEL Read current time source
32H EDFIELD Select edit field
33H RDEDFIELD Read edit field
35H SLEW Slew forward or reverse N frames
36H STILL AST playback when stopped
42H FFJOG Jog forward 1 field
43H RFJOG Jog reverse 1 field
9100-0288-00 Dec 2000 5

DVEOUS Remote Protocol

SMPTE Protocol

READY 01H, ready state (1 byte)
This command has no impact on the effect but is acknowledged.

EE 02H, ee state (1 byte)

This command has no impact on the effect but is acknowledged.

CF 03H, cf state (1 byte)

This command has no impact on the effect but is acknowledged.

EDMODE 06H, edit mode (1 byte)

This command has no impact on the effect but is acknowledged.

ENABLE 07H, enables (1 byte)

This command has no impact on the effect but is acknowledged.

TCMODE 08H, mode (1 byte)

This command has no impact on the effect but is acknowledged.

SPEED 09H, speed bytes (2 bytes)

Control transport speed in current mode.
byte1 & 2 = speed magnitude as defined in each mode. (TSO,VAR, etc.)

TCG 0AH, time bytes (4 bytes)

This command has no impact on the effect but is acknowledged.

STOP 0CH

Stop the effect.

PLAY 0DH

Play the effect at Play 1X.

ROLL 0EH

Play the effect at Play 1X. (same effect as above)

TSO 0FH, speed bytes (2 bytes)

Control the effect in tape speed override mode.
byte1 & 2 = speed magnitude (Linear scale in decimal)

Magnitude is:

500 = PLAY 1X + 25%
0 = PLAY 1X

-500 = PLAY 1X - 25%

6 9100-0288-00 Dec 2000

SMPTE Protocol

DVEOUS Remote Protocol

VARPLAY 10H, speed bytes (2 bytes)
Control the effect in variable play speed mode.
byte1 & 2 = speed magnitude (Linear scale in decimal)

Magnitude is:
1535 = PLAY 3X

511 = PLAY 1X
0 = STOP
-511 = - PLAY 1X

Speed data is internally = magnitude * 1000 / 511 (1000 = Play 1X)
Sending a data value of 511 runs effect at PLAY 1X.

SHUTTLE 11H, speed bytes (2 bytes)

Control the effect in shuttle mode.
byte1 & 2 = speed magnitude (Linear scale in decimal)

Magnitude is:1
500 = PLAY 30X

50 = PLAY 1X
0 = STOP
-50 = - PLAY 1X

Speed data is internally = magnitude * 20 (1000 = Play 1X)
Sending a data value of 50 runs effect at PLAY 1X.
Sending a data value of 500 runs effect at PLAY 10X.
Sending a data value of 1500 runs effect at PLAY 30X.

PREROLL 12H, preroll bytes (4 bytes)

Specify the effect's preroll duration.
byte1 - 4 = BCD format of preroll duration.

SYNC 13H, sync point (4 bytes)

Mark a synchronize point for the CUE command. In most instances
this is the edit inpoint.
byte1 - 4 = BCD format of sync point

CONTROL 14H, sync point

This command has no impact on the effect but is acknowledged.

CUE 15H

Cue to a park position determined by the sync point and the preroll.

SEARCH 16H, search position (4 bytes)

Move the machine to the position specified.
byte1 - 4 = BCD format of search point.

ENTRY 17H, entry byte (1 byte)

This command has no impact on the effect but is acknowledged.
9100-0288-00 Dec 2000 7

DVEOUS Remote Protocol

SMPTE Protocol

EXIT 18H, exit byte (1 byte)
This command has no impact on the effect but is acknowledged.

RDREADY 1AH

Read ready status.
Always returns ready ON.

RDEE 1BH

Read EE status.
Always returns EE OFF.

RDCF 1CH

Read color framer status.
Always returns OFF.

RDEDMODE

1FH
Read edit mode.
Always returns OFF.

RDENABLE 20H

Read enable status.
Always returns 01H. (video only)

FJOG 25H

Jog the effect forward 1 frame.

RJOG 26H

Jog the effect reverse 1 frame.

ACCURACY 27H, frames (1 byte)

Set the synchronize accuracy.
This command has no impact on the effect but is acknowledged.

TMLOAD 28H, timer bytes (4 bytes)

Set the time code generator.
This command has no impact on the effect but is acknowledged.

NBASE 29H

Read machine standard.
byte1 = FFH PAL, 00H NTSC

CFSEL 2AH, source (1 byte)

Set color framer source.
This command has no impact on the effect but is acknowledged.
8 9100-0288-00 Dec 2000

SMPTE Protocol

DVEOUS Remote Protocol

RDCFSRC 2BH
Read color framer source.
Always returns 00H.

TMSEL 2CH, source (1 byte)

Set the timer source.
This command has no impact on the effect but is acknowledged.

RDTMSEL 2DH

Read timer source.
Always returns 00H.

EDFIELD 32H, field (1 byte)

Set the edit field.
This command has no impact on the effect but is acknowledged.

RDEDFIELD 33H
Read edit field.
Always returns 00H.

SLEW 35H, frames (3 bytes)

Slew forward or reverse N frames.
byte1 = frames +/- 128.
byte2 & 3 not used.

STILL 36H, mode (1 byte)

AST playback mode when in still.
byte1 0 = field mode

1 = frame mode

FFJOG 42H

Jog forward 1 field.

RFJOG 43H

Jog reverse 1 field.

Effect 30H

The EFFECT commands are an Accom-only implementation. They are meant to
enhance the TRANSPORT commands to give effects devices additional features.

Effect Commands

01H CHNG_EFF Change the current effect
02H SPEED Set the effect speed
03H NAME Set the effect name
04H GOTO Goto position
05H FREEZE Freeze video
9100-0288-00 Dec 2000 9

DVEOUS Remote Protocol SMPTE Protocol
CHNG_EFF 01H, new effect (1 byte)
Set the effect to the specified value.
byte1 = 0 - 14H

SPEED 02H, speed value (2 bytes)

Set the effect speed.
byte1 & 2 = speed magnitude (Linear scale in decimal)
Magnitude is:1535= PLAY 3X

511= PLAY 1X
0 = STOP
-511= PLAY 1X

NAME 03H, name (9 bytes)

Not Yet Implemented.

GOTO 04H, position (4 bytes)
Goto a position in an effect.
byte1 - 4 = BCD format of goto point.

FREEZE 05H, state (1 byte)

Set the input video to the specified state.
This command has no impact on the effect but is acknowledged.

