

Apple Training Series

Mac OS X
Advanced System
Administration v10.5
Edward R. Marczak

Apple Training Series: Mac OS X Advanced System Administration v10.5
Edward R. Marczak

Published by Peachpit Press. For information on Peachpit Press books, contact:
Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2009 by Apple Inc. and Peachpit Press

Project Editor: Rebecca Freed
Development Editor: Judy Walthers von Alten
Production Editor: Danielle Foster
Copyeditor: John Banks
Tech Editors: Joel Rennich, Shane Ross
Proofreader: Rachel Fudge
Compositor: Danielle Foster
Indexer: Valerie Perry
Cover design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained
in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as
requested by the owner of the trademark. All other product names and services identified throughout this book are used
in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark. No
such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-56314-9
ISBN 10: 0-321-56314-X

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

This page intentionally left blank

This page intentionally left blank

v

Acknowledgments

First, “I” did not write this book. There are too many contingencies that

allowed its creation. Overall, I merely stood on the shoulders of the giants that

precede me.

There should also be two other names on the cover: Matthias Fricke and

Patrick Gallagher from the Advanced System Administration “team,” with-

out whom this book would be about half the volume, and no training course

would exist. Thanks also to Ben Greisler for stepping very late into the process

to calm nerves.

At the top of my specific list, I need to thank my immediate family, my daugh-

ters Emily and Lily, and particularly my wife Dorothy, who took on (even

more of) the household burden while I wrote. Also, thank you for having

enough sense to force me to stop writing and periodically look at the world.

Thanks to my parents for inspiring a young mind and providing it with the

tools to learn. Thanks also to the teachers that inspired and prepared me along

the way, particularly Ken Graham, Marsha Cohen, Dr. Barry Dutchen, and Dr.

Robert Marose.

Thank you to Neil Ticktin for providing me with opportunity and generally

having faith in me.

Thanks to Schoun Regan for being Schoun Regan.

Thanks to the crack team at Peachpit. Judy Walthers von Alten, you have made

this an immeasurably better product.

Shane Ross, you kept me sane. I hope I did not have the opposite effect on you.

Thanks to everyone at Google, particularly Clay Caviness, Joseph Dries, and

Nigel Kersten, who put up with my random ramblings and status reports on

my progress.

This page intentionally left blank

vii

Contents at a Glance

 Getting Started .xv

Part 1 Implementation
Chapter 1 Planning Systems . 3

Chapter 2 Installing and Configuring Systems . 15

Chapter 3 Upgrading and Migrating Systems . 45

Chapter 4 Assessing Systems . 65

Part 2 Networking
Chapter 5 Working with DNS and NTP . 89

Chapter 6 Controlling Access to Resources . 117

Part 3 Administration
Chapter 7 Securing Access to Resources . 139

Chapter 8 Monitoring Systems . 185

Chapter 9 Automating Systems . 221

Chapter 10 Ensuring Data Integrity . 263

Part 4 Optimizing and Troubleshooting
Chapter 11 Ensuring Reliability . 295

Chapter 12 Troubleshooting . 317

Appendix Documenting Systems . 341

 Index .351

This page intentionally left blank

ix

Contents

Getting Started . xv

Part 1 Implementation

Chapter 1 Planning Systems . 3
Planning Before Purchasing . 4

Documenting the Initial Requirements 10

What You’ve Learned . 11

References . 11

Review Quiz . 12

Chapter 2 Installing and Configuring Systems 15
Installing Your System . 16

Configuring Your System . 20

Troubleshooting . 37

What You’ve Learned . 41

Review Quiz . 42

Chapter 3 Upgrading and Migrating Systems 45
Upgrading Your System . 46

Exporting Settings and Data . 48

Importing Settings and Data . 55

Troubleshooting . 61

What You’ve Learned . 63

Review Quiz . 63

x Contents

Chapter 4 Assessing Systems . 65
Determining Current Utilization . 66

Evaluating the Upgrade History . 79

Evaluating Workflows . 81

What You’ve Learned . 84

Review Quiz . 84

Part 2 Networking

Chapter 5 Working with DNS and NTP 89
Using DNS: The Big Picture . 90

Configuring DNS Services . 93

Using Network Time Protocol . 104

Troubleshooting . 107

What You’ve Learned . 113

References . 113

Review Quiz . 113

Chapter 6 Controlling Access to Resources 117
Configuring Firewall Service . 118

Accessing the Firewall Setup . 118

Configuring RADIUS . 128

Troubleshooting . 132

What You’ve Learned . 135

Review Quiz . 136

Part 3 Administration

Chapter 7 Securing Access to Resources 139
About Authentication and Authorization. 140

Protecting Hardware . 142

Authenticating Accounts . 145

Using Certificates for Authentication . 152

Authorizing Accounts . 166

Contents xi

Encrypting Files . 174

Troubleshooting . 177

What You’ve Learned . 181

Review Quiz . 182

Chapter 8 Monitoring Systems . 185
Using the System Log and ASL . 186

Using Tools and Utilities . 194

Setting Notifications . 210

Creating Reports . 213

Troubleshooting . 216

What You’ve Learned . 217

Review Quiz . 217

Chapter 9 Automating Systems . 221
Understanding Mac OS X Automation 222

Comparing Automation Technologies 223

Using launchd . 238

Using Other Automation Technologies 246

Examples . 255

Troubleshooting . 258

What You’ve Learned . 260

Review Quiz . 261

Chapter 10 Ensuring Data Integrity . 263
Determining Backup Strategies . 264

Using Backup Tools . 271

Automating Data Backup . 279

About Common Data Stores . 283

Restoring Backed-Up Data . 289

Troubleshooting . 289

What You’ve Learned . 291

Review Quiz . 292

xii Contents

Part 4 Optimizing and Troubleshooting

Chapter 11 Ensuring Reliability . 295
Establishing Reliability Metrics . 296

Maintaining High Availability . 297

Monitoring High Availability . 306

Troubleshooting . 312

What You’ve Learned . 313

Review Quiz . 314

Chapter 12 Troubleshooting . 317
Following a Methodology . 318

Taking General Steps . 320

Assessing the Problem . 322

Using Troubleshooting Tools and Resources 324

Trying Examples . 332

What You’ve Learned . 337

Review Quiz . 337

Appendix Documenting Systems . 341
Gathering Data . 342

Creating Documentation . 346

Summary . 349

Index . 351

This page intentionally left blank

This page intentionally left blank

xv

Getting Started

Welcome to the official reference guide for the Apple Mac OS X

Advanced System Administration v10.5 certification course. This book

serves as a self-paced guide and is designed to help you build the basic

skills you need to effectively administer Mac OS X and Mac OS X

Server systems. Apple Training Series: Mac OS X Advanced System

Administration details the tools that Apple provides to configure system

services. The primary goal of this book is to advance entry and mid-

level system administrators in their technical sophistication. To become

truly proficient, you need to learn the theory behind the graphical tools,

how to affect many systems at once, and how to troubleshoot system

problems—locally or remotely. You’ll also learn that advanced admin-

istrators plan. For example, not only will you learn how to use com-

mand-line utilities and the critical support files for major services, but

you will also learn how to document your work and troubleshoot based

on investigation and your documentation.

This book assumes that you have a good foundation in Mac OS X

and Mac OS X Server, such as the level of knowledge gained in Apple

Training Series: Mac OS X Server Essentials and Apple Training Series:

Mac OS X Support Essentials from Peachpit Press.

xvi Getting Started

The Methodology
Apple Training Series books emphasize learning by doing. The lessons con-

tained within this book are designed so that you can explore and learn the

tools necessary to manage Mac OS X. Each chapter is grouped according to an

overall theme, starting with planning and installation, moving through daily

tasks, and ending with ways to optimize and troubleshoot existing systems.

Course Structure
Because Mac OS X and Mac OS X Server are broad, user configurable, and

contain several open source initiatives, it is impossible to include all the possi-

bilities and permutations here. System administrators who use Mac OS X on a

daily basis and users of other UNIX-based operating systems who are migrat-

ing to Mac OS X have the most to gain from this book; still others who are

upgrading from previous versions of Mac OS X Server will also find this book

a valuable resource.

WArNINg P The information in this book points users to internals of the

operating system and critical data structures. The exercises in this book are

designed to be nondestructive. However, some involve restoring data and

should only be run on a test system because data restores will overwrite

data. Other examples need to be run with root (superuser) privileges, and if

performed incorrectly could result in data loss or corruption to some basic

services, possibly even erasing a disk or volume of a computer connected to

the network. Thus, it is recommended that you run through the exercises

on systems in a test environment that is not critical to your work or con-

nected to a production network. This is also true of the Mac OS X computer

you will use in these exercises. Please back up all your data if you choose to

use a production machine for either the Mac OS X Server or the Mac OS X

computers. Apple Computer and Peachpit Press are not responsible for any

data loss or any damage to any equipment that occurs as a direct or indirect

result of following the procedures described in this book.

Getting Started xvii

This book is divided into four sections:

P Lessons 1 through 4 cover planning and initial system implementation.

P Lessons 5 and 6 cover networking aspects of Mac OS X administration.

P Lessons 7 through 10 cover overall administrative tasks that a system

administrator will face when working with Mac OS X.

P Lessons 11 and 12 detail optimizing and troubleshooting an existing

installation.

P The appendix lists further methods of documenting Mac OS X systems.

System requirements
This book assumes a basic level of familiarity with the Macintosh operating

environment. All references to Mac OS X refer to Mac OS X v10.5, which is the

primary operating system assumed throughout the book.

Administrator access is required for many commands in this book. Any

command-line examples preceded by a dollar sign ($) can be run by any user.

Commands preceded by a hash mark (#) require root-level access.

Certification
Apple Training Series: Mac OS X Advanced System Administration provides a

thorough preparation for the Apple Mac OS X Advanced System Administration

v10.5 certification exam offered by Apple. Before you take the test, you should

review the lessons and ideas in this book, and spend time setting up, configuring,

and troubleshooting Mac OS X and Mac OS X Server systems.

You should also download and review the Skills Assessment Guide, which lists

the exam objectives, the score required to pass the exam, and how to register

for it. To download the Skills Assessment Guide, go to http://train.apple.com/

certification.

Earning Apple technical certification shows employers that you have achieved

a high level of technical proficiency with Apple products. You’ll also join a

growing community of skilled professionals. In fact, Apple Mac OS X certifica-

tion programs are among the fastest-growing certifications in the industry.

http://train.apple.com/certification
http://train.apple.com/certification

xviii Getting Started

Passing any of the Mac OS X certification exams for Mac OS X v10.3 or higher

also qualifies you to join the new Mac OS X Certification Alliance, a free program

that recognizes and supports the thousands of Mac OS X experts worldwide.

For more information, visit http://train.apple.com.

About the Apple Training Series
Apple Training Series: Mac OS X Advanced System Administration is part of the

official training series for Apple products, which was developed by experts in

the field and certified by Apple. The lessons are designed to let you learn at

your own pace.

For those who prefer to learn in an instructor-led setting, Apple Authorized

Training Centers, located around the globe, offer training courses. These courses,

which typically use the Apple Training Series books as their curriculum, are

taught by Apple-certified trainers, and balance concepts and lectures with excel-

lent and intense hands-on labs and exercises. Apple Authorized Training Centers

have been carefully selected and have met the highest standards of Apple in all

areas, including facilities, instructors, course delivery, and infrastructure. The

goal of the program is to offer Apple customers, from beginners to the most sea-

soned professionals, the highest-quality training experience.

To find an Authorized Training Center near you, go to http://train.apple.com.

http://train.apple.com
http://train.apple.com

ImplementationPart 1

1
 Time This chapter takes approximately 45 minutes to complete.

 Goals Understand the need for planning prior to installation

 Understand power and cooling estimates

 Learn items to include in initial system documentation

3

Chapter 1

Planning Systems

You’ve been tasked with setting up a new server: A system for the

Finance Department, or perhaps an entire data center. How do you

know what to actually purchase? Technologists tend to get excited about

unboxing new equipment, but they face important decisions before

ordering and racking new gear.

Planning is a little-documented discipline, but it is perhaps the most

critical task in the process of implementing a system or service. An

underpowered system causes only frustration. An overpowered system

that adds too much heat to a data center causes just as many issues, in

addition to needlessly using up budget. Adding even a single server to a

new or existing setup prompts many questions, some unrelated to the

server itself, such as “how many client nodes will access the services on

this server?” Also, the types of services that a server will run tend to be

optimized in different ways and need to be planned for accordingly.

The topics in this chapter help you plan even before a purchase is made.

Some of the topics remain theoretical here; later chapters will present

some of the data-gathering and tools needed for analysis.

4 Planning Systems

Planning Before Purchasing
Determining the resources needed for a business initiative involves many factors, which

should guide the implementer to the right resources to purchase. A well-known maxim

says that when you fail to plan, you plan to fail. Planning is what makes an advanced

administrator, well, advanced!

A system administrator must be conscious of the system. A system is greater than the sum

of its parts—but remember that many parts are in play, all working together. For example,

a server doesn’t exist in a vacuum: It connects to a network switch, perhaps to a Fibre

Channel network for storage, with a limited set of resources available (disk space, RAM,

and so on), and also connects to local and perhaps remote resources over a network or

networks. The server also exists physically (yes, virtualized servers still run on hardware

somewhere). This physical server needs adequate cooling and power, and possibly physical

security. Similarly, a network switch must have adequate bandwidth to serve the devices

that pass data through it, respond to security policies that may be imposed, and so on.

If you’re reading this, most likely you’ve set up a server or some network component

before. Was it a success? If so, why? Planning? Or luck? Were you given a budget that

allowed each piece of equipment to be overspecified? If it wasn’t successful, why not?

What did you learn that you can apply now? Planning means that thought has been given

to a setup, its potential utilization, its impact on an existing system (to the extent pos-

sible), and any obstacles. Certainly, things crop up that couldn’t have been accounted for,

and each plan should also plan for change. Unforeseen issues shouldn’t stop you from

putting together the best plan possible based on past experience.

Checklists and worksheets are great aids and starting points in the planning process. You

should fine-tune a worksheet over time as you gain experience. Worksheets help you avoid

forgetting important steps in your implementation process and therefore prevent nasty

surprises. This chapter will help you come up with some of the basics of a form to use.

Determining Utilization
Ultimately, a server exists to provide services to users. Discussions with users about

requirements and expectations should inform purchase decisions. The goal is to inspect

various forms of utilization. Casually, utilization means how effectively a resource is being

used. More formally, it is the ratio of usage to capacity. Perhaps existing infrastructure

Planning Before Purchasing 5

is underutilized and can handle additional load. In a new installation, the questions are

how much utilization demand will be placed on the equipment and how much utiliza-

tion headroom is needed for spikes in usage and future growth. Headroom is the margin

between usage and capacity.

When planning you need to take into account many forms of utilization: power, cooling,

CPU, memory, network bandwidth, disk space (storage), disk bandwidth, service (the pro-

cesses running on a system), and more. The details of the electronic tools to measure these

factors will be presented later in the book; for now, you can certainly map out utilization

from a high-level planning perspective.

Another smart idea is to implement a utilization policy. Your company may already have

one for existing resources. Policy may spell out that when a server CPU is 70 percent uti-

lized, additional resources should be added, such as an additional server. The same could

be done for storage utilization.

Determining Heat Dissipation and Load, Power, and Cooling
One of the easier statistics to gather is heat load. Dissipation is a physics term that describes

the loss of energy, typically by conversion to heat. Heat is produced as energy is consumed.

Used a MacBook Pro lately? On your lap? Imagine the heat that multiple Xserve units can

generate. The heat generated places a heat load on the room in which equipment is placed.

Heat load is measured either in British Thermal Units (BTU) or kilowatts (kW). These are

numbers you simply collect from a vendor’s documentation. Once you have heat load num-

bers for all the equipment that will be in a room, you add them up for a total. Interestingly,

other factors besides equipment affect a room’s heat load and may be more difficult to mea-

sure. Are there windows in the room that allow sunlight? Human bodies generate heat: Will

there be an approximately constant number of people working in the room? The lighting in

a room adds heat as well, so that choice also affects the total heat load.

