Quick Contents

- Introduction
- Oscillators
- OrbitalFX Menu
- OrbitalFX and Keyframes
- Oscillator Combining
- Patch Bay Var Setting
- Warp Parameters
- Continuous Rippling Effect

Section 9: OrbitalFX

Introduction

Abekas

Dveous/MX achieves its video effects via a collection of parameters, e.g. Locate H and Rotate V, that when altered, modifies the video passing through it. Traditionally, these parameters are altered either manually (using the joystick, keyboard, or softknobs) or as part of keyframe based splining while running an effect.

OrbitalFX[™] provides a method for altering Dveous/MX parameters. OrbitalFX uses automatic value generators, called oscillators, which are "patched" to system parameters. Once patched, the parameter is under the oscillator's continuous control; the user controls the oscillator. This can be done in real time while the system is running.

Applying OrbitalFX to multiple parameters (or multiple oscillators to a single parameter) allows you to create complex effects that would have been very difficult or impossible using the traditional keyframe approach. In addition, OrbitalFX is partially integrated into the keyframe based timeline system, allowing you to turn oscillators on and off on a keyframe basis, making it easy to add to keyframe based effects. An example would be to add a subtle but rapid shake to a video compression. Ordinarily this would require many keyframes (depending on the amount of shaking desired); with OrbitalFX it becomes much easier to setup and modify, providing a better chance of getting the look you are after.

Note: State of OrbitalFX can be changed in the Personality menu. See the Technical Guide, P/N 9100-0402-00, or General Operational Notes later in this section for more information.

Oscillators

OrbitalFX relies on the use of *oscillators* to generate the values used to modify the various parameters within Dveous/MX. An oscillator is simply an automatic number generator that you control. You set up its amplitude, frequency, the waveform, and its relationship to the other oscillators used.

There are 24 oscillators per channel (1A, 1B, 2A, 2B, and Global) in Dveous/MX. Each comes pre-assigned (patched) to a parameter. You can patch each oscillator to any parameter you like; you can even patch multiple oscillators to the same parameter.

9

Abekas

Power turns each oscillator's power on and off. *This field is the only keyframeable parameter*, allowing you to turn on and off individual oscillators within a traditional keyframe timeline.

Note: The above waveforms show the output values over time. By following the progression of a waveform, you can see how it controls number generation over time.

- WAVEFORM selects the "shape" that the oscillator generates.
 - Ramp: Counts linearly to the maximum amplitude then resets and goes again.
 - Sine: Counts up to the maximum amplitude then counts down to the minimum, following a sine wave shaped curved path. Depending on the usage, this generally gives the appearance of acceleration and deceleration to the movement (when patched to parameters that cause movement) as the limits are reached.
 - Cosine: Operates exactly as with Sine, but 90 degrees out of phase.
 - Harmonic: Counts in a modified sine fashion, but adds a special little harmonic wiggle in the middle.
 - Quadratic: Counts like Ramp, but in a non-linear exponential fashion.
 - Triangle: Counts up to the maximum amplitude then counts down to the minimum (similar to Sine and Cosine) following a linear path.
 - Square: Simply jumps between the maximum and minimum values, spending an equal amount of time at each.

- Pulse: Same as Square, except it spends more time at the maximum value (90%) than at the minimum (10%).
- Noise: Randomly generates numbers (within the maximum/minimum range). Note that for this waveform, *smaller* numbers in the *Frequency* setting causes random numbers to be generated at a quicker pace.
- Noise 2: Shares a single random number between all oscillators using the NOISE2 wave form for the whole field.
- Bounce: Approximates the acceleration of a bouncing ball.
- Curves: Random but smooth curves.
- *Frequency* determines the speed of the oscillator's counting. Its range is from 0 (stopped) to 99,999 (ridiculously fast). The frequency value represents how much the clock advances per field in the *Clock* field. An exception is with the **Noise** waveform, where smaller values produce faster changes.

Amp controls the amplitude of the oscillator. It is the distance from the baseline to the maximum and minimum values; the total distance covered is actually twice the Amp setting. Its range is from -999.9999 to +999.9999. The actual values you use depend on the oscillator's patched parameter. The default Amp values assigned to each oscillator give a good starting point.

A value of 2.0000 indicates that the oscillator will run from -2.0000 through 0.0000 to +2.0000, an overall range of 4.0000.

9

N

Note: Setting Amp to -2.0000 produces the same results, but the action will be backwards compared to when using a positive number.