CONSOLE EMULATION 74H, address, data

The console emulation command is a specific command that allows certain hardkeys
to be emulated from the remote protocol. For instance, the RUN> key can be pressed
by sending the address for that key and a nonzero data value.

byte1 = console “HARDKEY”
byte2 = data

SET PARAM 80H
Set the internal parameter to a value.
byte1 = flags
byte2 = MSB of Param Number
byte3 = MDSB of Param Number
byte4 = MDSB of Param Number
byte5 = LSB of Param Number
byte6 = MSB of Param Value
byte7 = MDSB of Param Value
byte8 = MDSB of Param Value
byte9 = LSB of Param Value
10 9100-0288-00 Dec 2000

Sony Protocol DVEOUS Remote Protocol
Sony Protocol

The SONY protocol is implemented much like a Sony VTR. However, certain commands that have
no bearing on this device are just acknowledged.

The device ID for the DVEOUS has not yet been assigned. However, the ID it uses is F006H, which
is the ID for an Abekas A53.

Supported Transport Commands

Stop
Play
FFwd
Jog_Fwd
Var_Fwd
Sht_Fwd
Rew
Jog_Rev
Var_Rev
Sht_Rev
Prog_Speed_Pos
Prog_Speed_Neg
Preroll
Cue_Up

Beginning with software Release 6.1.1, there is a way to use the four data bytes of the Sony VTR
Protocol “cue up” command to load effects from registers. This technique assumes you are generating
the Sony VTR Protocol from a general purpose computer and custom software of your own design,
because it uses an out-of-bounds time code to communicate the effect number to load, a value that
might be difficult to generate using third party equipment.

The normal “cue up” command consists of 7 bytes. The first two signify the command (0x24,0x31),
the next four are a binary-encoded decimal (bcd) timestamp (frm/sec/min/hr), and the final value is
a checksum (the sum of all the previous bytes modulo 256). To indicate the command should load
effects instead of cue up the current effect, an out-of-bounds value of 0xff is supplied for the hour.
Then the least-significant digit of the effects number (the 1's place) is taken from the least-significant
digit of the seconds value, and the most-significant digit of the effects number (the 10's place) is
taken from the least-significant digit of the minutes value.

For example, to load an effect from register 0, transmit the following to the port enabled for Sony
Protocol under the Remote Enable menu:

 0x24 0x31 0x00 0x00 0x00 0xff 0x54

You will receive an acknowledge of “0x10 0x01 0x11” for any command successfully interpreted.
9100-0288-00 Dec 2000 11

DVEOUS Remote Protocol Sony Protocol
More examples:

Load Effect from Register #1: 0x24 0x31 0x00 0x01 0x00 0xff 0x55

Load Effect from Register #10: 0x24 0x31 0x00 0x00 0x01 0xff 0x55

Load Effect from Register #90: 0x24 0x31 0x00 0x00 0x09 0xff 0x5d

Load Effect from Register #99: 0x24 0x31 0x00 0x09 0x09 0xff 0x66

Be aware that an improperly formatted command or invalid checksum will cause a NACK to be
returned (negative acknowledge -- this should be the three byte string 0x12 0x04 0x16, but you might
see a 0x11 proceeding these). After a NACK you may have to reset the machine to restore proper
functioning of the remote port.

12 9100-0288-00 Dec 2000

Peripheral Bus I and II Interface Support DVEOUS Remote Protocol
Peripheral Bus I and II Interface Support

The DVEOUS supports limited Peripheral Bus I and II command protocols as listed below:

Peripheral Bus II Commands Supported

• Learn

• Recall

• Trigger

• Query

Please refer to your Grass Valley Group Protocol manual for information on how to use these GVG
Peripheral Bus II Commands.

Peripheral Bus I Commands Supported

• Learn

• Recall

Please refer to your Grass Valley Group Protocol manual for information on how to use these GVG
Peripheral Bus I Commands.

Crosspoint Aux Bus Command —ABEKAS SPECIAL

The CROSSPOINT AUX BUS command changes the crosspoint on an Aux Bus of a GVG switcher.

Effect Command Message
Function Address Code Byte

Abekas 8100/8150:
Aux Bus 07H C 1 H Crosspoint #

GVG Model 200 Swi tcher :
Aux Bus 1 07H C 1 H Crosspoint #
Aux Bus 2 07H C 2 H Crosspoint #
Aux Bus 3 07H C 3 H Crosspoint #
Aux Bus 4 07H C 4 H Crosspoint #

(cont inued on the next page)
9100-0288-00 Dec 2000 13

DVEOUS Remote Protocol Peripheral Bus I and II Interface Support
Effect Command Message
Function Address Code Byte

GVG Model 300 Swi tcher :
Aux Bus 1 04H C 1 H Crosspoint #
Aux Bus 2 04H C 2 H Crosspoint #
Aux Bus 3 04H C 3 H Crosspoint #
Aux Bus 4 04H C 4 H Crosspoint #

GVG Model 3000 Swi tcher :
Aux Bus 1A 0 C H C 1 H Crosspoint #
Aux Bus 1B 0 D H C 1 H Crosspoint #
Aux Bus 2A 0 E H C 1 H Crosspoint #
Aux Bus 2B 0FH C 1 H Crosspoint #
Aux Bus 3A 10H C 1 H Crosspoint #
Aux Bus 3B 11H C 1 H Crosspoint #
Aux Bus 4A 12H C 1 H Crosspoint #
Aux Bus 4B 13H C 1 H Crosspoint #
Aux Bus 5A 14H C 1 H Crosspoint #
Aux Bus 5B 15H C 1 H Crosspoint #
Aux Bus 6A 16H C 1 H Crosspoint #
Aux Bus 6B 17H C 1 H Crosspoint #
Aux Bus 7A 18H C 1 H Crosspoint #
Aux Bus 7B 19H C 1 H Crosspoint #
14 9100-0288-00 Dec 2000

A53 (Limited) RS-232 Control Command Set DVEOUS Remote Protocol
A53 (Limited) RS-232 Control Command Set

DVEOUS can be controlled by a personal computer or other controller via the DVEOUS RS-232 port.
Commands supported by this interface are:

Command Parameter Type Size Scaling Min Max Normal

EFFECT `f` effect number absolute int — 0(workspace) 24

TRESET 0x0b learn new T-bar switch int — any value
limits

TFRACT 't' T-bar position absolute int 1 0 32000
value

MAN 'n' manual mode switch int — 0=off 1=on 0

RUN `r` effect run control switch 1st byte 0=don't care
1=forward 2=reverse

effect step control 2nd byte don't care

BREAK 'q' run break control switch 1st byte 0=don't care
1=on 2=off

programmed break 2nd byte don't care
attribute

Serial data sent to the RS-232 port consists of characters formatted as 8 bits plus one parity bit. (Parity is even.) The
host sends RS-232 data to the port. The final carriage return (CR) completes the message packet. At the field interrupt
after a completed message DVEOUS will send a status message back to the host. It is not necessary for the host to
wait for completion of the status reply before sending another command.