In smaller setups, most of this planning is ignored with no ill effects (everyone has seen the

10-person company with an Xserve stuffed into a coat closet or someone’s office). However,

tales abound of larger setups that have problems when the cooling system can’t keep up.

Power and cooling supply must meet or exceed demand. The trick is to neither oversupply,

thereby causing waste, nor undersupply and thus cause failure. All electrical equipment

generates heat; so take all equipment into account.

6 Planning Systems

Most IT equipment is simple: electrical load (power consumed) measured in watts equals

heat out, measured in watts. For other equipment you can use formulas to determine heat:

P Uninterruptible power supply (UPS) with battery: 0.04 × power system rating

(the power system rating is measured in watts and can be determined from the

product’s documentation)

P Power distribution unit (PDU): (0.01 × power system rating) + (0.02 × IT load)

P Lighting: 2 × floor area (in square feet)

P People: 100 × room personnel (maximum)

Once you’ve gathered all data, add it up to find the total. For any IT equipment with a

BTU rating, convert it to watts with this formula:

Watts = BTU × 0.293

(Many vendors still give the heat rating in BTU. For example, see http://docs.info.apple.

com/article.html?artnum=307330 for Apple’s information on an early 2008 Xeon Xserve

at various points of configuration. Heat output is given in BTU.)

You will see the cooling output capacity of most air-conditioning units referred to in tons.

You can convert watts into tons using this formula:

Tons = watts × 0.000283

Once you determine all this information, you can find a suitable unit. Other factors in this

decision include planning for future growth, giving headroom to current equipment, and

planning for redundant cooling.

Sizing power capacity is similar to cooling: Find out the power load for each unit and

add it up for a total. You can determine the power load from a manufacturer’s literature.

The entire room must have the correct capacity. In addition, each UPS must be sized to

accommodate the total load of the equipment plugged into it at peak usage. Most UPS

units are specified in volt-amperes (VA). Conversion between watts and VA is not entirely

straightforward. A good rule of thumb is to size at 60 percent, or, expressed as a formula,

available watts equals VA × 0.6. A 3,000 VA UPS can safely handle 1,800 watts. Remember

to subtract total watts used from the total available to determine your available headroom.

http://docs.info.apple.com/article.html?artnum=307330
http://docs.info.apple.com/article.html?artnum=307330

Planning Before Purchasing 7

When planning your first large-scale setup, rather than tackle these calculations alone, use

the expertise of data center and cooling engineers and consultants. Talk to them about

your needs and get involved in the process.

Given the formulas just discussed, the following example shows how to calculate heat dis-

sipation. Imagine a scenario with this equipment and specifications:

P Two Xserve units (both have two 3.0 GHz quad-core Intel Xeon processors); three

1 TB 7200-rpm SATA Apple Drive Modules; 32 GB RAM (in eight 4 GB 800 MHz

DDR2 ECC fully buffered DIMMs); Xserve RAID Card; ATI Radeon X1300 graphics

with 64 MB RAM; no PCI cards.

P One APC 3000 VA UPS.

P All equipment can be plugged directly into the UPS; no PDU is needed.

P Two permanent operations personnel staff the room.

P The equipment will be installed in a 200-square-foot space.

Using Apple’s Knowledge Base, you’ll find that an Xserve with the preceding configu-

ration will produce a maximum of 1,296 BTU/h (http://docs.info.apple.com/article.

html?artnum=307330). Using the preceding formula, this converts to 380 watts each

(rounded up). The 3,000 VA UPS is approximately 1,800 watts, which is multiplied by

0.04 (see the preceding formula) to yield a rating of 72 watts. The personnel approximate

200 watts, and lighting dissipates 400 watts. The total heat load is the sum of the values

you’ve determined:

(380 × 2) + 72 + 200 + 400 = 1,432 watts

Using the formula provided earlier for tonnage, the 1,432 watts can be cooled by 0.41 tons

of air conditioning capacity. Essentially, this small setup requires a half ton of cooling, not

taking into account future expansion.

Planning CPU, Memory, and Service Utilization
The tools to determine actual use of CPU, memory, and services are covered later in this

book (see Chapter 8, “Monitoring Systems”). Just as with cooling, to plan for these factors

you must account for peak usage and future growth, as well as reliability. For example, a

server may have a great uptime record, but if users are constantly complaining about slow

service, that server isn’t really doing its job.

http://docs.info.apple.com/article.html?artnum=307330
http://docs.info.apple.com/article.html?artnum=307330

8 Planning Systems

Another factor to consider is the amount of redundancy and load balancing required in a

setup. While it may be very possible to run many services on one server, will that provide

the best experience to users of that service? Does that provide the greatest security?

Part of the system load equation is simple: Every running service that is added to a

machine takes CPU cycles. However, things get fuzzy from there. Each service can (and

will) add a different load to the system. Much of this kind of knowledge comes purely

from past experience. You will be translating the desires of management and users into

actual running processes on a server: For example, when management says, “We need a

web server that only employees can log in to,” you’ll start thinking, “OK, this server will

run Apache, with an Open Directory Master configuration.” Company policy may dictate

that your configuration includes extra services, such as a built-in firewall, or it may simply

require spreading certain services over separate hardware.

The bottom line is this: The more work that you ask a single machine to do, the more

memory and CPU it will require to keep up with your demands.

Planning Network Utilization
Planning for network utilization, while possibly more straightforward than planning for

CPU and memory, shares one decision-making factor with them: Since so many services

rely on network connectivity, the more services you run on a single machine, the greater

its network bandwidth requirements will be. Also keep in mind that some services require

servers to talk to each other, even though no user is involved in the electronic conversa-

tion. For example, Open Directory Master and its replica will generate network traffic as

they communicate.

Typically, modern network capacity is measured in gigabits per second (Gbit/s). However,

a full gigabit each second is largely theoretical, with real-world values approaching

the hundreds of megabits per second. This is typically 600 to 700 megabits per second

(Mbit/s), or only 60 to 70 percent of capacity. As increasing traffic forces network inter-

faces to process loads approaching 1 Gbit/s, packet loss and errors increase. This again

requires the planner to include ample headroom in the equation.

All modern Macintosh server platforms (Xserve and Mac Pro) include two 1 Gbit

Ethernet interfaces that can be trunked together to achieve a 2 Gbit pipe. (Trunking is also

known as bonding, or allowing more than one interface to behave as one.) The Ethernet

switch must also support the ability to trunk, following the IEEE 802.3ad standard known

as Link Aggregation Control Protocol (LACP). Plan accordingly.

Planning Before Purchasing 9

Being able to base your network utilization plans on an existing real-world situation is

ideal. If that’s not possible, planning will involve using good sense to make some esti-

mates. A video or graphics department will typically use more bandwidth than an office

administrative group, for example.

Imagine this scenario in a little more detail: A new branch office for a company is to open.

Because the employees and job functions will simply move out of headquarters to the new

building, historical data can inform planning. Say that each of the 10 people in the art

department has a Mac Pro running with a single gigabit connection to a gigabit switch,

and each user averages 20 Mbit/s. Further, each of the two-person administrative staff has

a wireless laptop that uses 3 Mbit/s. You can estimate the impact of the staff and its usage

with the following formula:

(10 × 20 Mbit/s) + (2 × 3 Mbit/s) = 206 Mbit/s

To calculate utilization:

206 Mbit ÷ 1 Gbit = 21% utilization

This type of utilization is well within reasonable limits. As utilization increases, an admin-

istrator may consider trunking the Ethernet ports to increase capacity.

Determining Storage
Planning for storage may be the most straightforward of all these factors, but it does have

its wrinkles. Like the other factors presented here, until there is actual use, planning is

simply theoretical.

Since storage will be of a fixed size—at least for some period of time—you can easily calculate

theoretical planned usage. From there, you can determine an appropriately sized storage solu-

tion, taking into account headroom for present needs and expansion space for future growth.

Some simple calculations for storage planning include storage per user home (number of

users × max GB/user), storage per project (number of work-in-progress projects × max

GB/project), scratch space, and mail storage (number of mail users × max GB/mailbox).

Lastly, when planning storage, don’t forget about operating system requirements! While

the OS itself takes up a certain amount of space, that consumption should remain rela-

tively static. Placing active files on storage shared with the system disk is typically prob-

lematic. Log files, dynamic web shares, user homes, and more can entirely fill a disk in

10 Planning Systems

short time. In most default installations these files remain on the system disk. Letting the

system run out of disk space and not be allowed to write back to the disk can cause many,

many problems—particularly for an Open Directory Master. In no case do you want to

allow a disk to fill up, but that caution is amplified in the case of a system disk!

Documenting the Initial requirements
Much like planning itself, documenting a configuration is a task that can be easily ignored.

“Easily,” perhaps, but certainly not safely.

There is no better time to begin system documentation than when you have a clean slate.

However, documentation certainly should not be created once, put on a shelf, and left alone.

Documentation is a process, as each system has a life. Gathering and retaining informa-

tion about a system is easiest at the beginning of this life. If you’ve ever been called upon

to document an already-in-place system, you’ll probably remember wishing that you could

just start from scratch! Don’t forget to update documentation when hardware changes (for

example, memory gets added) or any programs are installed (especially “invisible” applica-

tions such as background daemons, or scripts that run periodically via launchd or cron).

Also, it’s important to document how a system backs up its data, as well as what the

restore process entails, if that is ever necessary.

Part of being an advanced administrator is being able to teach others in your organization

how to step into your role. More than anything, this lets you take vacations!

Your documentation should include at least the following about a server:

P A brief description of the system and its intended use

P Hardware specifications (including system serial numbers)

P Operating system and version

P Network information (TCP/IP address or addresses, and MAC address or addresses)

P Software installed and version numbers

P Fully Qualified Domain Name (FQDN) DNS information

P Storage volumes attached

P Backup and restore procedures for the system

References 11

As a final note, be aware that some industries may require documentation or require

a particular format for documentation. Find out from management if this applies in

your situation.

Worksheets are a valuable aid in documenting systems. They provide a template that

ensures a thoroughness of values and a consistency between systems. While your company

may already have created a documentation worksheet or style, many vendors provide

worksheets that can be used as a starting point. See the references in this chapter for an

Apple worksheet. The appendix contains more specifics on creating documentation.

What You’ve Learned
This chapter focused on the importance of planning for installation and considerations in

doing so. Topics covered include:

P Using worksheets and checklists for thoroughness and consistency

P System and component utilization and headroom

P Planning for power, heat, and cooling considerations

P Planning to size systems correctly so they can handle server-side processes

P Planning for proper network capacity

P Planning for future storage requirements

P Documenting the current system and gathering system data to keep documentation

in sync with reality

references
P Mac OS X Server Installation and Setup Worksheet, http://images.apple.com/server/

macosx/docs/Worksheet_v10.5.pdf

P Data Center and Server Room Design Guides, APC, http://www.apc.com/prod_docs/

results.cfm?DocType=White%20Paper&Query_Type=10

http://images.apple.com/server/macosx/docs/Worksheet_v10.5.pdf
http://images.apple.com/server/macosx/docs/Worksheet_v10.5.pdf
http://www.apc.com/prod_docs/results.cfm?DocType=White%20Paper&Query_Type=10
http://www.apc.com/prod_docs/results.cfm?DocType=White%20Paper&Query_Type=10

12 Planning Systems

review Quiz
1. What is the formal definition of utilization?

2. Name the common units in which heat load is measured.

3. What is the easiest way to determine the heat output of a piece of electronic

equipment?

Answers

1. Utilization is formally defined as the ratio of usage to capacity.

2. Heat load is measured in British Thermal Units (BTU) or kilowatts (kW).

3. Heat output from electronic equipment is documented by the manufacturer,

both in printed documentation and in spec sheets listed on the web.

This page intentionally left blank

2
 Time This chapter takes approximately 90 minutes to complete.

 Goals Understand methods of initial installation

 Understand methods of initial configuration

 Understand the installation of software via packages

 Understand the installation of third-party and open source software to
extend the capabilities of the system

 Understand the management of computers through a directory service
using managed preferences

15

Chapter 2

Installing and Configuring
Systems

After you’ve completed planning and have confidently made your pur-

chases, boxes will soon arrive and you’ll be ready for installation. You’ll

have to make several decisions about initial installation. It’s possible to

automatically set up and configure this and other systems, which can

save time and offer consistency.

Mac OS X command-line tools allow you to easily install systems

remotely using either Apple Remote Desktop (ARD) or the ssh tool, or

by scripting the installation. You can apply these tools to install the ini-

tial system or a single packaged application. Remote installation allows

you to install an entire system on hardware that is physically separate,

such as different floors in a building or computers that are miles apart.

This allows you, with Mac OS X Server expertise, to be responsible for

many systems regardless of their physical location.

For the first time, Mac OS X Server can be installed in one of several pre-

defined roles or configurations. This chapter discusses initial installation,

installation of packages, and methods of configuring systems, either after the

initial installation or after systems are already in place (postdeployment).

This chapter focuses on installations specific to Mac OS X Server;

Mac OS X-based installations are covered in Apple Training Series:

Mac OS X Deployment v10.5.

16 Installing and Configuring Systems

Installing Your System
Installation refers to transferring files to a disk, often in a particular location, to enable

an application or entire operating system to run. You can install Mac OS X either inter-

actively, by someone at the console making choices with the graphical user interface, or

noninteractively, where Mac OS X is installed on a disk or disk image.

Mac OS X Server adds two remote installation methods to Mac OS X: one based on

Secure Shell (SSH) and the other based on Apple Remote Desktop (ARD). You can use

one of these methods to access a Macintosh remotely when it is booted from Mac OS X

Server v10.5 installation media.

Installing remotely from a Command Line
The first remote installation method available with Mac OS X Server is via the ssh

command-line tool, with which you can perform a full installation. Secure Shell can access

a shell on the target machine (that is, the machine on which the installation will take

place) once it has the following information: the target machine’s IP address, which can

be obtained using the command sa_srchr; its user ID (in this case, root); and a password

that is the first eight characters of the target machine’s serial number.

When booted from Mac OS X Server install media, the target server obtains an IP address

using Dynamic Host Configuration Protocol (DHCP) or via Bonjour. The target server also

runs the Server Assistant Responder, sa_rspndr, which broadcasts on the local LAN, allowing

other machines to locate and identify the target server. A second Macintosh, on the same

LAN segment, can run sa_srchr, which reports the IP address of any machine it finds run-

ning sa_rspndr. If you are not on the target LAN, you should be able to use the ssh command

on a second, known Macintosh to run sa_srchr. After the IP address is known, you can use

the ssh command to access a shell on the target machine, as this example shows:

/System/Library/ServerSetup/sa_srchr 224.0.0.1

localhost#1.33 GHz PowerPC G4#192.168.100.156#00:0a:95:e0:95:04#Mac OS X Server

10.5#RDY4PkgInstall#4.0#512

ssh root@192.168.100.156

The authenticity of host ‘192.168.100.156 (192.168.100.156)’ can’t be established.

RSA key fingerprint is ce:bc:6a:ae:17:bc:cb:81:ff:38:42:2e:6b:21:71:a4.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.100.156’ (RSA) to the list of known hosts.