Abekces Section 9: OrbitalFX

- Phase adds an offset to an oscillator's clock, and can be used to create special relationships between waveforms in related oscillators. For example, two oscillators patched to H Locate on two different channels will appear to follow each other if one is given a small phase adjustment. The *Phase* range is from 0.0000 to 1.0000.
- Offset changes the center point about which the Amp setting works. In other words, use it to offset the maximum and minimum values from the default position. The range is from

-999.9999 to +999.9999, but is dependent on the parameter it is patched to. If *Amp* is set to 0, then adjusting *Offset* is just like adjusting the parameter itself.

Comb Type (Combine Type) selects between Set, Add, and Multiply. When patching multiple oscillators to a single parameter, it is important to know that Dveous/MX applies the oscillators in the order they appear in the center screen display. See Oscillator Combining later for more details.

Set replaces the parameter's existing values with those its oscillator generates. In this case, you cannot adjust a parameter, manually or with a timeline effect. An oscillator using *Set* overrides any previous ones patched to the same parameter.

Add trims the parameters values. Use *Add* to apply oscillator generated values to an existing value, whether from a timeline effect or previous oscillators patched to the same parameter.

Multiply can be used to provide a scaling or "volume control" of previous oscillators patched to the same parameter. Using *Multiply* on the first oscillator of a group or when a single oscillator is patched to a parameter causes the parameter's value to go to zero.

- *Clock* shows the oscillator's clock. It counts from 0.0000 to 1.0000 at a rate determined by the frequency setting. (The frequency value represents how much the clock advances per field.)
- Slaves selects the number of oscillators, immediately following the current one (the master), which will respond to changes in the master oscillator. The range is from 0 (no slaves) to 23. For example, if you set Slaves to 4 on oscillator 6, then oscillators 7 through 10 will all be powered on when oscillator 6 is powered on, and any changes made to 6 will ripple down to the slaves. Once enabled, you can go back and change the settings on any of the slaved oscillators, although any changes made to the master will once again force the slaves to match its settings. The default oscillator 1 by default is patched to "3dTrans Targ H Loc", and the following two oscillators (V and Z Loc) slaved to it. Set Slaves on oscillator 1 to 0 before enabling power on it if you do not want the slaved oscillators to follow.

The *Slaves* setting also affects the Patch Bay mode. Patching an oscillator to a parameter causes any slaved oscillators to be automatically patched to consecutive parameters.

Abekas Section 9: OrbitalFX

OrbitalFX Menu

Press the **ORBITAL FX** button to see the OrbitalFX menu. (Note: this is the button next to **JOYSTICK LOCK** in the Graphics section of the panel.)

MAIN POWER	Cur	Time: 0:00		0	rbitalFX			Ch 1A	Gb
Off Standby On	ON	TARGET N	IAME		WAVEFORM	FREQ	AMP	OUTPUT	18
	*	3dTrans Ta	rg H Loc		Sine	30 30	0.2500	0.0000	2A
PATCHBAY		3dTrans Ta	arg Z Loc		Ramp	30	2.0000	0.0000	20
Setup Patch!		3dTrans Ta 3dTrans Ta	rg Rh ROT rg Rv ROT		Sine Cosine	7 7	1.0000 1.0000	0.0000 0.0000	
MISC		3d I rans Ta	arg Rz ROT		Sine	1	0.5000	0.0000	-
Tempo Copy	ON	TARGET N	IAME		СОМВ	PHASE	E OFFSET	SLAVES	_
		3dTrans Ta	arg Z Loc		SET	0.0000	0.0000	0	
	CUF	RRENT TAR	GET: 3dTran	s Targ	Z Loc]
		FIELD		WA	VEFORM				
OSC #)	Pov	ver/Wave	POWER	-	Ramp			KEYF	PAD
	Fr	eq/Amp	Off		Sine				
	Ph	ase/Off	On		Cosine				

The center of the menu display shows six of the oscillators and their settings, with the currently selected oscillator highlighted.

The ON column indicates currently enabled oscillators. TARGET NAME shows the functions assigned to each oscillator. A line below the group of six shows more details about the currently selected oscillator. The bottom line shows the currently patched parameter, or in the Patch Bay menu, the parameter to be patched. There are three softkeys along the left side of the display as follows:

- Main Power: This allows you to turn the entire OrbitalFX engine on or off, or to place it in a standby mode. It also allows access to the primary oscillator controls, making it the primary menu.
- Patch Bay: This allows you to patch (assign) oscillators to the parameters.
- Misc: This contains a master tempo adjustment and oscillator copy functions.

Main Power

Toggling Main Power Off completely disables the OrbitalFX system.