Status Message format:
byte 1 low byte of character count
byte 2 high byte of character count (total bytes transmitted)
byte 3 command constant
byte 4 command value
byte 5 command value
byte n command constant
byte n+1 command value
byte n+2 command value
byte n+3 command value
last byte carriage return (0d Hex)

The command constant specifies the type of command and the command value bytes give a numerical parameter
associated with the command. There can be from two to four command value bytes, depending on the particular
command.
9100-0288-00 Dec 2000 15

DVEOUS Remote Protocol Control Point Language
Control Point Language
This protocol allows a Grass Valley Group Model 3000 switcher to control a DVEOUS via a protocol
converter board or external controller. In operation this makes DVEOUS look like a Krystal effects
device to the switcher. For information on Control Point Language, refer to that manufacturer’s
protocol manual. The following material documents the protocol between DVEOUS and the
protocol converter (which is not Control Point Language).

The RS-422 interface between the DVEOUS and protocol converter runs at 76.8K baud, with odd
parity. Data block sizes vary with different messages.

Message Format
Byte Count 1byte

Message Token 1byte

Message Data 0-253 bytes

Checksum 1 byte

Byte Count = Message Token + Message Data

Checksum = Byte Count + Message Token + Message Data

Message Tokens
SPCL_SET 0x08

SPCL_ONLINE 0x03

Communications
Communication with the external controller must be established before message transactions can
occur. This is initiated by the controller sending a SPCL_ONLINE message. If DVEOUS is
connected properly it will respond with an SPCL_ONLINE message.

After communication is established, the controller sends SPCL_ONLINE messages once each field.
DVEOUS responds at the beginning of the next field with an SPCL_SET command that gives the
Aux Bus source and current effect. (See the SPCL_SET definition later in the Command Message
format discussion.) This action occurs within the first 3mS of the field and continues until the
controller stops sending SPCL_ONLINE messages. The SPCL_ONLINE messages from the
controller should occur after the first 3mS.

Host

DVEOUS

Timeline

SPCL_ONLINE

SPCL_ONLINE
16 9100-0288-00 Dec 2000

Control Point Language DVEOUS Remote Protocol
Once this communication has been established, any message token can be sent. These messages can
be sent at anytime during the field with processing of the message beginning on the next field.

Command Message Format

This topic discusses the format of command messages sent from DVEOUS to the external converter
and from the External converter to DVEOUS.

DVEOUS to External Host

SPCL_ONLINE This message is used to acknowledge the Host when connection is
being established.

Format: 0x01, SPCL_ONLINE, Checksum

SPCL_SET This message is a per field message issued once connection is established
between DVEOUS and the external converter.

Format: 0x10, SPCL_SET, MD0...MD14, Checksum

Message data has the following format:
Byte 0 Front Source for Aux Bus 1A
Byte 1 Back Source for Aux Bus 1A
Byte 2 Front Source for Aux Bus 1B
Byte 3 Back Source for Aux Bus 1B
Byte 4 Front Source for Aux Bus 2A
Byte 5 Back Source for Aux Bus 2A
Byte 6 Front Source for Aux Bus 2B
Byte 7 Back Source for Aux Bus 2B
Byte 8 0, reserved
Byte 9 0, reserved
Byte 10 On-Air Aux Bus 1A
Byte 11 On-Air Aux Bus 1B
Byte 12 On-Air Aux Bus 2A
Byte 13 On-Air Aux Bus 2B
Byte 14 Current Effect Loaded

Host

DVEOUS

Timeline

SPCL_ONLINE

SPCL_ONLINE

SPCL_ONLINE

SPCL_SET SPCL_SET

.........
9100-0288-00 Dec 2000 17

DVEOUS Remote Protocol Control Point Language
Crosspoint selection for any Aux Bus occurs on changes to the Front Source selection. It is required
that the Source should switch on the next field boundary after receiving this message. Valid sources
are 0 to 64.

The Back Source information can be used for status information.

On-Air is a Boolean to indicate that the Aux Bus is contributing to the final output for the DVEOUS
picture.

Current Effect loaded is the last effect recalled into the DVEOUS workspace buffer. Valid range of
numbers:

-1 = No effect has been loaded

0...99 = effect number.

External Host to DVEOUS

SPCL_ONLINE This message is used to establish communication with DVEOUS.
Once the link has been established this message is sent every field to keep
 it alive. The external controller should expect an SPCL_SET from
DVEOUS on the next field boundary. If it isn’t received, you can
assume that communication from DVEOUS has dropped.

SPCL_SET This message is used to deliver commands from the external controller
to DVEOUS. This command has sub-messages.

Format:

Byte Count 1 byte
Message Token 1 byte
0x1, Aux Bus 1 1 byte
0x2, Aux Bus 2 1byte
MSB Sub Message Token 1 byte
LSB Sub Message Token 1 byte
Sub Message Data Byte Count - 5
Checksum 1byte

Sub Message Tokens

PID_EFFECT_POSITION 0x036b (875)
PID_A_SIDE_SOURCE 0x0A52 (2642)
PID_B_SIDE_SOURCE 0x0A53 (2643)
PID_LOAD_EFFECT 0x0376 (886)
18 9100-0288-00 Dec 2000

Control Point Language DVEOUS Remote Protocol
PID_EFFECT_POSITION

This command sends an S15.16 frames value to set the current position of the effect.
The effect position will be reached 7 fields after receiving the command. Note:
DVEOUS rounds to the nearest field value.

Sub Message Format

0x00 reserved
0x00 reserved
0x00 reserved
0x00 reserved
0x00 reserved
0x00 reserved
0xMSB
0xLSB S15.16 frames

PID_A_SIDE_SOURCE

This command sets the source for the A side of either Aux Bus 1 or 2. The Aux Bus
change will be sent back to the external controller via the SPCL_SET in the next field.