Password:

-sh-3.2#

Installing Your System 17

After you log in to the target server, a full range of command-line tools is available. If,

prior to installation, you need to format or partition disks, or create Redundant Array of

Independent Disks (RAID) devices, you can use the command diskutil. The list com-

mand gives an overview of all volumes on the system at that time:

diskutil list

/dev/disk0

 #: TYPE NAME SIZE IDENTIFIER

 0: Apple_partition_scheme *111.8 Gi disk0

 1: Apple_partition_map 31.5 Ki disk0s1

 2: Apple_HFS ServerHD 64.0 Gi disk0s3

 3: Apple_HFS ServerData 64.0 Gi disk0s5

/dev/disk1

 #: TYPE NAME SIZE IDENTIFIER

 0: Apple_partition_scheme *7.3 Gi disk1

 1: Apple_partition_map 30.0 Ki disk1s1

 2: Apple_Driver_ATAPI 401.7 Mi disk1s2

 3: Apple_HFS Mac OS X Server Install Disc6.9 Gi disk1s3

Choose a disk to partition, if appropriate, and use the partitionDisk command, as follows:

diskutil partitionDisk disk0 GPTFormat HFS+ ServerHD 40% HFS+ MacintoshHD 40% HFS+

Abuse 20%

Started partitioning on disk disk0

Creating partition map

Formatting disk0s2 as Mac OS Extended with name ServerHD

Formatting disk0s3 as Mac OS Extended with name MacintoshHD

Formatting disk0s4 as Mac OS Extended with name Abuse

[+ 0%..10%..20%..30%..40%..50%..60%..70%..80%..90%..100%]

Finished partitioning on disk disk0

/dev/disk0

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme *111.8 Gi disk0

 1: EFI 200.0 Mi disk0s1

 2: Apple_HFS ServerHD 44.6 Gi disk0s2

 3: Apple_HFS MacintoshHD 44.6 Gi disk0s3

 4: Apple_HFS Abuse 22.0 Gi disk0s4

18 Installing and Configuring Systems

When an installation disk is ready—partitioned, formatted, configured as a RAID pair,

and so on—you can use the installer command to install the base operating system from

packages on the installation media. In this example, the installation packages being used

are from the Mac OS X Server installation DVD, located at: /Volumes/Mac\ OS\ X\ Server\

Install\ Disc/System/Installation/Packages:

installer -verbose -package /Volumes/Mac\ OS\ X\ Server\ Install\ Disc/System/

Installation/Packages/OSInstall.mpkg -target /Volumes/ServerHD

installer: Package name is Mac OS X Server

installer: Installing at base path /Volumes/ServerHD

installer: Preparing for installation.....

installer: Preparing the Disk.....

installer: Preparing Target Volume

#

installer: Preparing Mac OS X Server.....

installer: Running Installer actions

installer:

installer: Installing BaseSystem.....

installer:

installer: Configuring Installation

###

installer: Running Installer Script

installer: Validating package

#

installer: Writing files

installer: Writing files: 0% complete

installer: Writing files: 1% complete

...(output omitted for space)...

installer: Installing OSInstall.....

installer:

installer: Configuring Installation

installer: Running Installer Script

installer: Running Installer Script

installer: Finishing Installation.....

##

Installing Your System 19

installer: Finishing Installation

#

installer:

installer: The software was successfully installed.....

installer: The install was successful.

The -verbose flag sends additional information and current status about the installation

to stdout. The -package switch specifies the package to install, in this case, a metapackage.

Finally, the -target switch specifies the volume on which to install the package.

After the installation is complete, the target machine must be restarted. You can do this

using the shutdown command and the -r switch, which will cause a reboot:

shutdown -r now

The system then ejects the install media and reboots from the newly “blessed” volume.

(In Mac OS X terms, a “blessed” volume is one that has a bootable system and is currently

marked as the boot volume for the next bootup.)

Installing remotely Using a graphical Interface
 The second remote installation method available

through Mac OS X Server is using the graphical

interface of the target machine. Mac OS X Server

v10.5 provides the capability to remotely access the

console of a target machine graphically during ini-

tial installation. This access is through ARD, or

Screen Sharing, newly built into Mac OS X v10.5

Leopard. Screen Sharing uses ARD technology. Screen Sharing is limited to viewing and

controlling a remote screen, whereas ARD contains other management functions such as

reporting. Screen Sharing is available in the Finder’s sidebar or directly through the appli-

cation, at /System/Library/CoreServices/Screen Sharing.app. This method requires the tar-

get machine’s IP address, which you can obtain by using the command sa_srchr, as

described in the preceding section, “Installing Remotely from a Command Line.” Unlike

connecting through the shell, no ID is needed; the password is still the first eight charac-

ters of the target machine’s serial number.

20 Installing and Configuring Systems

Screen sharing allows a connection via the underlying virtual network control (VNC)-

based protocols. (Any VNC viewer can be used to connect to the target system.) When

you’re connected, proceed with the initial installation as if you were sitting at the console.

For details on graphical installation, see Mac OS X Server Essentials, Second Edition.

Configuring Your System
After you’ve completed the initial installation and the server reboots, remote access will

once again be available. To continue the installation, connect graphically, as described in

the section “Installing Remotely Using a Graphical Interface.”

Leopard Server offers several configurations that match the needs of different users

and groups:

P Standard: A simplified configuration ideal for the first server or only server in a

small organization

Configuring Your System 21

P Workgroup: An easy-to-use setup ideal for a workgroup in an organization with an

existing directory server

P Advanced: A flexible configuration ideal for advanced, highly customized deployments

For more detailed information on the various configurations, see Mac OS X Server

Essentials, Second Edition.

Configuring the server establishes the following basic settings:

P Defines the language to use for server administration and the computer keyboard layout

P Sets the server software serial number

P Defines a server administrator user and creates the user’s home folder

P Defines default Apple Filing Protocol (AFP) and File Transfer Protocol (FTP) share

points, such as Shared Items, Users, and Groups

P Sets up basic Open Directory information, which, at a minimum, creates a local direc-

tory domain

P Configures network interfaces (ports), and defines TCP/IP and Ethernet settings for

each port you want to activate

P Optionally, sets up network time service

P Sets the server’s host name, computer name, and local host name

You can specify the computer name and local host name, but Server Assistant sets

the host name to “automatic” in /etc/hostconfig. This setting makes the server’s host

name the primary name in each of these instances:

P The name provided by the DHCP or BootP server for the primary IP address

P The first name returned by a reverse Domain Name System (DNS) (address-to-

name) query for the primary IP address

NOTe P In the case of a Standard or Workgroup install, the name set by existing

DNS servers cannot be changed unless the configuration is changed to Advanced.

P The local host name

P The name localhost

22 Installing and Configuring Systems

This text assumes an advanced configuration. If you’re working with a server that is run-

ning in standard or workgroup mode, you can convert it to an advanced configuration.

Server Admin and Workgroup Manager tools are reserved for working with an advanced

configuration; so running them as part of a standard or workgroup installation will result

in the display of a prompt, asking to upgrade to the advanced configuration.

You may consider choosing the advanced configuration if:

1. You want to configure network home folders and mobile user accounts on the

new server.

2. You want to save the setup data from this server's configuration so you can configure

other servers automatically.

When choosing to upgrade to an advanced configuration, be aware of the following oper-

ational changes:

1. Automatic provisioning of user’s services will no longer occur.

2. Firewall settings made with Server Preferences will be disabled.

3. Server Admin must be used to make any postconversion configuration changes.

Upgrading to an advanced configuration is an easy process, but be aware: It’s a one-way

process. An advanced configuration cannot be changed later to a standard or workgroup

configuration. After you make the advanced conversion, you will not be able to use the

Server Preferences application to configure your services from this point on. If you choose

to convert to an advanced configuration, you will be prompted to confirm your action.

As the dialog box explains, after you’ve converted your server to an advanced configura-

tion, the server cannot be downgraded to a standard or workgroup mode.

Configuring Your System 23

Configuring Your System Offline
You can prepare a server’s configuration before the server actually goes online, which can

help you plan and save time. The Server Assistant application’s offline mode can save a full

configuration as a file or directory record that a server can use during initial setup. Running

Server Assistant (/Applications/Server) offers the choice to “Save advanced setup informa-

tion in a file or directory record.” This option keeps Server Assistant in offline mode.

To save information as a file or record, you step through the screens, entering the same

information as if you were running an installation. On the Serial Number screen, a tear-off

icon appears in the lower right of the window, which indicates that you can save the infor-

mation on that page by dragging the icon to a Finder window or the Desktop. Just as impor-

tant, you can drag a properly formatted file into this window to populate the fields. The file

has a simple format, all on one line (without carriage returns or line feed characters) and

separated by a vertical pipe: Serial #, Registered to, Organization. Here’s a sample:

XSVR-105-000-N-6GG-XXX-GH6-3CP-OR2-D2G-7|New Server|Radiotope

If this information were stored in a file named new_server.sa, you could drag the file into

the Server Assistant screen to populate the appropriate fields. (The filename is not impor-

tant to Server Assistant, although it is important to you.)

As a plain text XML file, this information can be edited by any editor—manual, batch

(such as with the sed utility), database-generated, or XML-specific—for any server. You

can also use an exported file as a template and add custom settings for any installation.

24 Installing and Configuring Systems

After all the information is complete, the Confirm Settings screen appears.

Verify that all the data is correct, and click Save As. In the dialog box that appears, choose

Configuration File to use the file as a source for autoconfiguration.

To use this file as a template that can be edited, do not save the file in an encrypted for-

mat, even though it stores passwords and machine-sensitive information in plain text. You

can protect the configuration file by using any combination of Portable Operating System

Interface (POSIX) permissions, access control lists (ACLs), or storage on encrypted media.

Configuring Your System 25

To use the configuration file, name it accordingly and place it in a directory named “Auto

Server Setup” at the root of any volume mounted in /Volumes. The volume can be on any

mountable media, such as a flash drive, iPod in disk mode, CD, or FireWire drive. The

server searches in the root directory of mounted volumes for a file with a .plist extension,

in this order:

1. The MAC address of the server, less any colons or dashes

2. IP address of the server

3. Host name of the server

4. Serial number of the server

5. Fully Qualified Domain Name (FQDN) of the server

6. Partial IP address of server

7. “generic” (literally—the name will be “generic.plist”)

For example, if a flash drive with a volume named “setup” contains a folder named “Auto

Server Setup” with a configuration file named 00308a67edcb.plist, the setup application

would discover this file and use it to configure the server. Additionally, the configuration

file could be named generic.plist. If generic.plist does not contain a valid serial number,

that number must be set after the first login, which can be done using Server Admin.app,

or over an SSH connection using the serversetup command:

serversetup –setServerSerialNumber [serial number]

Using these techniques, you can install and configure large numbers of server systems

quickly and automatically. Furthermore, these techniques provide a perfect opportunity to

keep information tied to a central tracking database.

NOTe P It’s common to create an automated deployment with a default password that

is not the same as the final admin password. In this way, the password can be configured

interactively, or programmatically, without risking its inclusion in a text file.

26 Installing and Configuring Systems

Performing Third-Party and Additional Installations
After you’ve completed the initial installation on a Mac OS X system, the installation is not

really “complete”—it’s really just the beginning. What you have now is a brand-new sys-

tem that’s ready for you to make it do what you need it to do. Normally, you should bring

a newly installed server up to date immediately after installation. Typically, even soon after

the initial release of an operating system, updates from Apple are waiting to be applied. (In

some cases, it may not be desirable to update a newly installed system, for example, if you

need to keep a new Open Directory replica of the same version as its master.)

To perform additional installations, Software Update is an applicable graphical tool; how-

ever, it’s not always the best choice for performing installations across large numbers of

machines at once. The shell tool that corresponds to Software Update is softwareupdate,

which you can use over a single SSH connection or run en masse over your server systems

using Apple Remote Desktop. softwareupdate must be run with root privileges.

You can have the -l (ell) switch instruct softwareupdate to list any available updates, as follows:

softwareupdate -l

Software Update Tool

Copyright 2002-2007 Apple

Software Update found the following new or updated software:

* MacOSXServerUpd10.5.2-10.5.2

 Mac OS X Server Update (10.5.2), 389137K [recommended] [restart]

The -i switch tells softwareupdate to install a given package, and the -a switch is used along

with -i to install all updates. Both the GUI-based Software Update and the command line

softwareupdate utility log information about installations in the /Library/Log/Software\

Update.log file. On a new server, you should typically run these instructions as soon as

possible after the initial installation to fetch and install all outstanding updates:

softwareupdate -i -a

Apple supplies several different types of updates via the softwareupdate mechanism. Some

patches are operating system bug fixes or enhancements. Some are printer or low-level

drivers that interact with hardware and make new features available. Apple also uses the

softwareupdate mechanism to update Apple applications such as Pages, Logic, and Final

Cut. Finally, Apple distributes security updates via softwareupdate. You should evaluate and

install security updates as soon as possible.

Configuring Your System 27

The Software Update framework works by asking Apple’s update server, swscan.apple.

com, for a list of offered updates, based on the system configuration. Software Update

then downloads a localized .dist (distribution) file for each corresponding package. These

distribution files contain installer scripts that check to determine if the package can be

installed. There’s no payload at this point, only scripts that verify whether the offered

package is appropriate. If the update package qualifies, it’s offered as an update in the list.

Certain updates require a restart. For these cases, Software Update downloads the neces-

sary updates into the /Library/Updates/ directory and creates .SoftwareUpdateAtLogout in

/var/db/. These packages are then installed after all users are logged out from a GUI ses-

sion. After the machine reboots, the .SoftwareUpdateAtLogout file is deleted.

In addition to the download and installation process used by the Software Update frame-

work, the following preferences also guide the application’s behavior:

P /Library/Preferences/com.apple.SoftwareUpdate.plist stores general software update

parameters and lists any updates waiting to be installed at logout.

P ~/Library/Preferences/ByHost/com.apple.SoftwareUpdate.(GUID).plist controls per-

user display settings, affecting the font size of the GUI-based Software Update.app.

P ~/Library/Preferences/com.apple.SoftwareUpdate.plist controls the behavior of soft-

ware updates per user. This file stores information about the frequency of checking

for updates and whether attempts should be made to update.

You can adjust these preferences using the Software Update preference pane in System

Preferences, or the softwareupdate command-line tool. For example, to disable automatic

checking, per user, you can use the following command:

$ softwareupdate -schedule off

See the man page for softwareupdate for other options; see “Getting Help” in Chapter 9,

“Automating Systems,” for instructions on using man pages.

Software Update is ideal for installing Apple-supplied software packages. However, there

is much third-party software that can enhance an administrator’s and end user’s experi-

ence. As described in “Installing Remotely from a Command Line” earlier in this chapter,

the installer tool can install any Apple package to any valid destination. Often, third-party

software is provided in the form of a package, stored on a disk image, and made available

via HTTP. Shell tools can automate the entire download, mount, and installation process.

28 Installing and Configuring Systems

The following example shows how to use a remote shell to download and install

MacPorts, a system for compiling, installing, and upgrading open-source software. This is

an important exercise: The open standards and UNIX foundation of Mac OS X provide

enormous benefits and flexibility to the entire system, with the support for open-source

software that augments the capabilities of Mac OS X. Most open-source software can be

downloaded, compiled, and installed with very little effort.

A system like MacPorts, however, has two main benefits. For software that needs to be

patched to compile under Mac OS X, volunteers maintain and provide patches for you,

making the software ready to compile and install. In addition, MacPorts uses a separate

installation location, keeping the software that it compiles and installs apart from the

main system software.

NOTe P MacPorts, while useful, commonly falls into the category of developer tools.

Many organizations restrict developer tools from being installed on production serv-

ers due to potential security risks or increased resource use.

This separate installation location means that you can have newer experimental versions

of software installed on your system without waiting for Apple to patch it officially, and

that software installed by MacPorts can use its own versions of libraries without affecting

the rest of Mac OS X. For example, you may want the latest version of the Perl scripting

language. Mac OS X ships with Perl version 5.8.8, but more recent versions are avail-

able. MacPorts makes it possible to have both versions on your system without conflicts.

Perhaps most important is that you now have access to the many open-source tools and

utilities that help system administrators perform their job more efficiently.

To download MacPorts, first use the ssh command in the target machine. Then download

the MacPorts disk image using curl:

curl -O http://svn.macports.org/repository/macports/downloads/MacPorts-1.6.0/

MacPorts-1.6.0-10.5-Leopard.dmg

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 412k 100 412k 0 0 111k 0 0:00:03 0:00:03 --:--:-- 359k

Configuring Your System 29

The -O switch is necessary to write the file to disk. To mount this disk image, the hdiutil

command and the mount verb attach the image and mount it in the default /Volumes location:

hdiutil mount MacPorts-1.6.0-10.5-Leopard.dmg

Checksumming Protective Master Boot Record (MBR : 0)

Protective Master Boot Record (MBR :: verified CRC32 $3A3AE94A

Checksumming GPT Header (Primary GPT Header : 1)

 GPT Header (Primary GPT Header : 1): verified CRC32 $2D9334D6

Checksumming GPT Partition Data (Primary GPT Table : 2)

GPT Partition Data (Primary GPT Tabl: verified CRC32 $BA067A2F

Checksumming (Apple_Free : 3)

 (Apple_Free : 3): verified CRC32 $00000000

Checksumming disk image (Apple_HFS : 4)

...