Toggling to *Standby* allows all oscillators set on to connect with their parameters. If you manually adjust their clocks, their output, and thus the parameter value, changes. This is useful when cueing an oscillator to start at a specific point, for example when you first want to control a parameter by timeline control, then switch to oscillator control. To make the transition seamless, note the parameter's ending value on the timeline, then cue the oscillator to that value by manually adjusting the clock while in Standby mode. When the keyframe is modified or inserted, the clock value sets its starting point.

Toggling Main Power On engages the OrbitalFX system.

Note: The above settings are not stored as part of the effect.

The softknob settings are as follows:

Osc # Use this to select the oscillator you want to configure. Its number range is from 1 to 24.

Field This actually selects which pairs of oscillator fields the C and D softknobs allow you to modify. See the previous text regarding oscillators for details on the *Field* settings.

- Power/Wave
- Freq/Amp
- Phase/Off
- Comb
- Clock/Slave

Patch Bay

Use this softkey to assign oscillators to the parameters. Softknob A (*Osc #*) selects which oscillator to change, and softknob D (*Var*) selects the parameter you would like to patch to it. *Var*'s range is from 0 to 300, with 0 to 184 actually used to select parameters (0 to 124 with globals). The end of this document contains a list of the parameters and their numbers.

Once you have selected the desired parameter, press the **Patch Bay** softkey again to confirm the patch and assign it.

9

Abekcis Section 9: OrbitalFX

As mentioned previously, the *Slaves* setting also affects the Patch Bay mode. Patching an oscillator to a parameter causes any slaved oscillators to be automatically patched to consecutive parameters.

Misc

The Misc Softkey toggles between two modes: Tempo and Copy.

Tempo *Tempo* provides a master clock control, allowing you to speed up or slow down all of the oscillators simultaneously. None of the oscillator values are directly changed by this setting though.

Copy The copy function is useful to rearrange the order of oscillator patches, without having to actually repatch them. This is useful when you need to alter the parameter hierarchy for an effect.

- Store Osc—*Store Osc* copies the current oscillator to another. Type the destination's number at the numeric keypad and press the A button.
- Recall—*Recall* copies an oscillator into the current location. Type the source's number at the numeric keypad and press the **B** button.

Note: The A and B softknobs do not function in this mode; the values of "-1" have no meaning.

Abekas Dveous/MX-OrbitalFX and the

OrbitalFX and the Keyframe System

Power (on/off control) for each oscillator is the only OrbitalFX parameter changeable on a keyframe basis within an effect. The status of the other parameters is remembered, but cannot be splined (changed) within an effect.

Beware of having oscillators running while modifying or inserting keyframes, as you could end up with a basic effect containing undesired OrbitalFX influences. The safest approach is to build the basic effect first, then with the OrbitalFX **Main Power** off, configure and enable the desired oscillators, modifying the appropriate keyframes where each oscillator's power is turned on or off. All OrbitalFX settings are put into workspace once you modify or insert a keyframe after it is configured. At this point it is safe to enable OrbitalFX **Main Power**.

N

Note: The status of Main Power is not a part of the effect, and is not remembered when saving it.

If you change an oscillator's setting, for example its frequency, you can modify any keyframe to write the change to the workspace effect.

Using OrbitalFX with Keyframe Effects

Use care when patching oscillators to parameters used within an effect. The result could be a subtle modification or a dramatic change.

The **Comb** field setting determines whether the output of a given oscillator replaces the value for its parameter (*Set*), or just trims it (*Add*). You cannot adjust any parameter with an oscillator patched to it that has the Comb field to *Set*, manually or with an effect – OrbitalFX has total control over that parameter if the oscillator is powered on and Main Power is set On or Standby.

Oscillator Combining

Applying multiple oscillators to a single parameter leads to a wide variety of results, from adding subtle harmonic effects to ramping oscillator effects on and off. The Comb Type (Combine Type) setting determines how the oscillators interact.

Dveous/MX effectively creates a mathematical expression from the oscillator settings to determine the action of the parameter. The expression is determined by oscillator order. It is important to take this into account when setting up your effect.

Comb Type (Combine Type) selects between Set, Add, and Multiply.

- *Set* replaces the parameter's existing values with those its oscillator generates. An oscillator using *Set* overrides any previous ones patched to the same parameter.
- *Add* trims the parameters values. An oscillator using *Add* has its values added to any previous ones patched to the same parameter.
- *Multiply* provides a scaling or "volume control" of previous oscillators patched to the same parameter. It is not advised to use *Multiply* on the first oscillator of a group.

Combining Example

The following example uses 3d Trans Target H Locate, and assumes Dveous/MX is at the factory normal.