Sub Message Format

0x00 reserved
0x00 reserved
0x00 reserved
Aux Bus Number 0x01 = Aux Bus 1, 0x2 = Aux Bus 2
0x00 reserved
0x00 reserved
0x00 reserved
Source Number 0..64
0x00 reserved
0x00 reserved
9100-0288-00 Dec 2000 19

DVEOUS Remote Protocol Control Point Language
PID_B_SIDE_SOURCE

This command sets the source for the B side of either Aux Bus 1 or 2. The Aux Bus
change will be sent back to the external controller via the SPCL_SET sent in the next
field.

Sub Message Format

0x00 reserved
0x00 reserved
0x00 reserved
Aux Bus Number 0x01 = Aux Bus 1, 0x2 = Aux Bus 2
0x00 reserved
0x00 reserved
0x00 reserved
Source Number 0..64
0x00 reserved
0x00 reserved

PID_LOAD_EFFECT

This command causes DVEOUS to load an effect from the specified register.

Sub Message Format

0x00 reserved
0x00 reserved
0x00 reserved
0x01 Enable Load
0xMSB
0xLSB Effect Number, -1....99
20 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
Abekas LINC (slave) Protocol

The A82 and A83 Digital Switchers support a control protocol known as LINCTM. This protocol
appears generically as MULTI-DROP in the A83/A82 Remote Setup menu. LINC can be used to
control the DVEOUS effects device as a slave device. The following documentation is reprinted from
the A82/A83 Protocol documentation for your convenience.

Overview

LINC allows you to control and/or program as many as 32 remote devices from the A83/A82 Control
Panel. An environment for developing custom interfaces, LINC makes much of the A83/A82's user
interface (EL displays with softkeys and knobs, PERIPHERAL CONTROL hardkeys, joystick, and
trackball) available for controlling remote devices. Within certain restrictions, explained below, the
programmer can use this framework for developing custom interfaces and user menus.

There are two reasons for connecting devices to the A83/A82. Field-based devices, such as digital
disk/ram recorders and digital effects devices, may be controlled as slaves to the A83/A82. The general
intent here is to lock them to the A83/A82's effects timeline. This also lets the operator play, stop,
and jog these devices with buttons in the PERIPHERAL CONTROL area of the A83/A82's Control
Panel. Another class of device that supports a subset of the field-based machine command set might
be a character generator, routing switcher, or color corrector. Such devices cannot normally be “run”,
but effects register saves and learns performed at the A83/A82 Control Panel can “learn” and recall
their current status (setup).

The second purpose for connecting a device to LINC is to program the device itself from the A83/
A82. In this mode the A83/A82 acts as a slave to the remote device. This may simply be an operator
convenience, but with menu simulation, it may make a control panel unnecessary, saving edit bay
space and perhaps money (if the remote device may be purchased without a control panel).
Programming is via a soft menu with 23 softkeys and 11 softpots that provide relative motion
indications. The remote device may also use the A83/A82 joystick and trackball.

LINC Specifications

Electrical specifications for LINC call for RS-422 differential transmission and reception. This is a
four wire and ground system. Remote device outputs are to be tri-stated when they are not talking
on the network, and when they are powered down. The baud rate is fixed at 38.4kbd. The remote
device must transmit with 8 data bits, 1 stop bit, and even parity. The A83/A82 transmits “control”
bytes with odd parity and data bytes with even parity. The remote device must distinguish between
reception of control and data bytes.
9100-0288-00 Dec 2000 21

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
Data Format

A remote device must be polled before it may speak on the network. Polling involves receiving a
control byte with data equal to its address. Remote devices on the network must all have unique
addresses between zero and 31. It is convenient to assign this address with a dip switch or hex
thumbwheel. When a device is polled, it may remain silent if it has no commands or status for the
A83/A82. It may reply with an overall byte count (the number of bytes to follow) and a mix of
commands and/or status replies. The device may send multiple commands in one go, but if a status
reply is mixed with commands the status reply must be the first data transmitted. Many commands
sent from the A83/A82 to the remote device solicit a reply. We do not guarantee that the status
request will be sent first. Note, however, that failure to reply to a status request for a few fields has
no dire consequences. The best approach is to reply to status requests only when there is nothing
else to send. Do not queue status requests; just reply when possible.

Note that under most circumstances every field-based device is polled once per TV field. You can
send a small amount of data to the A83/A82 without bad consequences; for example, enough data
to update one softkey. However, sending volumes of data whenever polled isn’t recommended: it
prevents the A83/A82 from talking to other nodes, prevents other nodes from talking to the A83/
A82, and generally slows down the network. Also, take care not to ignore pleas for status from the
A83/A82—or it may declare you dead. Status replies are used to update your rolling timecode displays
on the A83/A82, which become irrelevant if they are not updated every few frames or so.

The A83/A82 sends data destined for a remote device in one of two ways. The data may be multicast
or sent to an individual device. Individual device data is all the data bytes following the poll byte for
this device up to the next `control' byte. No byte count is provided, as the message is bracketed by
control bytes. Multicast data is prefaced by the MULTICAST control byte (0x40) and a four byte
multicast mask. “1” bit in the first byte of the multicast mask are enables for remote devices 24 (LSB)
through 31 (MSB). “1” bit in the fourth byte of the multicast mask are enables for remote devices 0
(LSB) through 7 (MSB). If a remote device is included in the multicast group all the data bytes
following the last multicast mask byte are destined for this device as well as others up to the next
control byte.
22 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
Communication on LINC is synchronous to reference field at the A83/A82. It is possible for
transmissions in either direction to proceed across field boundaries. However, the A83/A82 transmit
state machine always begins at top of field. The sequence of events, beginning at the top of field, is
as follows:

TOP OF FIELD:
SYSTEM CLOCK BYTE, a control byte, data in range 32 through 63.
optional multicast 1:

MULTICAST BYTE, a control byte, data = 0x40
multicast mask byte 0;
multicast mask byte 1;
multicast mask byte 2;
multicast mask byte 3;
multicast data 0;
multicast data 1;
multicast data n;

end optional multicast 1 message:
optional multicast n:
end optional multicast n message:

POLL BYTE n,'control' byte /*poll bytes for all live nodes,
 order unspecified*/

POLL BYTE n,'control' byte
POLL BYTE n,'control' byte
POLL BYTE n,'control' byte
ETX BYTE, a 'control' byte, data = 0x41

Note that you can disable the polling of certain devices in the A83/A82 Remote Setup menu. Also
note that LINC slave devices should not depend on the order of the above occurrences; it is given
for informational purposes. However, the SYSTEM CLOCK BYTE is guaranteed to occur with a
fixed relationship to (just into) the field. This is a convenient time to freeze certain receive or transmit
data and can also be used to synthesize a reference vertical time that software may use. As mentioned
above, if the LINC master has data for a particular remote device it immediately follows the remote
device's poll byte. If the polled remote device has data for the LINC master it transmits it upon
receiving its poll byte. The LINC master senses the beginning of the startbit sent by the talkative
remote device and aborts the poll byte for the next node (presumably now partially sent). The master
will not proceed to poll the next node until the remote device has finished talking. If data must be
exchanged in both directions, simultaneous transfers will occur, with the longest one determining
when polling resumes. Remote devices with data to transmit MUST respond VERY quickly (less
than or equal to 120uS) to reception of a poll byte. This guarantees that the poll byte for the next
node is aborted soon enough to make it invalid.