..........

 disk image (Apple_HFS : 4): verified CRC32 $A375867E

Checksumming (Apple_Free : 5)

 (Apple_Free : 5): verified CRC32 $00000000

Checksumming GPT Partition Data (Backup GPT Table : 6)

GPT Partition Data (Backup GPT Table: verified CRC32 $BA067A2F

Checksumming GPT Header (Backup GPT Header : 7)

 GPT Header (Backup GPT Header : 7): verified CRC32 $0EDC5A35

verified CRC32 $8FA77E7A

/dev/disk1 GUID_partition_scheme

/dev/disk1s1 Apple_HFS /Volumes/MacPorts-1.6.0

installer can also report which volumes are eligible targets for any package in ques-

tion using the volInfo switch. To verify the MacPorts package, specify it with the -package

switch, pointing to the newly mounted disk image:

installer -volinfo -package /Volumes/MacPorts-1.6.0/MacPorts-1.6.0.pkg

/Volumes/Data1

/Volumes/Data2

/

30 Installing and Configuring Systems

The -target switch works with any of the reported volumes, which lets you install in alter-

nate locations. If the volinfo verb returns no information, the package is not appropriate

for installation on any currently mounted volumes. To install MacPorts on the system vol-

ume (as reported valid by -volinfo), issue the following:

installer -verbose -package /Volumes/MacPorts-1.6.0/MacPorts-1.6.0.pkg -target /

The -verbose switch is optional. After the download is complete, a fully functional ver-

sion of MacPorts will reside at /opt/local/bin. See the MacPorts home page at http://www.

macports.org for more information on ports and using the ports system.

Finally, be kind: Don’t forget to unmount the disk image. Unmounting and deleting the

disk image conserves system resources and disk space. You need to know the mount point

or the disk ID, both of which you can obtain using the mount command. The disk ID also

was provided when the disk was attached. In this case, the disk ID is /dev/disk1; you can

unmount it using the hdiutil detach verb:

hdiutil detach disk1

“disk1” unmounted.

“disk1” ejected.

The man page for hdiutil also provides other useful options, such as info, create,

and resize.

Verifying Installations
You should always question the validity of software downloaded from a website.

Fortunately, many sites also provide checksums against which to verify the download.

Apple provides SHA-1 cryptographic checksums for its downloads. The checksum is veri-

fied for you when you use Software Update to install updates. However, you may periodi-

cally need to download an update and install it outside of that framework. In that case, or

whenever a checksum is provided, you should verify the checksum. For example, the web

page that provides the download for Security Update 2008-002 (http://www.apple.com/

support/downloads/securityupdate2008002v11leopard.html) displays the SHA-1 digest:

 Security Update 2008-002 (Leopard) SHA1 Digest:

 SecUpd2008-002.v1.1.dmg=

 SHA1= 9e50032326611245bb5382099a60cbcd4d1852c9

http://www.macports.org
http://www.macports.org
http://www.apple.com/support/downloads/securityupdate2008002v11leopard.html
http://www.apple.com/support/downloads/securityupdate2008002v11leopard.html

Configuring Your System 31

After downloading, the SHA-1 digest can be verified using the openssl command:

$ openssl sha1 SecUpd2008-002.v1.1.dmg

SHA1(SecUpd2008-002.v1.1.dmg)= SHA1= 9e50032326611245bb5382099a60cbcd4d1852c9

Compare the checksum received from the openssl command with the checksum provided

on the download page. If they do not match, you should not install this software. From

time to time, downloads become corrupted, causing the checksum not to match. Also,

from time to time, websites get hacked, or downloads are replaced with bogus versions

that, once installed on your system, may leave it vulnerable to attack.

If you provide software for download, you can use the same procedure shown earlier in

this section to determine the SHA-1 digest of your software. Provide it along with the

download so that users can verify that they have the genuine article.

Inspecting Packages Before Installation
In addition to verifying downloads using checksums, another important security measure

is inspecting packages before you install them.

The software delivery system on Mac OS X revolves around packages, a system developed

by Apple that can include running scripts to place or install files. Packages have these

unique properties:

P They have the extension .pkg.

P They are directories, presented by the Finder as a single file (you can examine their

contents by Control-clicking the package and choosing Show Package Contents from

the context menu, or by examining them in a shell).

P They contain various files and directories in well-defined locations within the package.

P The files and directories in a package together provide the information needed by the

Installer application to present the packaged software for installation.

P Double-clicking a package launches the Installer application.

During installation, Installer creates another package file (with extension .pkg) to serve

as an installation receipt, and stores it in /Library/Receipts. The presence of a receipt file

causes the Installer to treat future installations of this same package as upgrades—even if

the installed files are removed.

32 Installing and Configuring Systems

Apple’s sophisticated packaging system can do more than simply take files from point A

and install them on point B. Packages can run scripts—typically, an important capability

for installers. Scripts often have other tasks in addition to placing files. For example, the

Installer program may ask you for an admin-level password. Be aware that if you supply it,

you give the package access to the entire system.

While most packages are completely trustworthy, using them can surreptitiously install soft-

ware. For example, when running the Apple Installer, choosing File > Get Info obtains a list

of files that the installer will extract from an archive and install. Plus, a package can easily

contain separate archives that a script, hidden from the GUI, will install. These archives will

not appear in the list displayed by File > Get Info, and with admin-level credentials, they can

install software anywhere on the system. A script can also alter system settings.

You can inspect packages before installation in three ways:

P Load the package into a package creation tool, such as the Apple Package Maker util-

ity. This enables you to investigate the file contents and learn the scripts that will run

as part of the installation process.

P Examine the package contents from a shell. This gives you access to all archives, files,

and scripts in the hierarchy. Particularly, look at scripts that may run as part of the

installation process.

P Query the Bill of Materials (BOM) file using the lsbom utility. The lsbom command

operates on a .bom file, typically “Archive.bom.” For example:

$ lsbom Archive.bom

You can specify a full path, and examine BOM files from installed packages in /Library/

Receipts. The -d switch to lsbom limits output to directories in the installer. This is ideal

when you need only a high-level view of the contents. For example:

$ lsbom -d /Library/Receipts/iWeb.pkg/Contents/Archive.bom

Without the -d switch, this example lists 19,046 files rather than 52,921; the switch makes

the output much more manageable.

For more information about security on Apple-provided packages, see the Apple security

updates page at http://support.apple.com/kb/HT1222. Apple also maintains a broader

page on security at http://www.apple.com/support/security/. Also, consider signing up for

the “security-announce” mailing list found at http://lists.apple.com.

http://support.apple.com/kb/HT1222
http://www.apple.com/support/security/
http://lists.apple.com

Configuring Your System 33

Using Managed Preferences
An incredibly powerful way to configure a system running Mac OS X is using Managed

Preferences (MCX). Managed Preferences allow a directory service to push preferences

to a client. Preferences can be managed at all levels—the user, group, or machine—and a

policy derived from the entire set. Policy is a set of preferences defined by an administrator

and enforced for particular users of a machine.

Managed preferences is largely a centralized, directory services topic, as MCX records are

stored in a directory; but changes in Mac OS X v10.5 make that centralized distinction a

little less clear. (Nowhere is it written that the issuing directory service has to be central-

ized, even if that may be the natural way to deal with machines on a large scale.) Managed

preferences also can be applied locally, especially as all user, group, and machine data for

local accounts are stored in a local directory service.

Possibly the easiest way to apply managed preferences is built into Workgroup Manager.

Contrary to popular belief, Workgroup Manager can work with records in any directory

service—including the local directory store running on every Mac OS X machine—not

just Open Directory. You can manage preferences with Open Directory or by using the

new Managed Preferences (mcx) extensions in the dscl command-line utility.

34 Installing and Configuring Systems

To manage preferences with Open Directory:

1 Launch Workgroup Manager (WGM) and authenticate to the Lightweight Directory

Access Protocol (LDAP) directory, either at the WGM login window, or by clicking

the Lock icon in the upper right corner of the main WGM window.

2 Choose Workgroup Manager > Preferences and select the Show All Records Tab and

Inspector preference.

This preference must be turned on for access to some of the LDAP hierarchy. The

Preferences tab now displays a fifth tab, the Inspector (a bull’s-eye target), in addition

to the Standard User, Group, Computer, and Computer Group tabs:

3 Select the object that you wish to manage—a user, group, or computer—and click the

Preferences button in the toolbar.

This action displays a pane with preferences that can be managed.

4 Choose a category to display more detail and set preferences. For example, the mobil-

ity preference has three tabs, most with subtabs of options that can be managed.

5 Choose the desired frequency for managing parameters. Management for most

parameters can occur with a frequency of Never, Once, Often, or Always. (WGM

does not use Often.)

Configuring Your System 35

The Once option sets the preference initially, but then allows the user to change it.

The Always option enforces the preference, disallowing any changes. In the middle

is the Often option (not shown in the figure, because WGM does not use the Often

option), which reapplies the preference whenever preferences are refreshed (which is

at least at every login).

6 Save the options. The main pane displays an arrow button next to any category that

is managed.

You can also create, view, and manipulate these settings using the new .mcx extensions in

the dscl command-line utility. For example, to read all MCX-enabled preferences for the

user “marczak”, use dscl with the mcxread command:

dscl localhost -mcxread /Search/Users/marczak

App domain: com.apple.dock

Key: AppItems-Raw

State: always

Value: (

 {

 “mcx_typehint” = 1;

 “tile-data” = {

36 Installing and Configuring Systems

 “file-data” = {

 “_CFURLString” = “/Applications/Safari.app”;

 “_CFURLStringType” = 0;

 };

 “file-label” = Safari;

 };

 “tile-type” = “file-tile”;

 },

...

(voluminous output snipped for space)

Just as interesting is the ability to push policy (managed preferences) onto local accounts.

This capability lets an administrator make settings once that can be enforced for any user

on that local system, including any new accounts that are set up. There is no real differ-

ence between setting up managed preferences in a central directory versus the local direc-

tory. To access the local directory of a Mac OS X machine using Workgroup Manager,

simply choose Server > View Directories. This will display the local node, allowing access

to local user, group, machine, and machine group records. You can set preferences on any

of these records.

 Apple has provided a preference manifest that allows management of

many aspects of the system. A preference manifest is a list of prefer-

ences provided by an application that lets the managed preference system know which

preferences can be set for that particular application. To import a preference manifest,

click the Preference button on the toolbar, and then click the Details button.

Most likely the list is empty, but you can quickly fill it with useful preferences. To select

an application containing the preference manifest, click the Add (+) button beneath

the list. One useful example is contained in the ManagedClient.app bundle supplied by

Apple. Using the file dialog box, navigate to /System/Library/CoreServices and add the

ManagedClient.app file.

After you’ve added the ManagedClient.app file, preferences will populate the list. To apply

a preference, choose the object to which you want to apply the preference, select the pref-

erence in the Detail pane, and then click the Edit button (pencil icon). Click the disclosure

triangle next to the management style that you want to enforce: Once, Often, or Always.

Troubleshooting 37

Highlight the row to select it, and click the New Key button at the top of the window.

Click the new key that you added to display a pop-up menu of values to manage.

Sometimes what you want to manage is not predefined in the list. You can easily add arbi-

trary values to the list (as long as they can function appropriately). Arbitrary values don’t

damage anything, but values in the directory have to be correct to do something. For

example, Mac OS X v10.5.2 introduced a menu bar item (menulet) for Time Machine. To

disable it, edit the Menu Extras preference, and choose Edit from the pop-up menu. Type

TimeMachine.menu and set it to False. Workgroup Manager will show a warning that the

entry does not match the preference manifest. The entry can then be safely ignored.

Troubleshooting
The material covered in this chapter was broad and fairly deep. Each topic presented has

specific ways of troubleshooting. These measures will be addressed here by subject.

Initial Installation
When you perform an initial installation, whether remotely over ssh, at the console locally,

or using Screen Sharing, little can go wrong. Because the system is booted from installa-

tion media, the disks are entirely under the installer’s control. Problems in this realm typi-

cally stem from bad media—optical or magnetic. If the install DVD is in question, let the

graphical installer verify it during installation, or simply use another DVD.

Ideally, run disk checks prior to any installation. If you find disk errors before installing a

system, take the opportunity to swap out any bad disks before beginning the installation.

Disk errors only get worse over time.

38 Installing and Configuring Systems

If errors occur during an initial system installation, check the destination for errors. You

can access the GUI-based Disk Utility while booted from the Leopard DVD by choosing

Utility > Disk Utility. If you’re performing a remote installation over ssh, the console-

based diskutil also is available. Verify a volume’s integrity with the verifyvolume verb:

diskutil verifyvolume disk2s3

If you find errors, use diskutil repairvolume to try to correct them:

diskutil repairvolume disk2s3

You can specify the device passed to diskutil as either a device node entry, such as /dev/

disk2; a volume mount point, such as /Volumes/ServerHD; a disk identifier, such as disk2;

or a disk’s UUID (Universally Unique IDentifier).

If you encounter problems connecting to a remote machine to perform the installation,

ensure that the target machine has finished booting from the install DVD. To obtain a

remote target’s IP address, you must use sa_srchr on the same subnet as the target. If you

cannot use the same subnet as the target, have someone (or something) on the remote

network tell you what the IP address is.

Subsequent Installations
Often, problems with installations on already-running systems come down to permissions.

Ensure that the user ID performing the installation has sufficient permissions on the target.

If you’re sure that the user ID in question has permissions (for example, running under

root), the problem may fall into the same category as the type of disk errors outlined in the

previous section; see “Initial Installation” for methods of verifying a disk’s integrity.

A subtle variation of a permissions problem is when installer packages are poorly con-

structed. Remember: With admin-level rights, an installer can do anything on your system,

including cause problems. Developers have sometimes packaged applications with incorrect

permissions. If these files are installed into system-supplied directories, such as /bin or /etc

on which the system relies, an installer can inadvertently change the permissions on these

directories. You can find this problem and correct it with the Disk Utility.app verify and

repair disk features. These options also exist in the command-line diskutil utility.

Troubleshooting 39

Managed Preferences
Managed preferences traditionally have been difficult to troubleshoot. This was especially

true in larger installations that push policy from all domains (user, computer, group, and

computer group) where each source potentially adds to the mix. Apple took this into con-

sideration and provides a new-to-Mac OS X v10.5 tool, mcxquery, which can composite all

policy items for an object and display the results.

mcxquery -user marczak

com.apple.homeSync

 loginSyncDialogTimeoutSeconds marczak (User) always 60

com.apple.screensaver.ByHost

 askForPassword marczak (User) always 1

The mcxquery tool can access any domain and composite it with another domain. For

example, if there is a conflict between a group—such as the “students” group—and a

user-level preference, the user-level preference takes precedence. The students group sets

the “Launch Animation UI Disabled” flag (shown as launch-anim-immutable in the follow-

ing example) in com.apple.dock to true (or 1), but the user policy allows it by setting the

preference to false (or 0). The mcxquery command combines the results and shows only the

final policy:

mcxquery -user m2 -group students

com.apple.dock

 launchanim-immutable m2 (User), students (Group) always 0

com.apple.homeSync

 loginSyncDialogTimeoutSeconds m2 (User) always 60

com.apple.screensaver.ByHost

 askForPassword m2 (User) always 1

com.apple.systempreferences

 EnabledPreferencePanes students (Group) always (“com.apple.

preference.dock”, “com.apple.preference.desktopscreeneffect”, “com.apple.preference.

displays”, “com.apple.preference.expose”, “com.apple.preference.general”)

Other managed preference issues stem from the directory that is supplying the managed

preference records. Is the client correctly bound to the directory? Is the directory reliable?

40 Installing and Configuring Systems

Is the user ID in the correct groups in the directory service? The id command is helpful in

determining this information:

$ id

uid=88721(marczak) gid=4500(mac_admins) groups=4500(mac_admins),98(_

lpadmin),1003(share_masters),1001(reports),20(staff)

See the man page for id for more options.