- 1. Set **3D** Trans Target Z Locate to 56.
- 2. In the OrbitalFX menu, set Main Power On.
- 3. Select oscillator 1. It should already be patched to 3dTrans Targ H Loc.
- 4. Set Slaves to 0.
- 5. Set **Power** *On*, **Waveform** to *Sine*, **Freq** to *100*, and **Amp** to *3.0*. You should now see the picture moving back and forth across the screen.
- 6. Toggle the Misc softkey to select *Copy*. Press 2 then A (Store Osc). This makes a copy of the current oscillator (1) and puts it into oscillator 2.
- 7. Press Main Power then select oscillator 2. Turn power on, set its Comb to *Add*, Freq to *900*, and Amp to *0.25*. The picture should now "stutter" as it moves back and forth. This is the second oscillator being added to the original.

- 8. Toggle the Misc softkey to select *Copy*. Press 3 then A (Store Osc). This makes a copy of the current oscillator (2) and puts it into oscillator 3.
- 9. Press Main Power then select oscillator 3. Turn power on, set its Comb to Multiply, Waveform to Ramp, Freq to 10, Amp to 0.5, and Offset to 0.5. The picture should now start with a small back and forth movement in the center that gradually grows. Once it reaches its limit it jumps back to being a small movement.

The above example sets up osc $1 + \text{osc } 2 \times \text{osc } 3$. Setting oscillator 3's Amp to 0.5 gives it a total swing of 1.0 (0.5 to -0.5); the Offset of 0.5 ensures the ramp goes from 0.0 to 1.0. Multiplying the result of osc 1 + osc 2 by 0.0 (the bottom of the ramp) gives a result of 0.0; multiplying by 1.0 (the top of the ramp) gives the result of full movement. The ramp values between 0.0 and 1.0 produce scaled results.

To use the above to turn up the action and leave it up, add a keyframe that turns oscillator 3's power off. The duration of keyframe one (which controls how long oscillator 3 is on) needs to be just long enough for the multiply to get to its end. Try different settings until you get the proper result.

Aligning Oscillator Clocks

Each oscillator's clock starts running when its power is turned on. If clocks of related or synchronizing oscillators get out of alignment, align them in one of two ways.

To align the clocks of all oscillators on delegated channels, press the ALIGN + ORBITAL FX buttons at the same time.

Align the current oscillator and its slaves (on all delegated channels) by pressing ALIGN + A (*OSC* #). Simply twisting the Clock softknob in that situation also aligns the appropriate clocks, setting the their clocks to the same value, whatever that may be. Use the numeric keypad to enter a specific value and align the clocks.

General Operational Notes

- Use CLEAR + ORBITAL FX to set all oscillators to default (on all delegated channels).
- Use CLEAR + A (Osc #) to set the current oscillator and its slaves to default (on all delegated channels).

Abekcis Section 9: OrbitalFX

- RUN ENV in the PERSONALITY Menu under MISC, allows you to select how OrbitalFX will run.
 - Post Recall the saved OrbitalFX state when you run.
 - Live DON'T recall the saved state. This allows the live user to have an OrbitalFX effect running and hit RUN to start a timeline portion of the effect. The OrbitalFX clocks will not reset and cause a hiccup.

Patch Bay Var Setting

There are two concerns when patching oscillators to parameters from the list below: figuring out the real name for the parameter you want to patch, and knowing the proper *Amp* and *Offset* values.

The parameters vary greatly on their number requirements, and a lot of them do not even use numbers (on and off settings and such). Set *Amp* with the range of the given parameter in mind. To control a parameter that has an on and off setting, set *Amp* to 1 and *Offset* to 1. For a parameter that has 4 settings (*1 Chnl_Input_front_inv* for example), set *Amp* to 2 and *Offset* to 2. Remember that the *Amp* value determines how far above and below the *Offset* value the oscillator goes.

Several of these parameters do not lend themselves to OrbitalFX control (for example *73 Chnl_warp_shape*), and produce results that are mostly useless.

Note: Most of the following parameters can be figured out with their name. Those that need extra explanation have italics text in parenthesis added.

Local Channel Parameters

3D TRANS
117 Chnl3dTrans_src_rh_rot
118 Chnl3dTrans_src_rv_rot
119 Chnl3dTrans_src_rz_rot
120 Chnl3dTrans_src_h_loc
121 Chnl3dTrans_src_v_loc
122 Chnl3dTrans_src_z_loc
123 Chnl3dTrans_src_ah_pos (axis)
124 Chnl3dTrans_src_av_pos (axis)
125 Chnl3dTrans_src_az_pos (axis)
126 Chnl3dTrans_targ_rh_rot
127 Chnl3dTrans_targ_rv_rot
128 Chnl3dTrans_targ_rz_rot
129 Chnl3dTrans_targ_h_loc
130 Chnl3dTrans_targ_v_loc
131 Chnl3dTrans_targ_z_loc
132 Chnl3dTrans_targ_ah_pos (axis)
133 Chnl3dTrans_targ_av_pos (axis)
134 Chnl3dTrans_targ_az_pos (axis)