The LINC master must know the device ID assignment (assigned by Abekas) and two phrases
describing your device. The first phrase is a long description (up to 32 characters), the second is a
short description (up to 8 characters). We need to know if your machine is field-based,
programmable, or both.
9100-0288-00 Dec 2000 23

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
All machines connected to LINC must respond to the REQ_STATUS command. For field-based
machines we expect a four byte status reply as described later in this section. Machines that are both
field-based AND programmable have their own position in the Remote Device Programming menu
to show lexically more information about their status than the above. For example, an effects machine
might want to include the current keyframe number. If you want to use this capability we need to
know where the additional information is packed into the 24 bit status reply and how to display it.

The format of the two byte status reply for non-field-based machines appears later in this section.

LINC Commands

Field-based devices that want to slave to the LINC master's timeline should interpret five LINC
commands:

SEEK_OFFSET:

Sets timewise offset for SEEK_W_OFFSET and RUN_W_OFFSET commands. The offset number
is given in fields. This number is subsequently added to all the numbers given by SEEK_W_OFFSET
commands. If a device is seeked past its physical limitations, the seek should be limited to this
boundary. For example, if a device incapable of seeking before 0 is seeked to -90 fields, the device
should park at zero. A following RUN_W_OFFSET command should cause the device to play 90
fields after receiving that command.

SEEK_FIELD:

Device seeks to field number given.

RUNCMD:

Device runs at speed given from current position.

SEEK_W_OFST:

RUN_W_OFST:

Same as SEEK_FIELD and RUNCMD, but takes offset (described above) into account.
24 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
Devices that want to use the A83/A82's learn-recall capability need to support the following three
commands.

For machines that are to run in sync with the A83/A82 timeline we need to know your roll delay:
the time from receipt of a run forward command to a response. We have yet to determine the
maximum pipeline delay to allow for the slowest device on the network. When this is determined it
will be up to you to delay run commands to match this slowest device. If you are slower than eight
fields you are likely to be left in the dust.

PERIPH_LEARN:

Indicates the A83/A82 operator has saved effects into the effects register specified in this command.
The LINC slave MUST respond to this command with a PERIPH_DATA reply. Note that the
LINC slave may chose to store its current state internally for later recall, but it still must reply with
the four byte PERIPH_DATA command.

PERIPH_RECALL:

Indicates the A83/A82 operator has recalled effects from the effects register specified in this
command. The sixteen bits of PERIPH_DATA given in this command is that which was sent earlier
during the learn for this device.

PERIPH_DATA:

Four byte command sent from slave to the A83/A82 in response to a PERIPH_LEARN command.
This command contains 16 bits of data to be echoed to the device in a later PERIPH_RECALL
command. The 16 bits of data MUST be non-zero.

Programmable devices that want to use the A83/A82's joystick or trackball may do so using the
following two commands:

TBALL_LEGEND:

The slave sends this command to the A83/A82 to take control of the trackball. The eight character
legend given in this command appears above the trackball. If the string is not null, trackball movement
is reported to the slave device using the TBALL_MOVE command, which contains the XY deltas.

JOY_LEGEND:

The slave sends this command to the A83/A82 to take control of the joystick. The eight character
legend given in this command appears below the joystick. If the string is not null, joystick movement
is reported to the slave device using the JOY_MOVE command, which contains the XYZ deltas.
9100-0288-00 Dec 2000 25

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
Programmable devices may use the A83/A82 Remote Device menu to provide operator displays and
acquire operator input. Operator input for an LINC slave may use the following:

• 23 softkeys

• 11 softpots (See SOFTP_MOVE command)

• A selection of A83/A82 hardkeys that are assigned to the Remote Device menu when it is selected.

Button presses, button releases, and softpot moves are reported to the LINC slave via the following
commands:

KEY_PRESS:

KEY_RELEASE:

SOFTP_MOVE:

A sample header file that defines the button codes appears in Appendix D.

Operator displays on the A83/A82 Remote Device menu for the LINC slave are created with the
following two commands:

SOFTKEY:

This displays up to 23 softkeys legends. Softkeys may be alpha only or alphanumeric. Alpha only
buttons permit up to 12 characters. Alphanumeric buttons left justify the alpha portion and right
justify the number. Numbers may be whole, fractional, or time numbers. Whole numbers range
from -9999 to 9999; fractional numbers range from -32.768 to 32.767; time numbers appear as
XX:XX:XX and range from 00:00:00 to 18:20:??. Softkey legends may be white on black or black
on white (inverted).

ABA_TTY:

This command writes text to the area below the top row of softkeys and above the bottom row
softkeys is available for text display. The display area is divided into two sides; there are two EL
displays, 11 rows, and 80 columns.

Note that when the A83/A82 descends into the Remote Device menu it sends a REQ_SFTKEYS
command to the LINC slave. When it sends this command, both EL displays are blank except for a
status line on the top left of the left EL display and a MORE softkey at the bottom right of the right
display.
26 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
LINC Status Reply Format

All devices on the network are subject to periodic status requests from the LINC master. An attempt
is made to request status of field-based devices as frequently as possible to update rolling timecode
displays at a reasonable rate. (This may not always be possible.) All non-field-based and non-existent
devices get status requests a couple of times a second to determine what they are and that they exist.

The format of the status reply for a non-field-based device is two bytes. This does not include the
overall byte count, which would be 2 if no commands follow the status reply. The reply is:

 <BYTE COUNT><0x80><DEVICE_IDENTITY>.

The format of the status reply for a field-based device is more complicated.

 <BYTE COUNT><DEVICE_IDENTITY><PROPRIETARY DATA : LOC MSB><LOC
 LSB><MODE : PROPRIETARY DATA>

The number of unused bits in this 24 bit reply depends on the number of bits used in location msb.
For example, only two bits would be used to express locations up to 1023 fields (17 seconds +); the
six remaining bits could be used to convey other proprietary status. The two mode bits in the last
byte are interpreted as follows:

 BIT6: Run reverse.