MCX records are cached for use. This reduces network traffic so that a client does not

need to contact the directory service each time it needs to refer to policy. It also allows

managing of mobile devices, such as laptops, that may be entirely offline or unable to con-

tact the central directory service. Because the cache and the directory service itself are two

separate things, they can become out-of-sync.

Clients with a cache try to refresh on every directory service transition (such as login,

wake, network interface change, and so on). This attempt is successful only when the

client can contact an appropriate server.

Another useful way to verify the source of preferences and how they are being applied is

to examine the directory cache for each managed object and the cache file named complete.

plist. A complete.plist file exists at each point in the /Library/Managed\ Preferences file

system hierarchy where preferences are composited, at a user, group, or computer level.

This plist file represents the set of all managed preferences. Interestingly, each entry has a

key that lists its source—much like using mcxquery.

If it seems that cached results are causing problems or not picking up new values, you can

take some corrective actions. One way to flush the cache is to use the dscacheutil com-

mand with the -flush verb:

dscacheutil -flush

A network transition is another action that causes the cache to try to refresh. You can simu-

late this action by killing the DirectoryService daemon (on the client, with root-level access):

killall DirectoryService

If that does not solve the problem, first find a directory for each managed object within

the /Library/Managed\ Preferences directory. You can examine and remove these plists

What You’ve Learned 41

(any removed will be re-created on the next refresh). If necessary, you can even remove

the entire contents of the /Library/Managed Preferences directory.

As you explore the system, you’ll find many useful command-line tools. Sometimes, you’ll find

tools that are really useful but completely undocumented by Apple, so you must be cautious.

The ManagedClient.app file also contains a useful application binary of the same name.

You can use the application to refresh cached MCX records. Provide the -f switch to

recomposite the preferences, plus the -u switch with the user ID to act on, in single quotes:

/System/Library/CoreServices/ManagedClient.app/Contents/MacOS/ManagedClient -f

‘-u 15798’

Finally, if no other troubleshooting solution is successful, the MCX compositor has a

debug mode, which you can enable with these two commands:

sudo defaults write /Library/Preferences/com.apple.MCXDebug debugOutput -2

sudo chmod 666 /Library/Preferences/com.apple.MCXDebug.plistcompositor

A log is then created, and can be followed at:

/Library/Logs/ManagedClient/ManagedClient.log

While not officially documented by Apple, this log contains a wealth of information.

What You’ve Learned
In this chapter you learned about a wide range of topics, from initial system installation

through updating and configuring systems. Specifically, you should now know the following:

P It’s possible, and relatively easy, to install Mac OS X Server on remote hardware.

P Use sa_srchr to find the IP address of the machine booted from the server install

media. The utility must be run from the same subnet as the target.

P Use the installer command to install, verify, and determine the validity of packages.

P Converting a standard or workgroup server installation to the advanced configuration

is a one-way operation. Once converted to an advanced configuration, a server cannot

go back to a standard or workgroup configuration.

42 Installing and Configuring Systems

P You can create a configuration file offline, before using any target hardware, to auto-

mate configuration choices.

P Open-source software is a great fit with Mac OS X. Many programs that ease the bur-

dens of system administrators and users alike can be easily downloaded, compiled,

and installed. Configuration systems such as MacPorts also greatly aid in this process.

P softwareupdate is a useful command-line tool that fetches packages from Apple, veri-

fies their contents, and installs them on the target system.

P Use openssl to verify SHA-1 checksums on downloaded files and verify their authenticity.

P After you supply admin-level credentials to an installer, you give it free access to do

anything with your system. Investigate packages before you trust them.

P Managed preferences, also known as MCX, are a powerful way to configure prefer-

ences and push policy to Mac OS X devices. MCX records reside in a directory, either

centralized to many machines, or local.

review Quiz
1. What are the two methods of remote installation for Mac OS X Server?

2. What are the two processes that broadcast and receive notifications for a machine

booted from Mac OS X Server installation media, ready for installation?

3. Name the command-line utility that allows manipulation of disk devices, such as par-

titioning and repair.

4. Name the command-line utility that allows you to install Apple packages from the

command line.

5. Name the three configurations in which Mac OS X Server can be installed and run.

6. After a server configured in a standard or workgroup mode is converted to advanced

mode, can Server Preferences.app still be used to manage the server?

7. What is the command-line utility that allows an administrator to retrieve operating

system and other updates from Apple, verify, and install them?

8. Where does Apple list the SHA-1 cryptographic hash that allows you to verify the

authenticity of files that you download from the Apple website?

9. Which utility do you use to verify the SHA-1 hash?

Review Quiz 43

10. What is the purpose of a package receipt?

11. Which command-line utility is used to query bill-of-material (BOM) files?

12. Name the four domains to which managed preferences can be applied.

13. Where are managed preferences initially stored?

14. What is a preference manifest?

Answers

1. Graphical, using Apple Remote Desktop or Screen Sharing, and text-based via ssh.

2. sa_rspndr runs on the server awaiting installation and sa_srchr runs on the local

client machine.

3. diskutil allows manipulation of disk devices, such as partitioning and repair.

4. installer allows you to install Apple packages from the command line.

5. Standard, workgroup, and advanced are the three configurations in which Mac OS X

Server can be installed and run.

6. No. Once converted to advanced mode, Server Preferences.app cannot manage the

server. Advanced mode requires Server Manager.app and Workgroup Manager.app.

7. softwareupdate allows an administrator to retrieve operating system and other updates

from Apple, verify, and install them.

8. The SHA-1 hash is listed on the same webpage, along with the download itself.

9. openssl lets you verify the SHA-1 hash.

10. A package receipt serves two purposes: to track the files installed with a package, and

to inform the installer whether a particular package has previously been installed.

11. lsbom is used to query bill-of-material (BOM) files.

12. User, group, computer, and computer group are the four domains to which managed

preferences can be applied.

13. A directory service, such as Open Directory, stores managed preferences.

14. A preference manifest is a list of preferences provided by an application that lets the

managed preference system know which preferences can be set for that particular appli-

cation. To use a preference manifest in Workgroup Manager, it must first be imported.

3
 Time This lesson takes approximately 60 minutes to complete.

 Goals Prepare for the upgrade of Mac OS X Server

 Back up and export critical server settings

 Export user and group records

 Import settings on an existing server

 Import user and group data

45

Chapter 3

Upgrading and
Migrating Systems

It is rare to have the opportunity to plan and install 100 percent of a

network. Usually, existing systems need upgrades or older hardware has

to be retired, forcing a migration to new hardware. This chapter covers

strategies for upgrading and migrating Mac OS X-based servers.

46 Upgrading and Migrating Systems

Upgrading Your System
As with any major changes to a system, upgrades must be planned. Most upgrade scenar-

ios are fairly straightforward. That is why administrators choose to upgrade rather than

reinstall a system—the promise of less work.

It is important to distinguish between a software update and a software upgrade.

In general, an update refers to an update within one version of the operating system. The

numbering scheme in Mac OS X might add some confusion, because version 10 is always

used. It might be easier to think in terms of the “code name,” such as Jaguar, Panther,

Tiger, and Leopard (10.2, 10.3, 10.4, and 10.5, respectively). So if you change in Tiger, say

from version 10.4.10 to 10.4.11, then you’re said to be updating. If you change to a newer

version of the operating system, say from Tiger (Mac OS X v10.4) to Leopard (Mac OS X

v10.5), then you’re said to be upgrading.

Each generation of Mac OS X Server includes major structural changes, which can cause

issues. Currently, Mac OS X Server v10.3.9 and versions 10.4.10 or later can be directly

upgraded to v10.5. The minimum hardware requirements for Leopard must still be met.

Planning an Upgrade
In planning a version upgrade, one of the major issues is to determine if current produc-

tion software—whether system software, third-party software, or an in-house custom

solution—will be compatible with the new version. Always have a backup ready before

upgrading. You should run a test upgrade and have a postupgrade plan in case you must

stop the upgrade and regroup.

A backup provides a way to roll back in the event of problems. Problems can be hardware-

related (such as a bad disk) or they can be less obvious.

Ideally, an administrator can preflight an entire upgrade. With appropriate hardware—

spare or soon-to-be-production hardware—the administrator can clone a production

image to a test system and perform an upgrade.

You should also prepare a postupgrade test plan, which will give you a threshold for

knowing when to abort the rollout and restore the previous system from backup.

When upgrading the Mac OS X Server, you need to understand the impact on services

that upgrading a server will cause. You should follow all of the installation guidelines for

the version of Mac OS X Server, ensure that hardware requirements are met, and plan and

have a functioning network infrastructure—particularly the Domain Name System (DNS).

Upgrading Your System 47

(DNS converts names to IP addresses and IP addresses to names. DNS is covered in detail in

Chapter 5, “Working with DNS and NTP.”)

Many settings on an Open Directory master rely on the server seeing the correct DNS

records, because many Lightweight Directory Access Protocol (LDAP) records embed the

fully qualified domain name (FQDN) of the server. You should verify forward and reverse

DNS before and after an upgrade using the changeip and checkhostname commands:

changeip -checkhostname

Primary address = 192.168.100.18

Current HostName = dawn.radiotope.com

DNS HostName = dawn.radiotope.com

The names match. There is nothing to change.

If changeip reports any problems, correct them before upgrading.

Upgrading from Tiger, Panther, and Jaguar
Upgrading to Leopard is supported from Mac OS X v10.4.11 Tiger, v10.3.9 Panther, and

v10.2.8 Jaguar. (In all cases, Macintosh Manager is not supported in Mac OS X Server v10.5.)

When you upgrade from Mac OS X Server v10.4.10 or later, virtually all existing data and

settings remain available for use; however, note the following:

P NetBoot images created using Mac OS X Server versions 10.3 and 10.4 are reusable.

NetBoot images created using earlier versions cannot be used.

P When upgrading to Mac OS X Server v10.5, the launch daemons (/System/Library/

LaunchDaemons) are replaced by the Mac OS X Server v10.5 version of these daemons.

P Upgrading to v10.5 removes the QTSS Publisher application but leaves the files used

by the application.

P Hypertext Preprocessor (PHP) 4 reached the end of its life on December 31, 2007,

and critical security fixes won’t be made after August 8, 2008, as announced at

http://www.php.net. If you upgrade to Mac OS X Server v10.5 and retain PHP 4.4.x

and Apache 1.3, plan to switch to PHP 5.x and Apache 2.2 before August 8, 2008 to

maintain a secure PHP.

http://www.php.net

48 Upgrading and Migrating Systems

When you upgrade from Mac OS X Server v10.3.9, virtually all existing data and settings

remain available for use. However, note the following:

P NetBoot images created using Mac OS X v10.3 can be reused.

P In Mac OS X v10.5, Watchdog was replaced by launchd. To enable automatic hard-

ware restart, use the Energy Saver pane of System Preferences. To migrate settings for

services that you added to /etc/watchdog.conf, create a launchd plist file and install

it into /System/Library/LaunchDaemons/. For more on launchd, see “Using launchd”

in Chapter 9, “Automating Systems.”

P In Mac OS X v10.5, hwmond has been replaced by launchd.

P Upgrading to Mac OS X v10.5 removes the QTSS Publisher application but leaves the

files used by the application.

Upgrading from version 10.2.8 is complex enough to be beyond the scope of this book.

Typically, computers running Mac OS X v10.2.8 will require hard disk reformatting or

replacement with a newer computer.

exporting Settings and Data
You may want to export system settings for various reasons, including backing up,

documenting, or migrating a system from an earlier version of Mac OS X to Leopard,

often when moving the system to newer hardware. Typically, you won’t need to migrate

a Mac OS X v10.5 system to another v10.5 system, because you can clone the source

system to the target system. In cloning from a PowerPC-based system to Intel, however,

there are some issues with certain services. This section covers several techniques for deal-

ing with those issues.

When upgrading from Mac OS X Server v10.4.11, the following services can be migrated:

P Web configuration data

P Web content

P MySQL data

P Mail database

P WebMail data

Exporting Settings and Data 49

P FTP configuration files

P LDAP server settings

P NetBoot images

P WebObjects applications and frameworks

P Tomcat data

P JBoss applications

P Apple Filing Protocol (AFP) settings

P Server Message Block (SMB) settings

P IP firewall configuration

P DNS settings

P DHCP settings

P NAT settings

P Print settings

P VPN settings

P User data, including home directories

P QuickTime Streaming Server files and folders

P QTSS Publisher files and folders

P User and group accounts

P iChat server settings

You can export settings with the serveradmin command, running with admin-level privi-

leges. Run serveradmin with the settings all directive, and redirect the output to a file:

serveradmin settings all > server_settings.txt

On Mac OS X v10.4 systems, this all-in-one approach has been known to fail. However,

each service can export its settings individually:

serveradmin settings afp > afp.sabackup

serveradmin settings appserver > appserver.sabackup

serveradmin settings dhcp > dhcp.sabackup

50 Upgrading and Migrating Systems

serveradmin settings dirserv > dirserv.sabackup

serveradmin settings dns > dns.sabackup

serveradmin settings filebrowser > filebrowser.sabackup

serveradmin settings ftp > ftp.sabackup

serveradmin settings info > info.sabackup

serveradmin settings ipfilter > ipfilter.sabackup

serveradmin settings jabber > jabber.sabackup

...

serveradmin settings vpn > vpn.sabackup

serveradmin settings web > web.sabackup

serveradmin settings webobjects > webobjects.sabackup

serveradmin settings xgrid > xgrid.sabackup

serveradmin settings xserve > xserve.sabackup

NOTe P Using .sabackup as the extension for exported settings is only one conven-

tion, and not necessary.

You can display a full list of services with serveradmin list directive. You can also export

service settings using the Mac OS X v10.5 Server Admin application. Select the server

from which to export settings and choose Server > Export > Service Settings. A dialog box

appears, prompting you for a name and location for saving the information. The Export

Service Settings command saves settings as a plain-text XML file.

Moving end-user data is fairly easy: Mount a remote volume and copy, or connect a

removable storage device and transfer (with the resulting sneakernet move, or physi-

cal data transfer). However, this migration is complicated by one aspect: permissions.

Exporting Settings and Data 51

Permissions are enforced by mapping the file’s owner and group back to a directory. If the

target system is not using the same directory, or a copy of it, as the source, those mappings

will fail to align. You should verify the state of a target system’s directory service before

moving end-user data in bulk.

In the case of migrating an Open Directory master between hardware products, you can

choose to do the following:

P Clone and upgrade. This applies to v10.4 systems moving to v10.5.

P Use Workgroup Manager to export users and groups.

P Use dsexport to export users and groups.

P Back up Open Directory data in its entirety using Server Admin.app or serveradmin.

Each option has advantages and disadvantages.

Cloning and Upgrading
Any server running Mac OS X v10.4.10 or later can be cloned to new hardware and then

upgraded. This method provides an easy path to upgrade the operating system and hard-

ware at the same time.

If you choose to clone and upgrade, first run Disk Utility, or its command-line equivalent

diskutil, to check for disk errors. You can also use Disk Utility, while booted from another

volume, including the installer media, to create the clone. Prior to upgrading, also export

print service settings using serveradmin, as described in the preceding section, “Exporting

Settings and Data.” If you plan to clone and upgrade to an Intel target from a PowerPC,

back up Open Directory (see “Backing Up Open Directory” in this section).

Once on the new system, do not boot from the clone, but rather from v10.5 installation

media. Perform a standard upgrade, which upgrades settings and minimizes the amount

of manual work that you need to do—but not entirely. You will still need to manually

upgrade some services in the transition to v10.5 from v10.4, including print and web ser-

vices and Open Directory.

After the upgrade, you must manually re-create all print queues using System Preferences >

Print & Fax. Only then can you restore print settings (again, using serveradmin; see

“Importing Settings and Data” later in this chapter for more details).

52 Upgrading and Migrating Systems

Under v10.5, the web server running by default is Apache v2.2; however, after an upgrade,

Apache v1.3 remains running. (Both versions of software are installed; however, settings

and data must be migrated.) Moving from v1.3 to v2.2 is a manual process, not handled

by the Apple upgrade.