Abekces Section 9: OrbitalFX

2D TRANS

135 Chnl_Trans_h_pan (post H) 136 Chnl_Trans_v_pan (post V) 137 Chnl_Trans_zoom (post Zoom) 138 Chnl_Trans_h_inpos (pre H) 139 Chnl_Trans_v_inpos (pre V) 140 Chnl_Trans_h_aspect 141 Chnl_Trans_v_aspect 142 Chnl_Trans_src_size (pre/aspect size) 143 Chnl_Trans_h_skew 144 Chnl_Trans_v_skew 145 Chnl_Trans_perspcv BORDER CROP 30 Chnl_Crop_cpin_left 31 Chnl_Crop_cpin_top 32 Chnl_Crop_cpin_right 33 Chnl_Crop_cpin_bottom 49 Chnl_Crop_cpin_soft_left 50 Chnl_Crop_cpin_soft_top 51 Chnl_Crop_cpin_soft_right 52 Chnl_Crop_cpin_soft_bottom 55 Chnl_Border_bottom_width 56 Chnl_Border_left_width 57 Chnl_Border_right_width 58 Chnl_Border_top_width 59 Chnl Border opac 60 Chnl_Border_hue 61 Chnl_Border_lum 62 Chnl_Border_sat 63 Chnl_Border_softness MULTI 22 Chnl_Mosaic_h_tile 23 Chnl_Mosaic_v_tile 24 Chnl_Mosaic_size 25 Chnl_Mosaic_mosaic_on 29 Chnl_Mosaic_motdet 42 Chnl_Crop_cpin_h_multi 43 Chnl_Crop_cpin_v_multi COLOR CRCTR 146 Chnl_Ccr_Y_Gain 147 Chnl_Ccr_U_Gain 148 Chnl_Ccr_V_Gain 149 Chnl_Ccr_Y_Offset 150 Chnl_Ccr_U_Offset 151 Chnl_Ccr_V_Offset 152 Chnl_Ccr_Y_Gamma 153 Chnl_Ccr_U_Gamma 154 Chnl Ccr V Gamma 155 Chnl_Ccr_Y_Knee 156 Chnl_Ccr_U_Knee 157 Chnl_Ccr_V_Knee

158 Chnl_Ccr_Proc_Hue 159 Chnl Ccr Proc Sat 160 Chnl_Ccr_Proc_Gain 161 Chnl_Ccr_Proc_Offset 176 Chnl_Ccr_YuvGbrMode COLOR MODIFY 162 Chnl_Ccr_Y_Sol 163 Chnl_Ccr_U_Sol 164 Chnl Ccr V Sol 165 Chnl_Ccr_Tint_Enable 166 Chnl_Ccr_Black_Sat 167 Chnl_Ccr_Black_Hue 168 Chnl Ccr Mid Sat 169 Chnl_Ccr_Mid_Hue 170 Chnl_Ccr_White_Sat 171 Chnl_Ccr_White_Hue 172 Chnl_Ccr_Invert_Gain 173 Chnl_Ccr_Y_Inv_Gain 174 Chnl_Ccr_U_Inv_Gain 175 Chnl_Ccr_V_Inv_Gain INPUT 1 Chnl_Input_front_inv 2 Chnl_Input_back_inv 3 Chnl_Input_front_type 4 Chnl_Input_front 5 Chnl_Input_back_type 6 Chnl_Input_back 45 Chnl_Crop_cpin_blur (V blur) 46 Chnl_Crop_cpin_h_blur 181 Chnl_Freeze_mode 182 Chnl Freeze type 183 Chnl_Freeze_strobe 184 Chnl_Freeze_duty WARP 64 Chnl warp f mod (V Freq, Split V Position Bottom Right) 65 Chnl_warp_decay (Split V Position Bottom Left) 66 Chnl_warp_h_pos (Position, H Position, H Split) 67 Chnl_warp_v_pos (V Position, V Split) 68 Chnl_warp_spread (Frequency, H Freq, Radius, Size, Spread, Split V Position Top Right) 69 Chnl warp range (Amplitude, Mag, Range, Twist, Split V Position Top Left) 70 Chnl_warp_axis (Axis, Rotation, Split Rotate Top Left) 71 Chnl_warp_phase