 BIT7: Run forward.

 Neither: Stopped.

The remaining bits are available.
9100-0288-00 Dec 2000 27

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
LINC Command Format

NOTE: all int16 values are transmitted MSByte first, as with a 68000.

LINC Commands from A83/A82 to Remote

typedef struct
{

char command;
char keynum;
long num_val;
char decpt;/*number of places from right of number for decimal point*/

} Key_press;

#define KEY_PRESS1

typedef struct
{

char command;
char keynum;
long num_val;
char decpt;/*number of places from right of number for decimal point*/

} Key_release;

#define KEY_RELEASE2

For programmable machines. These commands are directed at a programmable device
only when the Remote Device menu is selected on the A83/A82. The 23 softkeys
(UKEY_SK0 though UKEY_SK22) and selected `generic' editing buttons respond. The
keynum defines are in a separate include file. The generic buttons are SAVE, RECALL ,
EFFECT , MODIFY , COPY, INSERT , DELETE, GOTO, START , TO, END, ALL, MAS-
TER, TENS (tension), DUR (duration), PREV (previous), NEXT, and THIS .
If the operator typed a number in the numeric keypad area of the A83/A82 before
striking the button, the number is passed on in NUM_VAL in the range -0x7fffffff to
+0x7fffffff. The number entry is then cleared.
Otherwise this value is 0x80000000.

typedef struct
{

char command;
char offset[3];/*viewed as 24 bit signed num*/

} Seek_offset;

#define SEEK_OFFSET3

For field-based machines. This command sets a permanent offset from the physical
locations specified by the SEEK_W_OFST and RUN_W_OFST commands below. For
example, a seek to location 0 with current offset of -30 will seek to timecode
23:59:59:15. A RUN_W_OFST command at normal forward speed (PLAY1X) will not
cause the machine to advance for 15 frames.

typedef struct
{

char command;
int16 field;/*BIT14 means relative seek*/

} Seek_field;

#define SEEK_FIELD4

For field-based machines. This command causes the machine to go to a new location.
28 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
If BIT14 of the field argument is set, the location is taken to be relative to the current
location. For example, 0x4002 means move 2 fields forward. A relative seek of 0 should
be interpreted as a stop command.

typedef struct
{

char command;
int16 field;/*BIT15 means SEEK CUE*/

} Seek_w_ofst;

#define SEEK_W_OFST13

For field based machines. This command causes the machine to go to the location
specified by field PLUS the last defined SEEK_OFST. BIT15 of the field may usually be
ignored; it is set TRUE when a machine is precued before a sync roll. For example, a
RUN_W_OFST command is coming after a fixed internal delay and color framing delay.

typedef struct
{

char command;
int16 runspeed;

} Runcmd;

#define RUNCMD5
#define RUN_W_OFST14

For field-based devices. This command causes the device to run at the speed specified
in runspeed. Normal forward runspeed is defined as 1000 base 10. For example, if
runspeed is -12981 the device should run in reverse at 12.981 times normal speed.

#define PLAY1X1000

typedef struct
{

char command;
char delta_x;
char delta_y;
char delta_z;

} Joy_move;

#define JOY_MOVE7

For programmable devices that have requested use of the joystick via the JOY_LEGEND
command. These are the absolute values representing deflection of joystick from its
rest position.

typedef struct
{

char command;
char delta_x;
char delta_y;

} Tball_move;

#define TBALL_MOVE8

For programmable devices that have requested use of the trackball via the
TBALL_LEGEND command. These are the relative values representing movement of
trackball from its rest position.
9100-0288-00 Dec 2000 29

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
typedef struct
{

char command;
char softp;
char delta_x;

} Softp_move;

define SOFTP_MOVE9

For programmable devices. This command results from twisting the softpot softp when
the A83/A82 is in the Remote Device menu. Negative values of DELTA_X reflect
counterclockwise movement.
typedef struct
{

char command;
char spare;/*commands must be 2 bytes minimum*/

} Req_status;

#define REQ_STATUS10

A83/A82 sends this command to ask for status from remote nodes. If there is no
response for 8 seconds the A83/A82 assumes this node is dead. The A83/A82 issues
this command about twice a second for dead or non-field-based devices. It issues the
command much more frequently for field-based machines.

typedef struct
{

char command;
char spare;

} Req_sftkys;

#define REQ_SFTKYS11

The A83/A82 sends this command to programmable devices when the Remote Device
menu is first entered. It is appropriate for the remote device to respond with a full set
of softkeys and requests for the joystick or trackball as required.

typedef struct
{

char command;
char regnum;

} Periph_learn;

#define PERIPH_LEARN15

The A83/A82 multicasts this message to all field-based devices when a peripheral
learn occurs. Peripherals that are capable and willing to later recall a given page, effect,
state, setup, etc., should reply with PERIPH_DATA command.

typedef struct
{

char command;
char regnum;
int16 periph_data;

} Periph_recall;

#define PERIPH_RECALL17

The A83/A82 multicasts this message to all field-based devices when a peripheral
recall occurs. Remote devices may honor this command based on either the 16 bits of
peripheral data supplied (an echo of what they sent during a learn) or on the register
number (regnum) if the learn/recall information is kept internal to the device.
30 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
Commands/Responses from Slaves to the A83/A82

typedef struct
{

char command;
char dev_addr;
char legend[8];

} Tball_legend;

#define TBALL_LEGEND3

A remote, programmable device sends this command to gain use of the A83/A82
trackball. The legend appears in the 8 character display above the trackball.

typedef struct
{

char command;
char dev_addr;
char legend[8];

} Joy_legend;

#define JOY_LEGEND4

A remote, programmable device sends this command to gain use of the A83/A82
joystick. The legend appears in the 8 character display above the joystick.

typedef struct
{

char sknum; /*0 through 22*/
char sk_format;/*XXXY ZZZZ, X = NUM_FORMAT, Y = INVERT,

Z = STRLEN, strlen = 0 = Keyword*/
char alpha[]; /*string of length strlen, NOT null terminated*/
int16 number;/*Omitted if NUM_FORMAT is NONE*/

} SK_DESCRIP;

NOTE: if strlen is equal to zero the next byte is taken to be an integer that defines an
Abekas specific keyword. This feature is used to reduce the bandwidth required to
send words; it is not available to foreign manufacturers, EXCEPT note that keyword
0xff erases an existing softkey. For aesthetic reasons blank softkeys should be erased,
but you can send empty softkeys by sending the one character string " ".