Issues with migrating to Open Directory arise only when moving from a PowerPC to an

Intel target. After a PowerPC-to-Intel clone-and-upgrade migration, an Open Directory

master might fail to function due to issues of endian differences. A CPU is either “big-

endian” or “little-endian.” Big-endian chips order the most significant byte of a number first,

while little-endian orders the least significant byte first. This can cause issues when moving

data between a big-endian PowerPC chip and a little-endian Intel chip. However, you can

still use the clone-and-upgrade migration method, if you backed up Open Directory before

upgrading. After cloning and upgrading Open Directory, you can demote the server to

standalone services, re-promote the server, and restore Open Directory.

See the Apple server documentation at http://www.apple.com/server/documentation for

extensive notes on upgrades.

Using Workgroup Manager
Using Workgroup Manager to clone and upgrade may be useful for some smaller deploy-

ments, but it is not appropriate for larger-scale upgrades.

When migrating to a new version of the operating system, it is often advantageous to per-

form a fresh installation and migrate settings manually as needed. With a large number of

users and groups, it’s more efficient to automate this process as much as possible. You can

use Workgroup Manager to export both users and groups.

 Open Workgroup Manager, located in /Applications/Server by

default, and authenticate with directory administrator credentials

when asked. Click the Accounts button in the toolbar, and make

sure that the Users tab is chosen.

Click a user and then press Command-A to select all users. Note that the command selects

only all visible users. If the LDAP server only returned a portion of users (due to filters or

a limit), you will need to perform multiple exports (or, perhaps, increase the server limit).

To perform the export, choose Server > Export.

http://www.apple.com/server/documentation

Exporting Settings and Data 53

Export groups by selecting the Groups tab and repeating the process described in the pre-

vious paragraph.

One note of caution: Passwords are not exported as part of this process. Depending on

the size and sensitivity of your user base, this may or may not be an issue. To export users,

groups, and passwords, see the section “Backing Up Open Directory.”

Using dsexport
Unique to Mac OS X v10.5, dsexport is a command-line utility that exports records from

directory services. This utility is useful only for backups or for v10.5-to-v10.5 migrations.

The dsexport utility exists on Mac OS X machines as well as Mac OS X Server, and can be

used to export records from the local node (/Local/Default). The process for exporting

user or group records is straightforward:

dsexport [filename] [node] [record type]

For example, to export users from the Open Directory master (while running this com-

mand on the master) to a file named user_list.exp:

dsexport user_list.exp /LDAPv3/127.0.0.1 dsRecTypeStandard:Users

To export groups, the record type would use dsRecTypeStandard:Groups.

New to v10.5 is the loss of NetInfo, replaced by dslocal.

Backing Up Open Directory
Open Directory is a combination of several different technologies that work in concert.

Backing up or capturing each subsystem can be complicated, but Apple has built into

Server Admin the ability to back up all relevant parts of Open Directory.

To back up Open Directory, launch Server Admin, authenticate, and choose an Open

Directory master. (Backup will not work on a replica, because you would be just resyn-

chronizing from a master.) Choose the Open Directory Service, and then click the Archive

button in the toolbar. Choose a location for the backup and click the Archive button in the

window. The backup writes files to a single encrypted disk image at the location you specify.

54 Upgrading and Migrating Systems

 The disk image contains, in addition to other Open

Directory information, a dump of the LDAP database;

data from PasswordServer; settings from local directory

nodes; and settings for DirectoryService (plists), Kerberos,

and Samba. All these files are stored in a volume named

ldap_bk. Bear in mind that the contents of this file are

extremely sensitive, containing everything that an attacker

would need to successfully access a server, and, potentially,

every machine that is bound to this server. Always take

the proper cautions and care in handling this file and

its information.

This backup reduces the task of taking a snapshot of the Open Directory environment to

a few mouse-clicks. However, while a snapshot is good for a single backup, as in the case

of a migration, it is a poor technique for regular backups that should always be automated

and require as little human involvement as possible. The Server Admin’s command-line

equivalent, serveradmin, can be fed a list of commands and effectively scripted. Following is

a script to do just that:

#!/usr/bin/env bash

(umask 077 ; touch sacommands.txt)

BACK_DIR=/var/backups/odbackup-`date “+%Y%m%d”`

echo “dirserv:backupArchiveParams:archivePassword = somepass” >> sacommands.txt

echo “dirserv:backupArchiveParams:archivePath = $BACK_DIR” >> sacommands.txt

echo “dirserv:command = backupArchive” >> sacommands.txt

/usr/sbin/serveradmin command < sacommands.txt

rm sacommands.txt

Importing Settings and Data 55

You should mark this script as executable, protected appropriately (rights for root only),

and set it up as a recurring job via cron or launchd. Additionally, you should periodically

prune the backup location to ensure that it does not take up excessive disk space.

When writing scripts that make multiple simultaneous changes using serveradmin’s

command, settings, or writeSettings options, keep the following in mind:

P writeSettings will include <svc>:needsRecycleOrRestart in its output with a value of yes

P You must end your serveradmin input with the Control-D characters.

See Chapter 9, “Automating Systems,” for more details.

Importing Settings and Data
Settings exported with Server Admin or the command-line serveradmin program can

be imported using either tool. To import settings using Server Admin.app, launch the

program and authenticate to the server with admin-level rights. Then, choose Server >

Import > Service Settings.

In the standard file open dialog box that appears, select the file that you exported earlier.

To import settings using the command-line serveradmin program, redirect the exported

settings file contents into serveradmin:

serveradmin settings < backup.sabackup

You follow the same procedure to import an individual service’s exported settings: Simply

redirect the file into serveradmin.

56 Upgrading and Migrating Systems

Just as in exporting data, you can follow several methods to import user and group data,

which correspond to the method of export:

P Use Workgroup Manager.

P Use dsimport.

P Restore Open Directory.

Each method, described in the following sections, has advantages and disadvantages.

Using Workgroup Manager
If you have already exported users and groups using Workgroup Manager, you can use

Workgroup Manager to import these records. If you have exported both users and groups,

you should import groups first, and then users. The method is similar for both, however.

To import users and groups, launch Workgroup Manager and authenticate with directory

admin privileges. Once authenticated, choose Server > Import. The file open dialog box

has several options.

 The Duplicate Handling drop-down list has several self-

explanatory options, as shown here; “Ignore new record” is

the default.

Importing Settings and Data 57

If user or group presets are defined, you can select and apply them to each imported

record. The First User ID field enables you to set the base ID, to which all other imported

records in this session will relate. The Primary Group ID field enables you to add all

imported user records to a group as their primary group. The Logging Detail drop-

down list can change the level of detail of the log that will be written to ~/Library/Logs/

ImportExport. The log file is named DSImportExport.(timestamp).log. You can check this

log for more information if import errors occur.

Using dsimport
You can import records into Open Directory with the important utility dsimport. The

source of these records may come from dsexport, as described in the previous section, “Using

dsexport.” The source may also be a file generated by another system in your network, such

as an education application or a company acquisition, where thousands of new users may

need to be added at once. If a registrar or HR system is capable of handing off this data to

you electronically, you can use dsimport to bring the records into Open Directory.

The dsimport options are closely related to dsexport:

dsimport (-g|-s|-p) filepath DSNodePath (O|M|A|I|N) -u user -p password [options]

To import the file exported in “Using dsexport,” use the command:

dsimport -g user_list.exp /LDAPv3/127.0.0.1 O -u diradmin

The -g switch denotes the type of file being imported. In this case, it is a delimited file, as

exported by Workgroup Manager. The node path must be supplied as applicable. If you

are running this directly on the Open Directory master that is receiving the records,

/LDAPv3/127.0.0.1 is appropriate. The choice of O, M, A, I, or N controls how duplicate

records are handled, as follows:

P O overwrites any existing records that have the same record name. All previous attri-

bute values will be deleted.

P M merges the imported records into an existing record. This merge prefers the new

values; old values are kept only if no new value is present. This option does not create

a record if one does not already exist.

58 Upgrading and Migrating Systems

P A appends values to fields within existing records. This option does not create a record

if one does not already exist.

P I ignores a record with the same name if it already exists.

P N tells dsimport that no duplicate checking should be done.

Finally, the -u switch specifies a user with admin-level credentials. In addition, a -p switch

allows specifying this user’s password, but leaving it out will prompt for a password. Using

the -p switch will expose the user’s password in process listings—if possible, you should

avoid using the -p switch.

Since dsimport rides on top of DirectoryService, any errors reported are generated from

that subsystem. The DirectoryService man page contains a list of error codes. Additionally,

the dserr command can also help look up errors.

dserr 14171

-14171: eDSAuthPasswordTooLong

You can specify error codes with or without the negative (-) sign.

All uses of this utility are written to a log file in ~/Library/Logs/ImportExport. The log

file is named DSImportExport.<timestamp>.log, and is a good source for troubleshooting

import errors when the error code is not descriptive enough.

restoring Open Directory
Server Admin can restore the encrypted disk image backup it created. A server must be

acting as an Open Directory master to restore previously backed up settings. The same

pane in Server Admin that creates a backup is used to restore the backup. There is no need

to mount the disk image before restoring.

To restore a backup, launch Server Admin, authenticate, and choose Open Directory in

the left pane. Click the Archive button in the toolbar. For the Restore From option, simply

choose the entire disk image, and click the Restore button.

Importing Settings and Data 59

Using this feature restores all directory services, Kerberos settings (crucial to Open Directory),

Samba, and user and group records, to the point when the backup was last taken.

Migration Overview
To knit the export and import process together, following is a summary of the steps

needed to migrate a server running Mac OS X Server v10.4 to a new server running a

clean install of Mac OS X Server v10.5.

To export the data from the source (v10.4) server:

1 Export Open Directory information (users, group, computers, and computer groups).

2 Record current share points and privileges.

3 Back up/export service settings.

60 Upgrading and Migrating Systems

4 Copy the exported Open Directory information to the target (Mac OS X v10.5) server.

5 Set up the home directory infrastructure.

6 Import Open Directory data.

7 Transfer user data and other data files.

8 Re-create share points and privileges.

Troubleshooting 61

Troubleshooting
Troubleshooting the topics in this chapter is fairly straightforward. Diagnosis or repair

may be difficult, but, fortunately, errors are rare.

Errors during upgrading are similar to errors while installing: Typically, they are caused by

defective source media or bad target media. Because the system is booted from the instal-

lation media, problems are rare. Disk errors can manifest themselves in peculiar ways,

however, and lead the troubleshooter astray. Before installation, always check the target

media for consistency. If errors are detected, simply swap the source media for known

good media, or verify the media during a graphical installation.

Importing and exporting data relies heavily on DirectoryServices. If error codes are

returned during an import or export, record the error number. You can look up specific

error codes with the dserr utility or in the DirectoryServices man page.

Also, DirectoryServices is particularly sensitive to DNS results. At a minimum, you should

verify the DNS lookups using the changeip command and the checkhostname flag. The result

should be only “The names match. There is nothing to change,” as the following shows:

changeip -checkhostname

Primary address = 192.168.100.18

Current HostName = dawn.radiotope.com

DNS HostName = dawn.radiotope.com

The names match. There is nothing to change.

If the server or other machine is not hosting DNS, verify that the DNS server listed returns

good results. Mac OS X can act very strangely with DNS that does not conform to the pub-

lished specifications. A particular problem is when a DNS server (such as OpenDNS) uses

an all-encompassing wildcard that returns a positive result for a nonexistent record. Also,

a misbehaving DNS server that answers but never returns will manifest itself as a problem

with DirectoryService. The simple remedy is to verify DNS, and verify again.

62 Upgrading and Migrating Systems

If there is a mismatch in addresses reported, use the changeip script to correct the prob-

lem. For example, to update a server with an IP address of 192.168.0.12 and a name of

old.example.com, to have an IP address of 192.168.0.10 and a name of new.example.com,

use the following command with root-level privileges:

changeip /LDAPv3/127.0.0.1 192.168.0.12 192.168.0.10 oldhost.example.com

newhost.example.com

changeip is a Perl script and relies on several other scripts to accomplish its task. changeip

calls the following scripts:

P changeip_ds updates user, machine, computer, mount, LDAP, and Password Server con-

fig records and changes these files:

/Library/Preferences/DirectoryService/DSLDAPv3PlugInConfig.plist

/etc/openldap/slapd_macosxserver.conf

/etc/hostconfig (if there is a static host name)

/etc/smb.conf

P changeip_afctl changes the adaptive firewall configurations.

P changeip_web updates the Apache 2 configuration.

P changeip_pcast updates the pcast server configuration.

P changeip_jabber updates the Jabber configuration using serveradmin.

P changeip_mail updates the Mailman, Postfix, and Internet Message Access Protocol

(IMAP) configurations using serveradmin.

When a network address change is detected, no matter how the change happened, changeip is

invoked, so this process should not be necessary. However, it is critical to run changeip when

changing the name of a host. When the name returned from DNS is out of sync with the

names encoded in the directory, many services and functions will fail to work properly. The

server setup program uses this information to configure other server components (such as

Open Directory, Kerberos, and Password Server). As such, the IP address and the DNS set-

tings of the primary interface and these other components must always match.

Review Quiz 63

What You’ve Learned
This chapter discussed strategies for migrating data between two servers, particularly

server settings, users, and groups. You’ve learned how to do the following:

P Verify consistency before an upgrade. Use the Disk Utility application or diskutil to

check media, and use changeip to verify DNS settings.

P Export and import service settings from a configured server using the Server Admin

application and serveradmin.

P Export users and groups using Workgroup Manager or dsexport.

P Import users and groups using Workgroup Manager or dsimport.

P Back up and restore Open Directory in its entirety using Server Admin and serveradmin.

P When in doubt, check DNS.

review Quiz
1. Which command-line tool is used to verify both the host name and IP address

against DNS?

2. Which prior versions of Mac OS X Server can be upgraded to Mac OS X Server v10.5

Leopard?

3. Which command-line tool is used to export service settings?

4. Which command-line tool is used to export user and group records from the direc-

tory service?

5. List the three methods of bringing user or group data into Open Directory.

Answers

1. changeip verifies both the host name and IP address against DNS.

2. Mac OS X Server versions 10.4.11, 10.3.9, and 10.2.8 can be upgraded to Mac OS X

Server v10.5 (Leopard).

3. serveradmin exports service settings.

4. dsexport exports user and group records from the directory service.

5. Workgroup Manager, dsimport, and restoring an Open Directory Backup are three

methods used to bring user or group data into Open Directory.

4
 Time This lesson takes approximately 90 minutes to complete.

 Goals Learn to compute network bandwidth utilization

 Learn to assess service and hardware utilization

 Learn to assess storage utilization

 Understand the Apple installer and package formats

 Learn to assess a workflow

65

Chapter 4

Assessing Systems

Successful systems administration relies on clearly and thoroughly

understanding how a system uses its resources—its current hardware

and software components—and understanding their interaction with,

and dependencies upon, user workflows and running services. This

chapter discusses the tools and knowledge required to effectively

evaluate several key aspects of an existing infrastructure, including

current utilization of bandwidth, services, hardware, and storage. This

evaluation enables you to plan and implement changes to an existing

infrastructure that minimize interruption to the system’s operation

and maximize the user’s productivity.

66 Assessing Systems

Determining Current Utilization
It’s important to monitor utilization after a new system has been set up, or if an existing sys-

tem has been serving users for a while. This information is critical to know for new systems

to ensure that they run with the best performance. For existing systems, changes in usage

(such as a group of video users that have changed to high-definition files) should cause you

to reevaluate the setup to make sure that the system is still adequately meeting needs.

Chapter 1, “Planning Systems,” defines utilization as the ratio of usage to capacity. In that

chapter, you planned for future capacity; here, your concern is watching a current, run-

ning system. Fortunately, Mac OS X includes many utilities that can help you determine

system utilization.

Computing Network Bandwidth Utilization
How do you determine utilization—ratio of usage to capacity—for network bandwidth?

Chapter 1, “Planning Systems,” explains the concept, but you need a way to obtain the val-

ues used in the computation. No single command neatly lays this out, but a series of com-

mands enables you to assemble all the information.

The first piece of information comes from the netstat command, which displays network

status information, including total bytes received and transmitted by a particular interface.