Abekas Section 9: OrbitalFX

(Alignment, Phase, Split Rotate Top
Right)
72 Chnl warp p width
(Pulsewidth)
73 Chnl warp shape
75 Chnl warp quadrant 1 offset
(Cylinder Position, Left, Ring 1, Top Left,
Split H Position Top Left)
76 Chnl_warp_quadrant_2_offset
(Right, Ring 2, Top Right, Split H Position
Top Right)
77 Chnl_warp_quadrant_3_offset
(Bottom Left, Ring 3, Top, Split H
Position Bottom Right)
78 Chnl_warp_quadrant_4_offset
(Bottom, Bottom Right, Ring 4, Split H
Position Bottom Left)
79 Chnl_warp_useful_one
(Split Rotate Bottom Right)
80 Chnl_warp_useful_two
(Split Rotate Bottom Left)
LIGHT SOURCE
81 Chnl_Light_src_xOver (Source)
82 Chnl_Light_src_gainMode (Model)
83 Chnl_Light_src_hiLoEnable (<i>Lights</i>)
84 Chnl_Light_src_hiHue (Specular)
85 Chnl_Light_src_hiLum (Specular)
86 Chnl_Light_src_hiSat (Specular)
87 Chnl_Light_src_hiOpac (Specular)
88 Chnl_Light_src_loHue (Specular)
89 Chnl_Light_src_loLum (Specular)
90 Chnl_Light_src_loSat (Specular)
91 Chnl_Light_src_loOpac (Specular)
92 Chnl_Light_src_hiYGain (Diffuse)
93 Chnl_Light_src_hiCGain (Diffuse)
94 Chnl_Light_src_loYGain (Diffuse)
95 Chnl_Light_src_loCGain (Diffuse)
96 Chnl_Light_src_ambYGain (Diffuse)
97 Chnl_Light_src_ambCGain (Diffuse)
99 Chnl_Light_src_type (Spot/Bar/Flood)
100 Chnl_Light_src_zpos
101 Chnl_Light_src_vpos
102 Chnl_Light_src_hpos
103 Chnl_Light_src_hrot (Bar)
104 Chnl_Light_src_vrot (Bar)
105 Chnl_Light_src_zrot (Bar)
116 Chnl_Light_src_gamma (Focus)
180 Chnl_Light_src_mode
TEXTURE
106 Chnl_Light_src_cropEnable
107 Chnl_Light_src_cropLeft

108 Chnl_Light_src_cropRight 109 Chnl Light src cropTop 110 Chnl_Light_src_cropBottom 111 Chnl_Light_src_txtOffset 112 Chnl_Light_src_txtGain 113 Chnl_Light_src_texture (Main-Source) 114 Chnl_Light_src_txtFreeze 115 Chnl Light src txtEnable KEY 0 Chnl_Operating_mode (VV/VK/VKS) 7 Chnl Input keyStat (White/Video) 8 Chnl_Input_shadStat (*White/Video*) 12 Chnl Keyer setup gain 13 Chnl Keyer setup clip 14 Chnl Keyer setup phase 15 Chnl_Keyer_setup_hue (Shadow) 16 Chnl_Keyer_setup_lum (Shadow) 17 Chnl_Keyer_setup_sat (Shadow) CORNER PIN 34 Chnl_Crop_cpin_h_corner (Top Left) 35 Chnl_Crop_cpin_h_corner2 (Top Right) 36 Chnl_Crop_cpin_h_corner3 (*Bottom Rt*) 37 Chnl_Crop_cpin_h_corner4 (*Bottom Left*) 38 Chnl Crop cpin v corner (Top Left) 39 Chnl_Crop_cpin_v_corner2 (Top Right) 40 Chnl_Crop_cpin_v_corner3 (Bottom Rt) 41 Chnl_Crop_cpin_v_corner4 (Bottom Left) 47 Chnl_Crop_cpin_autokey 48 Chnl_Crop_cpin_cmotion OUTPUT 9 Chnl Keyer setup a opac 10 Chnl_Keyer_setup_b_opac 11 Chnl_Keyer_setup_cross_fade 18 Chnl_Keyer_setup_priority 19 Chnl Keyer setup z offset a 20 Chnl_Keyer_setup_z_offset_b 21 Chnl Keyer setup z softness LOCAL NOT SUPPORTED 26 Chnl_Mosaic_image 27 Chnl_Mosaic_hasp 28 Chnl Mosaic vasp 44 Chnl Crop cpin select 53 Chnl_Crop_cpin_key_source 54 Chnl_Crop_cpin_key_screen 74 Chnl_warp_wave 98 Chnl Light src blackLevel 177 Chnl_Input_front_Ext_Xpnt 178 Chnl_Input_back_Ext_Xpnt 179 Chnl_Pause_On SPARES (UNUSED) 185 Chnl_Spare1