#define NUM_NONE0x00
#define NUM_WHOLE0x20/*-9999 to 9999*/
#define NUM_FRACT0x40/*WW.FFF if >= 10000, W.FFF if >= 1000,

0.FFF if < 1000*/
#define NUM_TIME0x60/*number is frames displayed as XX.XX.XX*/
#define SK_INVERT0x10/*reverse video softkey*/
9100-0288-00 Dec 2000 31

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
typedef struct
{

char command;
unsigned char bcnt;/*True size of this structure, i.e., number of

bytes to follow + 2*/
char dev_addr;
char spare;
SK_DESCRIP skdef[];

} Softkey;

#define SOFTKEY22

Programmable devices use this command to update softkeys in the A83/A82 Remote
Device menu. There are 23 available softkeys, numbered 0 through 22. Any or all
softkeys may be updated with this command.

typedef struct
{

char command;
unsigned char bcnt;/*real size of this structure as sent*/
char dev_addr;
char column; /*0 - 79*/
char row; /*left display: rows 0 - 10; right display rows

64 - 74*/
char string[];

} Aba_tty;

#define ABA_TTY23

Command used to write free form text and numbers on an EL display. If row is < 0 the
last selected row is retained; if column is < 0 the last imaginary cursor position is used.
Writing off the right edge of the screen produces undesirable results. Top bit set
characters in the string are interpreted as escape sequences. Use the TTYNUM macro
with the NUM_FRACT, NUM_WHOLE, or NUM_TIME argument to prefix a 16 bit
number. Characters in the range 0xb0 through 0xff expand into spaces. 0xb9 expands
to nine spaces.

#define TTYNUM(a) (0x80 + ((a) >> 5))

typedef struct
{

char command;
char dev_addr;
int16 periph_data;/*must be non-zero*/

} Periph_data;

#define PERIPH_DATA6

Sent in response to a PERIPH_LEARN command, field-based devices only. The field-
based device has the choice of storing `learn' data internally by register number (see
PERIPH_LEARN command) or sending 16 bits of data to later be echoed to it with the
PERIPH_RECALL command. If the device opts to store the data internally it should
still respond with PERIPH_DATA not equal zero.
32 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
LINC Protocol for a Slave

"C"
"Z80"

$SEPARATE$
$RECURSIVE OFF$
$SHORT_ARITH ON$

#define uint8unsigned char
#define int16int

#include "/users/stu/A82v2/include/aba_com.h"

/* This is an example of an implementation of the LINC protocol from the slave side.
The use of a Zilog Z80 DART is presumed. Code is specific to an 8 bit microprocessor
with byte ordering like the Z80. This code is currently in use. */

extern int outport();/*send a byte out Z80 I/O port*/

typedef union
{

char ch[2]; /* ch[0] = lsbyte */
int i;

} CHINT;

typedef union
{

char ch[4]; /* ch[0] = low byte */
int i[2]; /* i[0] = low half */
long l;

} CHINTL;

typedef struct
{

uint8 getptr;
uint8 putptr;
uint8 auxptr;
uint8 spare;
uint8 buffer[256];/*buffer size chosen to make wrap easier to

handle*/
} CIRC_BUFFER;

CIRC_BUFFER Receive_buffer;
CIRC_BUFFER Transmit_buffer;
uint8 Rx_state;
uint8 Aba_error;/*set on error in reception*/
CHINTL Aba_status;/*4 or 2 byte status reply*/
uint8 System_clock;/*A83/A82's field clock as recieved*/
uint8 Myaddress;/*0 - 31*/
uint8 Tx_lock;/*semaphore*/
uint8 Tx_pend;/*number of tx bytes pending as of last sysclock byte*/

#define QUIESCENT0
#define CTL_MCAST64
#define RX_IN_PROGRESS5

aba_rxint (rdata)
CHINT rdata;/*ch[0] is rxdata, ch[1] is TRUE if parity error*/
{

static uint8 rxdata;
static CHINTL multicast_bits;
9100-0288-00 Dec 2000 33

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
register uint8 nbytes;

rxdata = rdata.ch[0];/*LSB is data*/
if (rdata.ch[1]) /*this is a control byte*/
{

/* If we have outstanding receive stuff this is the time to make it available to
background process as receive messages are always bracketed by control bytes. Data
is made available as a ̀ chunk' by copying auxptr to putptr so that background process
gets the full packet. A valid message must be 2 bytes or more as an invalid data byte
could be generated by aborting the next node's poll. */

if (Rx_state == (RX_IN_PROGRESS + 1))/*one byte message*/
Recieve_buffer.auxptr--; /*reject, minimum msg is 2 bytes*/

else if (Rx_state > (RX_IN_PROGRESS + 1))
Recieve_buffer.putptr = Recieve_buffer.auxptr;

if (rxdata == Myaddress)/*I have been polled*/
{

if (Tx_pend) /*I have data to tx, get it out quick*/
{ /*Only have 100uS to do it, this may not be

qik enuf*/
outport (DARTACTL, 5);/*enable buffer (RTS)*/
outport (DARTACTL, 0xea);
outport (TXADATA, Tx_pend);/*send bytecount

byte*/
Tx_pend = 0;

}
Rx_state = RX_IN_PROGRESS;
return;

}

Rx_state = 0;/*reset state to quiescent*/

/* On sysclock byte (top of field) prepare to enable the tri-state buffer and send our
first byte of transmission if we have anything to send. This works with aba_init_tx in
assembly language, Z80 is not fast enough to respond in `C'. */
34 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
if (rxdata >= MAX_NODES && rxdata < CTL_MCAST)/*sysclock byte*/
{

System_clock = rxdata & 31;
if (Aba_status.ch[0] && Transmit_buffer.getptr ==

Transmit_buffer.auxptr && !Tx_lock)
{

Transmit_buffer.buffer[Transmit_buffer.auxptr++] =
 Aba_status.ch[0];

 Transmit_buffer.buffer[Transmit_buffer.auxptr++] =
Aba_status.ch[1];

#if FIELD_BASED/*you should have four bytes to send*/
Transmit_buffer.buffer[Transmit_buffer.auxptr++] =

Aba_status.ch[2];
 Transmit_buffer.buffer[Transmit_buffer.auxptr++] =

Aba_status.ch[3];
#endif

Aba_status.ch[0] = 0;
}
Transmit_buffer.putptr = Transmit_buffer.auxptr;
Tx_pend = 256 - (Transmit_buffer.getptr - Transmit_buffer.putptr);
if (Aba_error)