To interrogate a network interface (represented here as en0), use the following command:

netstat -I en0 -b

Name Mtu Network Address Ipkts Ierrs Ibytes Opkts Oerrs Obytes Coll

en0 1500 <Link#4> 00:1f:5b:e9:87:1e 2852330 0 2908877372 1726539 0 606872778 0

The -I switch specifies the interface, and the -b switch asks netstat to display bytes in and

bytes out of that interface. These values are taken from the time that the system boots.

You can also figure out how long the system has been running since boot time, with the

uptime command:

$ uptime

 8:16 up 16:41, 10 users, load averages: 0.08 0.15 0.20

Determining Current Utilization 67

That’s great output for a person, but not great for a computer. A running variable stores

boot time in seconds since the UNIX epoch (the UNIX epoch is the time 00:00:00 UTC

on January 1, 1970), accessible by sysctl:

$ sysctl kern.boottime

kern.boottime: { sec = 1177954679, usec = 0 } Mon Apr 30 10:37:59 2007

sysctl enables you to get or set kernel variables. To obtain a full list of variables, use the

-A switch.

You can also retrieve the current date in terms of seconds with the date command:

$ date +%s

1208175680

That gives you enough information to compute the average utilization of a given inter-

face. Because you’ll want to assess this value from time to time, you can automate this

entire routine.

This script is pretty straightforward math, with basic definitions of bits, bytes, and mega-

bytes (automation and scripting will be introduced in Chapter 9, “Automating Systems”).

The script uses line numbers for easier reference:

01: #!/usr/bin/env bash

02:

03: # Defs

04: iface_name=”en0”

05: iface_Mbps=1000

06:

07: # Get boot time, clean up output to something useful

08: boottime=`sysctl kern.boottime | sed ‘s/,//g’ | awk ‘{print $5}’`

09:

10: # Determine interface activity

11: in_bytes=`netstat -I $iface_name -b | tail -1 | awk ‘{print $7}’`

12: out_bytes=`netstat -I $iface_name -b | tail -1 | awk ‘{print $10}’`

13: in_bits=$(($in_bytes * 8))

14: out_bits=$(($out_bytes * 8))

68 Assessing Systems

15: in_mbits=$(($in_bytes / 1000))

16: out_mbits=$(($out_bytes / 1000))

17:

18: # Get the current time

19: currenttime=`date +%s`

20:

21: # Determine total uptime

22: upt=$(($currenttime - $boottime))

23:

24: # Gather bandwith stats in bps

25: in_band_bps=$(($in_bits / $upt))

26: out_band_bps=$(($out_bits / $upt))

27: in_band_mbps=$(echo “scale=5; $in_band_bps / 1000000” | bc)

28: out_band_mbps=$(echo “scale=5; $out_band_bps / 1000000” | bc)

29:

30: iface_in_util=$(echo “scale=5; $in_band_mbps / $iface_Mbps” | bc)

31: iface_out_util=$(echo “scale=5; $out_band_mbps / $iface_Mbps” | bc)

32:

33: printf “$iface_name averge inbound bits/s: $in_band_bps\n”

34: printf “$iface_name averge outbound bits/s: $out_band_bps\n”

35: printf “$iface_name averge inbound mbits/s: $in_band_mbps\n”

36: printf “$iface_name averge outbound mbits/s: $out_band_mbps\n”

37: printf “$iface_name average inbound utilization: $iface_in_util\n”

38: printf “$iface_name average outbound utilization: $iface_out_util\n”

The definitions on lines 4 and 5 are hard-coded into this script; update as necessary. Line

8 performs the same sysctl call presented previously, but then cleans up the output to

retrieve only the boot time timestamp. Similarly, lines 11 and 12 reduce the output of net-

stat to only the “bytes in” and “bytes out” of an interface. Also of note in the script is the

use of bc to perform floating-point calculations, which the Bash shell cannot do alone

(lines 27 through 31). The math here is rudimentary:

P Read an interface’s activity in bytes (lines 11 and 12).

P Convert the results to bits by multiplying by 8—8 bits to a byte, remember? (lines 13

and 14).

Determining Current Utilization 69

P Convert bytes to megabits (Mbit)—unused in this script, but a good exercise (lines 15

and 16).

P Gather total seconds of uptime by subtracting boot time in seconds since the UNIX

epoch from current date in seconds from the UNIX epoch (line 22).

P Compute average bandwidth in bits per second by dividing total bits on an interface

by seconds of uptime (line 25 and 26).

P Convert bit/s to Mbit/s by dividing by 1,000,000 (10^6) (lines 27 and 28).

P Compute utilization by dividing used bandwidth per second by the interface’s capacity.

For this script to work properly, you need to set the appropriate definitions (interface

name and capacity) at the top of the script. Chapter 9, “Automating Systems,” shows ways

to refine this script.

To single out current utilization statistics—network throughput and currently connected

users—for the Apple Filing Protocol (AFP) and Server Message Block (SMB) file-sharing

services on Mac OS X Server, you can use the serveradmin command with the fullstatus

verb. Each service displays its current throughput in bytes per second. For example, to dis-

play the statistics for AFP, use the following command with root-level access:

serveradmin fullstatus afp

afp:setStateVersion = 2

afp:servicePortsAreRestricted = “NO”

afp:logging = “NO”

afp:currentConnections = 8

afp:state = “RUNNING”

afp:startedTime = “”

afp:logPaths:accessLog = “/Library/Logs/AppleFileService/AppleFileServiceAccess.log”

afp:logPaths:errorLog = “/Library/Logs/AppleFileService/AppleFileServiceError.log”

afp:readWriteSettingsVersion = 1

afp:failoverState = “NIFailoverNotConfigured”

afp:guestAccess = “YES”

afp:servicePortsRestrictionInfo = _empty_array

afp:currentThroughput = 87

70 Assessing Systems

The afp:currentThroughput key contains the value of current AFP throughput. To single out

throughput, pass the output through the grep command. For example, to single out the

current throughput for the SMB service, use the following command:

serveradmin fullstatus smb | grep Throughput

smb:currentThroughput = 39

The current throughput for smb is also given in bytes per second.

To list currently connected users and information on each user, serveradmin allows commands

to be specified. The command for AFP and SMB is getConnectedUsers. For example, on a server

with one user connected via SMB, the command and output would look like this:

serveradmin command smb:command = getConnectedUsers

smb:state = “RUNNING”

smb:usersArray:_array_index:0:loginElapsedTime = -27950

smb:usersArray:_array_index:0:service = “alicew”

smb:usersArray:_array_index:0:connectAt = “Mon May 19 16:45:58 2008”

smb:usersArray:_array_index:0:name = “alicew”

smb:usersArray:_array_index:0:ipAddress = “192.168.40.45”

smb:usersArray:_array_index:0:sessionID = 11148

To gather information on currently connected AFP users, use the corresponding afp com-

mand: afp:command = getConnectedUsers.

Determining Services and Hardware Utilization
It’s important for an administrator to understand the resources that individual programs

consume on a given piece of hardware, as the two are intrinsically linked. Running ser-

vices use hardware resources. Is the use of resources effective? Overwhelming? Can certain

services be paired with other services? Service utilization refers to the impact of a single

service, and hardware utilization refers to considering the hardware as a whole (for exam-

ple, looking at memory utilization).

Each running process demands CPU time. Mac OS X contains several tools to monitor

CPU load and each running process.

Determining Current Utilization 71

The Server Admin framework is specific to Mac OS X Server and can report on unique

information. The GUI-based Server Admin.app can display graphs of CPU utilization over

an adjustable range of time. To view these graphs, launch Server Admin.app, authenticate

when prompted, select the server in question, and choose the Graphs button in the toolbar.

The default view displays CPU usage for the past hour. You can expand the time range to

the past seven days using the pop-up menu in the bottom right corner of the window.

Server Admin can also list services being provided by a server. Currently running services

are indicated by a green ball next to their name in the servers list at the left of the Server

Admin window. Additionally, services configured and running appear on the Overview

page of Server Admin, along with high-level graphs of system utilization for CPU percent-

age, network bandwidth, and disk storage.

72 Assessing Systems

The information provided by the Server Admin framework is valuable, but may not tell

a full story. It does not report service status for installed third-party software. Also, the

Server Admin tools are specific to Mac OS X Server; there needs to be a way to assess

workstation usage as well.

The most straightforward tool is ps, or process status. Typically, executing ps on its own,

with no switches, is of little value. By itself, ps simply shows running processes that are

owned by the calling ID and attached to a terminal. Of more interest is a list of all pro-

cesses, owned by any user, with or without a controlling terminal. You can easily achieve

such a list with the following command, run with an admin-level account:

ps ax

PID TT STAT TIME COMMAND

 1 ?? Ss 0:13.40 /sbin/launchd

 10 ?? Ss 0:00.64 /usr/libexec/kextd

 11 ?? Ss 0:09.48 /usr/sbin/notifyd

... (output removed for space considerations)

25539 ?? Ss 0:00.09 /usr/sbin/racoon -x

25729 ?? Ss 0:00.09 /usr/sbin/cupsd -l

The a switch, when combined with the x switch, causes ps to display all processes, from

any user, with or without a controlling terminal. However, this does not tell the entire

story. Each process in that ps list uses resources—but how much?

You can determine CPU percentage, load, and idle percentage with the top com-

mand, which is covered extensively in “top, CPU%, and Load Averages” in Chapter 8,

Determining Current Utilization 73

“Monitoring Systems.” You can also find the load average statistic in other places. The

uptime command displays load average along with the machine uptime:

$ uptime

 8:06 up 2 days, 16:30, 10 users, load averages: 0.55 0.83 0.53

Additionally, you can fetch the load average directly from a sysctl variable, vm.loadavg:

$ sysctl vm.loadavg

vm.loadavg: { 0.54 0.68 0.51 }

You can also find CPU percentage and load averages with the iostat command, covered in

the next section, “Determining Storage Utilization.”

Each process places load on the CPU by asking it to do work, in the form of making sys-

tem call requests and placing an instruction to execute in the run queue. To determine

which process currently is making the most system call requests, DTrace and Instruments

utilities also are very helpful. Both utilities are covered in “Instruments and DTrace” in

Chapter 8, “Monitoring Systems.”

You can also find virtual memory statistics with the top command, and view them in more

detail using vm_stat. Most of the vm_stat columns are the same columns that you can view

with the top command: free, active, inac (inactive), wire (wired), pageins, and pageout. If

you do not specify an interval, vm_stat prints only a total and exits. If you add a numeric

value after vm_stat and run it, it prints statistics repeatedly at the interval specified in sec-

onds (to stop the listing, press Control-C):

$ vm_stat 1

Mach Virtual Memory Statistics: (page size of 4096 bytes, cache hits 27%)

 free active inac wire faults copy zerofill reactive pageins pageout

174238 408613 301961 162294 193952562 6445537 116503302 44713 309110 60934

174320 408603 301961 162294 186 1 57 0 0 0

174384 408615 301961 162294 184 3 66 0 0 0

174450 408619 301961 162294 977 114 158 0 0 0

174350 408628 301961 162294 1016 0 520 0 0 0

174387 408626 301961 162294 154 0 33 0 0 0

74 Assessing Systems

Unlike the earlier exercise of writing a script to determine network bandwidth, you can

use vm_stat to report on total statistics gathered since bootup. If you run vm_stat with a

repeat interval, you should not be surprised by the first set of statistics printed under each

banner: a lifetime-accumulated total (since bootup).

The columns have the following significance:

P faults—Number of times the memory manager faults a page.

P copy—Pages copied due to copy-on-write (COW). COW is a memory-management

technique that initially allows multiple applications to point to the same page in

memory as long as it is read-only. However, if any of those applications needs to write

to that memory location, it cannot without changing COW for every other applica-

tion pointing to that location. If an application tries to write to a shared memory

location, it instead gets a copy; the original is left intact. The pages copied statistic

shows how many times an application tries to write to a shared memory location. It’s

an interesting statistic for administrators in some ways, but they can do little about it,

short of choosing not to run certain applications that cause the behavior.

P zerofill—Number of times a page has been zero-fill faulted on demand: A previously

unused page marked “zero fill on demand” was touched for the first time. Again,

there’s not much an administrator can do about this particular value.

P reactive—Not what it sounds like; the number of times a page has been reactivated

(or, moved from the inactive list to the active list).

See the vm_stat man page for further information.

Determining Storage Utilization
In addition to memory using resources, bandwidth and capacity can also use up storage

resources. Systems administrators have several tools they can use to determine input/

output activity, disk capacity use, and disk usage for a given part of the disk hierarchy,

as well as to pinpoint details about file and disk activity. These tools include iostat, df,

system_profiler, du, and Instruments and dtrace, respectively.

iostat displays I/O statistics for terminals and storage devices (disks). Similar to vm_stat,

iostat can report on total statistics since bootup, or at a given interval. Running iostat

solely with an interval is useful for displaying disk transactions, CPU statistics, and load

Determining Current Utilization 75

average; to stop the listing, press Control-C. The -w switch specifies the wait interval

between refreshing statistics:

$ iostat -w 2

 disk0 disk1 cpu load average

 KB/t tps MB/s KB/t tps MB/s us sy id 1m 5m 15m

 21.51 19 0.40 19.48 13 0.25 8 5 87 0.24 0.25 0.24

 4.00 0 0.00 4.00 0 0.00 3 4 94 0.22 0.25 0.24

 4.00 1 0.00 4.00 0 0.00 3 4 94 0.20 0.24 0.24

 12.00 0 0.01 12.00 0 0.01 2 4 94 0.20 0.24 0.24

 4.00 0 0.00 4.00 0 0.00 3 4 93 0.19 0.24 0.24

 12.51 36 0.45 11.50 6 0.07 2 5 93 0.19 0.24 0.24

Often, the reason to use iostat is to focus solely on the disk statistics. To drop the CPU

and load information—the same information available from the top utility—use the -d

switch. To further focus on a specific disk or disks, you can add the device node name or

names to the command:

$ iostat -dw 2 disk0 disk1

 disk0 disk1

 KB/t tps MB/s KB/t tps MB/s

 21.51 19 0.40 19.48 13 0.25

 0.00 0 0.00 0.00 0 0.00

 4.00 1 0.00 4.00 0 0.00

 11.30 15 0.17 22.50 1 0.02

 6.42 9 0.06 4.71 3 0.02

iostat can also display output in two alternate formats that can complete the I/O story.

The -o switch causes iostat to display sectors per second, transfers per second, and mil-

liseconds per seek:

$ iostat -od disk0

 disk0

 sps tps msps

 794 18 0.0

76 Assessing Systems

The -I switch displays total statistics over the time of running iostat, rather than average

statistics for each second during that time period:

$ iostat -Id disk0

 disk0

 KB/t xfrs MB

 21.51 6736974 141497.11

You can also quickly summarize disk capacity with the df (“disk free”) command. Simply

type df at a command prompt to display useful information about all mounted volumes:

$ df

Filesystem 512-blocks Used Avail Capacity Mounted on

/dev/disk4 489955072 118939584 370503488 24% /

devfs 233 233 0 100% /dev

fdesc 2 2 0 100% /dev

<volfs> 1024 1024 0 100% /.vol

automount -nsl [212] 0 0 0 100% /Network

automount -fstab [218] 0 0 0 100% /automount/Servers

automount -static [218] 0 0 0 100% /automount/static

/dev/disk10 1953584128 1936325520 17258608 99% /Volumes/Data0

/dev/disk5 361619840 323948976 37670864 90% /Volumes/Data1

This output displays capacities in 512-byte blocks, and lists a percentage-full statistic. You

can use two switches to refine this output to make it easier to read:

$ df -T hfs -h

Filesystem Size Used Avail Capacity Mounted on

/dev/disk4 234G 57G 177G 24% /

/dev/disk10 932G 923G 8.2G 99% /Volumes/Data0

/dev/disk5 172G 154G 18G 90% /Volumes/Data1

The -T switch limits the display to file systems of a certain type, in this case, hierarchi-

cal file system (HFS) (which also implies HFS Plus, the default file system for Mac OS X

Leopard). The -h switch causes df to display capacities in “human-readable” format (out-

put uses byte, kilobyte, megabyte, gigabyte, terabyte, and petabyte suffixes, as necessary,

rather than blocks).