Abekas Section 9: OrbitalFX

186 Chnl_Spare2 187 Chnl_Spare3 188 Chnl_Spare4 189 Chnl Spare5 190 Chnl_Spare6 **Global Channel Parameters** GLOBAL TRANS 0 Gbl__3dTrans_src_rh_rot 1 Gbl__3dTrans_src_rv_rot 2 Gbl__3dTrans_src_rz_rot 3 Gbl__3dTrans_src_h_loc 4 Gbl__3dTrans_src_v_loc 5 Gbl__3dTrans_src_z_loc 6 Gbl__3dTrans_src_ah_pos (axis) 7 Gbl__3dTrans_src_av_pos (axis) 8 Gbl__3dTrans_src_az_pos (axis) 9 Gbl__3dTrans_targ_rh_rot 10 Gbl__3dTrans_targ_rv_rot 11 Gbl__3dTrans_targ_rz_rot 12 Gbl__3dTrans_targ_h_loc 13 Gbl__3dTrans_targ_v_loc 14 Gbl__3dTrans_targ_z_loc 15 Gbl__3dTrans_targ_ah_pos (axis) 16 Gbl__3dTrans_targ_av_pos (axis) 17 Gbl__3dTrans_targ_az_pos (axis) 18 Gbl__2dTrans_h_pan (no keyboard equiv) 19 Gbl_2dTrans_v_pan (no keyboard equiv) 20 Gbl__2dTrans_zoom (no keyboard equiv) COMBINER 37 Gbl_Dve_combiner_cross_fade 38 Gbl_Dve_combiner_ab_opac (ch1) 39 Gbl_Dve_combiner_cd_opac (ch2) 40 Gbl_Dve_combiner_priority (fixed/zkey) 41 Gbl_Dve_combiner_z_softness 42 Gbl_Out_combiner_cross_fade (TFS) 43 Gbl_Out_combiner_dve_opac (TFS) 44 Gbl Out combiner tfs opac (TFS) 45 Gbl_Out_combiner_priority (TFS fix/zkey) 46 Gbl_Out_combiner_z_softness (TFS) 48 Gbl_Background_source 49 Gbl_Background_freeze 76 Gbl_Background_z_pos 77 Gbl_Background_z_softness 78 Gbl_Background_z_cross_fade 79 Gbl_Background_priority (fixed/zkey) 80 Gbl_Framestore_source (TFS source) TARGET FRAMESTORE 47 Gbl Framestore freeze (TFS) 82 Gbl_tfs_decay 83 Gbl_tfs_slinky

85 Gbl_tfs_sparkle_rate 86 Gbl tfs hue 87 Gbl_tfs_sat 88 Gbl_tfs_lum 89 Gbl_tfs_z_soft (Comp mode) 90 Gbl_tfs_xfade (Comp mode) 91 Gbl_tfs_effect_offOn 92 Gbl_tfs_effect_mode (Attributes) 94 Gbl tfs output mode 96 Gbl_tfs_decay_offOn 97 Gbl tfs sparkle offOn 98 Gbl_tfs_drop_offOn 99 Gbl tfs xfade mode 100 Gbl_tfs_trail_color_offOn DEFOCUS 21 Gbl_Defocus_one_src 22 Gbl_Defocus_one_aperature 23 Gbl_Defocus_one_luma_h 24 Gbl_Defocus_one_luma_v 25 Gbl Defocus one luma enable 26 Gbl_Defocus_one_chroma_h 27 Gbl Defocus one chroma v 28 Gbl_Defocus_one_chroma_enable 29 Gbl Defocus two src 30 Gbl_Defocus_two_aperature 31 Gbl Defocus two luma h 32 Gbl_Defocus_two_luma_v 33 Gbl_Defocus_two_luma_enable 34 Gbl_Defocus_two_chroma_h 35 Gbl_Defocus_two_chroma_v 36 Gbl Defocus two chroma enable SUPERMATTE 50 Gbl_SMatte_pattern 51 Gbl_SMatte_rot_mode (angle/spin) 52 Gbl SMatte rot angle 53 Gbl_SMatte_rot_spin 54 Gbl_SMatte_split_enable 55 Gbl_SMatte_split_level 56 Gbl_SMatte_h_multiple 57 Gbl_SMatte_v_multiple 58 Gbl_SMatte_reflect 59 Gbl SMatte progress 60 Gbl_SMatte_hpos 61 Gbl_SMatte_vpos 62 Gbl_SMatte_softness 63 Gbl SMatte pers mag 64 Gbl_SMatte_pers_rot 65 Gbl SMatte colour1 hue 66 Gbl_SMatte_colour1_lum 67 Gbl_SMatte_colour1_sat 68 Gbl_SMatte_colour2_hue