Recieve_buffer.auxptr = Aba_error =
Recieve_buffer.getptr =

Recieve_buffer.putptr = 0;
}
else if (rxdata == CTL_MCAST)/*prepare for four addr bytes*/

Rx_state = 1;
}
else /*parity OK, this is a data byte*/
{

if (Rx_state >= RX_IN_PROGRESS)/*just keep on putting in the data*/
{

Recieve_buffer.buffer[Recieve_buffer.auxptr++] = rxdata;
Rx_state++;

}
else if (Rx_state)
{

/* My Z80 compiler has problems with longs, you can do something more sensible. */

multicast_bits.ch[3] = multicast_bits.ch[2];
multicast_bits.ch[2] = multicast_bits.ch[1];
multicast_bits.ch[1] = multicast_bits.ch[0];
multicast_bits.ch[0] = rxdata;

/* If the multicast bit field is fully assembled see if we are involved. If so things proceed
normally
(Rx_state now == RX_IN_PROGRESS) else go quiet.*/
9100-0288-00 Dec 2000 35

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
if (++Rx_state == RX_IN_PROGRESS)
{

if (!(multicast_bits.ch[Myaddress >> 3] & (1 << My-
address & 7)))

Rx_state = QUIESCENT;/*not destined for
me*/

}
}

}
}
aba_txint()
{

/*Disable transmitter if last byte, RTS output tri-states buss*/

if (Transmit_buffer.putptr == Transmit_buffer.getptr)
{

outport (DARTACTL, 0x28); /*no furthur interrupts*/
outport (DARTACTL, WR5); /*select write reg 5*/
outport (DARTACTL, WR5DAT ^ RTS);/*tri-state output driver, end

of this byte*/
}
else

outport (TXADATA, Transmit_buffer.buffer[Transmit_buffer.getptr++]);
}

aba_tx (nbytes, data)/*que data in transmit buffer*/
int nbytes, *data;
{

register int to_wrap;
register int bcnt;

bcnt = nbytes;
Tx_lock = 1;
to_wrap = Transmit_buffer.auxptr;
to_wrap = 256 - to_wrap;

if (bcnt <= to_wrap)
cmove (data, &Transmit_buffer.buffer[Transmit_buffer.auxptr], bcnt);

else
{

cmove (data, &Transmit_buffer.buffer[Transmit_buffer.auxptr], to_wrap);
cmove ((int)data + to_wrap, Transmit_buffer.buffer, bcnt - to_wrap);

}
Transmit_buffer.auxptr += bcnt;
Tx_lock = 0;

}

/* A good time to call deque_aba_cmds is at top of field for field based devices. The
SYSCLOCK byte doesn't happen until about 2ms into the field so this is usually a quiet
period. Could also be called out of the receive state machine at ETX byte time or
SYSCLOCK byte time after reenabling interrupts. */
36 9100-0288-00 Dec 2000

Abekas LINC (slave) Protocol DVEOUS Remote Protocol
deque_aba_cmds()
{

while (Recieve_buffer.getptr != Recieve_buffer.putptr)
{

switch (Recieve_buffer.buffer[Recieve_buffer.getptr++])
{

case REQ_STATUS:
Recieve_buffer.getptr += 1;/*discard 2nd byte*/
Aba_status.l = ???;/*format status with current po-

sition*/
break;

case KEY_PRESS:
Key_code = Recieve_buffer.buffer[Recieve_buffer.getptr++];

/*example*/
Key_value.ch[3] = Recieve_buffer.buff-

er[Recieve_buffer.getptr++];
Key_value.ch[2] = Recieve_buffer.buff-

er[Recieve_buffer.getptr++];
Key_value.ch[1] = Recieve_buffer.buff-

er[Recieve_buffer.getptr++];
Key_value.ch[0] = Recieve_buffer.buff-

er[Recieve_buffer.getptr++];
Recieve_buffer.getptr++;/*we don't need decpt*/
break;

case KEY_RELEASE:
case SEEK_FIELD:
case RUNCMD:
case TBALL_MOVE:
case SOFTP_MOVE:

Recieve_buffer.getptr += 2;/*discard*/
break;

case PERIPH_LEARN:
Recieve_buffer.getptr += 1;/*discard*/
break;

case SEEK_OFFSET:
case JOY_MOVE:
case PERIPH_RECALL:

Recieve_buffer.getptr += 3;/*discard*/
break;

default:
Aba_error = TRUE;
break;

}
}

}

9100-0288-00 Dec 2000 37

DVEOUS Remote Protocol Abekas LINC (slave) Protocol
LINC Key Numbers

#define KEY_SAVE 0
#define KEY_RCLL 1
#define KEY_EFFECT 2
#define KEY_MODIFY 10
#define KEY_COPY 11
#define KEY_INST 12
#define KEY_DELETE 13
#define KEY_GOTO 17
#define KEY_STRT 18
#define KEY_TO 19
#define KEY_END 20
#define KEY_ALL 21
#define KEY_LASTKF 26
#define KEY_THIS 27
#define KEY_NEXTKF 28
#define KEY_NORM 53
#define KEY_CNTR 54
#define KEY_CLR 55
#define UKEY_SK0 83 /*these are the softkeys*/
#define UKEY_SK 1 84
#define UKEY_SK2 85
#define UKEY_SK3 86
#define UKEY_SK4 87
#define UKEY_SK5 88
#define UKEY_SK6 89
#define UKEY_SK7 90
#define UKEY_SK8 91
#define UKEY_SK9 92
#define UKEY_SK10 93
#define UKEY_SK11 94
#define UKEY_SK12 95
#define UKEY_SK13 96
#define UKEY_SK14 97
#define UKEY_SK15 98
#define UKEY_SK16 99
#define UKEY_SK17 100
#define UKEY_SK18 101
#define UKEY_SK19 102
#define UKEY_SK20 103
#define UKEY_SK21 104
#define UKEY_SK22 105

 #define UKEY_SK23 106
38 9100-0288-00 Dec 2000

	Book.pdf
	Serial Protocol
	Introduction
	Ports
	SMPTE Protocol
	Sony Protocol
	Peripheral Bus I and II Interface Support
	A53 (Limited) RS-232 Control Command Set
	Control Point Language
	Message Format
	Message Tokens
	Communications
	Command Message Format

	Abekas LINC (slave) Protocol
	Overview
	LINC Specifications
	Data Format
	LINC Commands
	LINC Status Reply Format
	LINC Command Format
	LINC Protocol for a Slave
	LINC Key Numbers