Abekcis Section 9: OrbitalFX

69 Gbl_SMatte_colour2_lum 70 Gbl_SMatte_colour2_sat 71 Gbl_SMatte_aspect 72 Gbl_SMatte_rings1 73 Gbl_SMatte_arms1 74 Gbl_SMatte_rings2 75 Gbl_SMatte_arms2 SOLID BUILDER 101 Gbl_Slab_enable 102 Gbl_Slab_width 103 Gbl_Slab_height 104 Gbl_Slab_depth 105 Gbl_Slab_frontPosV 106 Gbl_Slab_frontSizeV 107 Gbl_Slab_frontPosH 108 Gbl_Slab_frontSizeH 109 Gbl_Slab_topPosV 110 Gbl_Slab_topSizeV 111 Gbl_Slab_topPosH 112 Gbl_Slab_topSizeH 113 Gbl_Slab_sidePosV 114 Gbl_Slab_sideSizeV 115 Gbl_Slab_sidePosH 116 Gbl_Slab_sideSizeH 117 Gbl_Slab_slabSide 118 Gbl_Slab_slabSide1B 119 Gbl_Slab_slabRoll_Dir 120 Gbl_Slab_enable_ch1a 121 Gbl_Slab_enable_ch1b 122 Gbl_Slab_enable_ch2a 123 Gbl_Slab_enable_ch2b GLOBAL NOT SUPPORTED 77 Gbl_Framestore_z_enable 89 Gbl_tfs_source 91 Gbl_tfs_blank_mode

Warp Menu Parameters

The challenge in controlling the Warp menu parameters is determining which patches apply to each warp shape's controls. The following list provides *Var* values assigned to the *Modify* and *Position* controls used by the warp shapes. Warp pattern #71, Split, has its *Position* controls listed separately at the end.

The number (68 for Spread for example) is the *VAR* value to enter in the Patch Bay mode. The Warp View controls have no tie to OrbitalFX (and would be peculiar to use if they did).

MODIFY	
Alignment	71
Amplitude	69
Axis	70
Frequency	68
H Frequency	68
Mag	69
Phase	71
Position	75
Pulsewidth	72
Radius	68
Range	69
Rotation	70
Size	68
Spread	68
Twist	69
V Frequency	64
POSITION	
Bottom	78
Bottom Left	77
Bottom Right	78
H Position	66
H Split	66
Left	75
Position	66
Right	76
Ring 1	75
Ring 2	76
Ring 3	77
Ring 4	78
Тор	77
Top Left	75
Top Right	76
V Position	67
V Split	67

SPLIT V POSITION

9

Abekas Section 9: OrbitalFX

Bottom Right	64
Bottom Left	65
Top Right	68
Top Left	69

SPLIT H POSITION

77
78
76
75

SPLIT ROTATE

Bottom Right	79
Bottom Left	80
Top Right	71
Top Left	70

Continuous Rippling Effect

This section describes creating an effect that causes the movement to appear to run continuously. The concept can be applied to numerous situations, but the example used is a common one involving circular ripples. The goal is to make the image look like the rippling never stops.

The basic task is to have OrbitalFX change the Warp menu's Phase parameter so that a ripple moves exactly one ripple period, as determined by the Warp menu's Frequency setting, then jump back to where it started and go again. The OrbitalFX Ramp waveform is perfect for actually running the effect, but is less than ideal for setting it up. For that we will use the Square waveform.

The following assumes you have good video for rippling purposes (flat color fields are disappointing). The grid test pattern of the Texture menu works very well.

- 1. Press NORMAL NORMAL NORMAL ENTER to force Dveous/MX to a known starting point.
- 2. Press the WARP button, set Warp *On*, Category to *Ripple*, and Type to *Circular*. Toggle the Demo mode *On* then *Off*. This applies static ripples to the picture.
- 3. Press the ORBITALFX button. Ensure oscillator 1 is selected, and set its Slaves to 0.
- 4. Use Patch Bay to patch VAR 70 to oscillator 1.
- 5. Set the oscillator's *Power* to *On*, **Waveform** to *Square*, and **Frequency** to 200.
- 6. Start turning up the amplitude. You will see a rapid cut between the amplitude limits. As you keep turning up the amplitude you will see that there is a point where the two images appear as one. This indicates that amplitude is jumping the Warp Phase parameter exactly one ripple period. (The amplitude value should be about 0.25 in this example; this value is determined by the Warp Frequency setting.)
- 7. Change the oscillator's **Waveform** to *Ramp*. The ripples now appear to be perpetually moving from the center out.