Determining Current Utilization 77

system_profiler is a versatile Mac OS X–specific utility. It excels at querying Macintosh

hardware. Along with the other command-line utilities presented here, system_profiler

can also report on the total capacity and available space on a storage device. For example,

to display detailed information on all Serial Advanced Technology Attachment (ATA)–

connected disks, use the SPSerialATADataType command:

$ system_profiler SPSerialATADataType

Serial-ATA:

 Intel ICH8-M AHCI:

 Vendor: Intel

 Product: ICH8-M AHCI

 Speed: 1.5 Gigabit

 Description: AHCI Version 1.10 Supported

 Hitachi HTS542525K9SA00:

 Capacity: 232.89 GB

...output removed for space considerations...

 Volumes:

 MacintoshHD:

 Capacity: 199.88 GB

 Available: 124.72 GB

 Writable: Yes

 File System: Journaled HFS+

 BSD Name: disk0s2

 Mount Point: /

Volumes:

 disk0s2:

 Capacity: 199.88 GB

 Available: 124.72 GB

 Writable: Yes

 File System: Journaled HFS+

For details on system_profiler, see Chapter 8, “Monitoring Systems.”

78 Assessing Systems

While df is perfect for quickly determining the overall use of a mounted storage device, you

often need more detail. The du (“disk usage”) command answers the questions “Where is

storage being allocated on a given file system?” and “Where is all the space going?”

Running du with no options will, for the current directory, list each file and directory

along with the number of blocks occupied by the given object:

du

0 ./.TemporaryItems/folders.1026

0 ./.TemporaryItems/folders.1027

0 ./.TemporaryItems/folders.1029

(output removed for space considerations)

0 ./xavier/Public

24 ./xavier/Sites/images

0 ./xavier/Sites/Streaming

40 ./xavier/Sites

1411736 ./xavier/untitled folder

10270512 ./xavier

255297560 .

The final entry, the dot, represents the total for the current directory. As with df, you can

use several switches to tailor the output for easier reading:

du -h -d 1 -c /Users

 0B ./.TemporaryItems

1.5M ./andy

333M ./arthur

202M ./ashley

(output removed for space considerations)

6.7G ./mike

1.5M ./paul

 15G ./tiffany

1.6M ./thomas

3.8M ./william

4.9G ./xavier

122G .

122G total

Evaluating the Upgrade History 79

The -h switch generates “human-readable” output, as seen in the df command described

previously in this section. The -d switch causes du to output entries only at the given

depth, with the current directory being 0, immediate subdirectories being 1, and so on.

Use the -c switch to print a final, grand-total line. Also, instead of simply summing up the

current directory, you can name the directory path, which in this case is named /Users.

Finally, Instruments.app is an ideal way to examine file activity and impact on a stor-

age system for one or more processes. If df and du do not provide the information that

you need, Instruments, with its capability to finely detail file and disk activity, and dtrace

offer the necessary power and depth to provide that information. For more informa-

tion on Instruments and dtrace, see the section “Instruments and DTrace” in Chapter 8,

“Monitoring Systems.”

evaluating the Upgrade History
When assessing a system, particularly a server, it is critical to know not only where it is

now (the current operating system, load, hardware configuration, and so on), but also

how the system got to where it is. Was the current operating system a clean installation?

Or was it an upgrade? It is possible to figure this out, even if there is no prior system

administrator around to ask. Without this knowledge, it is often difficult to correlate

behavior that you see with baseline, known behavior.

Among other tasks, the Apple installer performs two actions when installing a package

that can help you figure out the history of installed packages and system upgrades. First,

the installer writes entries to the installer.log file, located in /var/log, along with several

other log files. Second, the installer writes receipts to /Library/Receipts.

In the installer.log file, the installer program writes a running list of packages that it

installs on the system. Other entries in installer.log are written by Software Update as it

finds new software to install, and software update service, if the machine in question is

running Mac OS X Server along with the software update daemon, swupd. An example of

an initial system install from installer.log is as follows:

OSInstaller[197]: ==

OSInstaller[197]: Choices selected for installation:

OSInstaller[197]: Install: “Mac OS X Server”

OSInstaller[197]: Install: “Essential System Software”

OSInstaller[197]: BaseSystem.pkg : com.apple.pkg.BaseSystem : 10.5.0.1.1.1192168948

80 Assessing Systems

For your purposes, the installer.log may have limited information. The system’s periodic

maintenance (in the daily folder at /etc/periodic/daily/600.daily.server) rolls logs—that

is, compresses the current log file and starts a new one. Rolling entirely removes the old-

est log files from a disk so that the log disk does not fill up. This means that if the server

was installed or upgraded months ago, it is unlikely that a record of it will still exist in the

installer.log files.

Receipts, on the other hand, do not expire and remain as a record of packages that have

been installed.

The Apple installer, after installing the files that it contains (the payload of a component

package), places a receipt in the /Library/Receipts directory of the installation volume. An

installation receipt is a token that the installer uses to determine whether a package has

already been installed on a system. If the installer, on subsequent installations of packages

using the same package filename on the same volume, encounters a receipt, it processes

the installation as an upgrade.

When the installer encounters a package in Mac OS X v10.5 format, Leopard handles

receipts differently than earlier Macintosh operating systems. With earlier package

formats, receipts were dropped by package name into /Library/Receipts. Each receipt

resembled the original package minus the actual payload. The only way to remove receipts

was manually.

Leopard, in contrast, drops receipts for v10.5-format packages into /Library/Receipts/

boms (or Bill of Materials). Leopard also adds a new package database to the system,

/Library/Receipts/db, which stores the receipts database. (You should not manipulate this

database manually, or you risk corruption of its format.) Leopard also adds a command-

line utility, pkgutil, to manipulate and query the database.

You can use pkgutil to collect information about a given package:

$ pkgutil --pkg-info com.apple.pkg.BaseSystem

package-id: com.apple.pkg.BaseSystem

version: 10.5.0.1.1.1192168948

volume: /

location: ./

install-time: 1208628236

groups: com.apple.repair-permissions.pkg-group com.apple.FindSystemFiles.pkg-group

Evaluating Workflows 81

You can also display a list of files that were installed by a package:

$ pkgutil --files com.apple.pkg.BaseSystem | less

.

.vol

Applications

Applications/Utilities

Applications/Utilities/Disk Utility.app

(output trimmed for space considerations)

When assessing a system, you can take advantage of the different methods used by

Mac OS X v10.5 to format packages and receipts, as well as earlier methods. A system that

has been upgraded to v10.5 will have both style receipts for the operating system compo-

nents. Specifically, if there is a receipt for BaseSystem.pkg in /Library/Receipts on a v10.5

system, the system is an upgrade (that is, not a clean install).

One final note on software installation: While the Apple package formats are useful, not

all developers ship their products with package-based installers. Simple drag-and-drop

installations are popular due to their ease of use. Third-party and custom installers also

exist. You can also download application source code and compile and install it manually.

None of these methods uses the Apple installer application and therefore they do not nec-

essarily save a log of their actions, nor do they need to write package receipts.

evaluating Workflows
The entire reason for setting up a computer system is to serve users. As people use a sys-

tem, they develop a workflow. Workflows are either imposed or they grow organically. In

either case, when you assess an existing system, you must examine and document cur-

rent workflows. The tools discussed in this chapter will help you accomplish the technical

aspects of this evaluation, such as determining storage requirements and CPU bottlenecks.

Evaluating a workflow from end-to-end and taking a high-level look involves nontechni-

cal aspects as well. To fully evaluate a workflow, you should follow these steps:

1 Examine

2 Interview

82 Assessing Systems

3 Observe

4 Document

5 Optimize

examining the Workflow
Examine the workflow to determine what resources are being used and how information

flows. Note the following:

P Teams in place: What common users and groups use this process?

P Shares and files: What files are used and where are they stored?

P Software: What software—off-the-shelf or in-house—is involved?

P Hardware: How does hardware impact this process?

P Information flow: How does information flow from one point to another?

What routes does it take and where does it stop?

Interviewing Users
Directly speak with people involved in the workflow. You can split users into two groups,

consumers and providers.

When interviewing consumers of data, question them to determine the following:

P Requirements: What are the real requirements of the workflow? How does a user’s job

impact requirements?

P Expectations: In what form is the data expected?

When interviewing providers, question them to determine the following:

P Their understanding: How well do they understand the needs of the consumers?

P Limitations: What may impede the flow?

P Collaboration: How does the team work together and pass data between members?

Evaluating Workflows 83

Observing the Workflow
Once you have examined the workflow and interviewed users, you should step back and

observe. Follow the process through. Does it match what you’ve been told? Document

what is actually happening.

This intermediary documentation helps you to piece together the workflow on your own:

P What information is needed?

P Where does the information come from and how is it used?

P What tools are used in creating the information?

P What steps have to be taken to complete the process?

Documenting the Workflow
When it’s time to formally document a workflow, note its key aspects:

P Application dependencies

P Data formats

P Access control

P Team collaboration

P Processing and automation

P Storage requirements

P Timing

Optimizing the Workflow
Most workflows, when adequately examined, can be improved in some respect. By tak-

ing a high-level view of the entire workflow, you can identify bottlenecks and areas for

improvement. It’s important when choosing to optimize a workflow that you alter only

one area at a time. This allows you to measure the results of that single improvement, and

it allows easier rollback if the alteration does not have the desired effect. Finally, it mini-

mizes disruption to user productivity.

This is not to say that every workflow needs changing. Sometimes the workflow is just

fine, but upgraded hardware, for example, might improve the workflow by speeding up

certain processes.

84 Assessing Systems

What You’ve Learned
This chapter outlines tools that can assist you in evaluating or reassessing a system,

including technical and nontechnical aspects. This chapter covered the following tools

and techniques:

P How to determine hardware utilization, to assess the usage of storage, network, CPU,

and memory

P Displaying vital statistics about a network interface using netstat, and from this infor-

mation, manually computing utilization

P Displaying information about currently running system processes with the ps utility

P Computing load average as an important metric in determining CPU capacity

P Using sysctl as one way to show the current load average

P Displaying detailed statistics about virtual memory usage, including system average

statistics since bootup, using vm_stat

P Displaying statistics about current and average input/output, using iostat

P Displaying disk capacity use with df

P Displaying disk usage for a given part of the disk hierarchy, such as /Users, with du

P Determining the history of system upgrades and installed packages using receipts and

/var/log/installer.log

P Querying and manipulating the receipts database using the pkgutil command

P Accounting of user workflows when assessing systems

review Quiz
1. Which command-line utility supplies detailed statistics and information about a

network interface?

2. What is the function of the sysctl command?

3. Which Mac OS X Server command reports detailed information about currently

connected AFP and SMB users?

4. Name three ways to display the current load average.

5. Which command-line utility can quickly summarize disk capacity?

Review Quiz 85

6. Where does the installer program write its receipts to?

7. Which command-line utility is used to query the receipts database?

8. Does every installation leave a trail in the install.log file?

9. What are the five steps to follow when evaluating a workflow?

Answers

1. netstat supplies detailed statistics and information about a network interface.

2. sysctl reads and writes kernel operating variables.

3. serveradmin reports detailed information about currently connected AFP and

SMB users.

4. The following commands reveal the current load average: uptime, top, iostat, and

sysctl vm.loadavg. Another possibility is Activity Monitor.

5. df (disk free) quickly summarizes disk capacity.

6. The installer program writes its receipts to /Library/Receipts/bom.

7. pkgutil queries the receipts database.

8. No. Any method of installation not using the Apple installer is not obligated to log

installation activity. This includes third-party installers, drag-and-drop installations,

and software compiled and directly installed on the machine.

9. Examine, interview, observe, document, and optimize are the five steps to follow to

evaluate a workflow.

This page intentionally left blank

NetworkingPart 2

5
 Time This lesson takes approximately 60 minutes to complete.

 Goals Learn the basics of Mac OS X implementation of DNS

 Learn different configurations for DNS servers

 Learn how to secure the DNS service

 Learn how to configure the DNS service from the command line,
without Server Admin.app

 Learn how to configure the NTP client and service using both graphical
and command-line tools

89

Chapter 5

Working with DNS
and NTP

A fully functioning Domain Name System (DNS) is increasingly becom-

ing the most critical service of a network infrastructure. Almost as impor-

tant is Network Time Protocol (NTP). When working properly, these

services function quietly in the background. Why are they so important

and how do they work? This chapter answers those questions by explain-

ing the foundations of each service, how they function on Mac OS X, and

how to troubleshoot them when they do not work as expected.

90 Working with DNS and NTP

Using DNS: The Big Picture
The main purpose of DNS is to convert easy-to-remember names into the harder-to-

remember numbers that computers require. On smaller networks, it is typical, and per-

fectly acceptable, to rely on the DNS servers supplied by your Internet service provider.

However, in larger installations, a site should provide some level of DNS service by host-

ing the service in-house. Furthermore, it may be necessary to host DNS internally because

of the high number of services that rely on a functioning DNS.

Of the 23 services listed in Server Admin, Directory Services, Kerberos, and email require

fully functioning DNS, while the rest of the services benefit from having DNS available.

For example, the web service will answer requests made by a straight IP address, but the

HTTP v1.1 protocol can access and serve different websites from the same IP address,

based on the DNS name passed to it.

All these considerations require a system administrator to fully understand DNS and to

provide a reliable, secure, and accurate DNS service. The graphical configuration tools for

DNS provided in Server Admin have never exposed the full spectrum of options available,

forcing anyone with advanced configuration needs to use the command line. In the past,

using the command line typically meant that you could not go back to using the graphical

user interface tool. However, Leopard removes that limitation by allowing a mix of styles.

About the Domain Name System
Originally, computers performed name-to-address mapping via a simple text file, the hosts

file, which contained a list of every machine that needed to be referenced by name. Using the

hosts file, a computer could resolve a lookup. Every computer had a copy of the hosts file. If

an IP address changed for any machine in that file, the reference would need to be changed in

the hosts file and every computer’s hosts file would need to be updated to reflect the change.

Clearly, the number of machines on the Internet today makes this an impossible task.

The Domain Name System overcomes the limitations presented by the hosts file scheme.

DNS is a distributed database, allowing local control over portions of the database. At the

top of the Domain Name System hierarchy, about 13 root name servers point the way to

other DNS servers responsible for a generic top-level domain (gTLD), such as “.com.” Root

servers are located at high-bandwidth points around the world. These servers in turn point

the way to the authoritative server for the query—the server listed with the registrar that can

answer queries with authority. This hierarchy is shown in the following illustration.

Using DNS: The Big Picture 91

When you register a domain name with a registrar, you must also define the authoritative

DNS servers for the domain—the servers that the root servers will ultimately send queries

to for your domain. The major registrars tend to provide DNS service for domains regis-

tered with them. The mere act of setting up a DNS server does not cause outside entities

to suddenly query it—general queries from the Internet will always use the authorita-

tive servers defined by your registrar via the root servers. Turning on the DNS service in

Mac OS X Server behind your firewall affects only your local network, as shown in the

next illustration of a DNS setup.

92 Working with DNS and NTP

About the DNS Query Path
In the system shown in the figure, all devices at the apple.com site are configured to use

the local DNS server. Similarly, all devices on the example.com network are configured to

query the local DNS server of that site. In this example, imagine that Apple has registered

its domain name with register.com, and the example.com domain has been registered

with yahoodomains.com. When a device on the example.com network needs to perform a

DNS lookup, it queries its onsite DNS server. If that server can answer the query in some

way—from its cache, or because it is authoritative for the domain in question—it will pass

the answer back to the client and the lookups are complete. If, however, the local DNS

server does not have the answer, it must perform a recursive query to fetch the answer

needed. A recursive query sends the query up the DNS hierarchy and allows other servers

to perform the query on its behalf. The response to the query is ultimately passed back to

the originating DNS server, which then passes it on to the client.

Imagine that a device on the example.com network needs to look up partners.apple.com.

The device on example.com will not find the IP address of partners.apple.com, neither on

its local DNS server nor among the domains listed by its registrar, yahoodomains.com. To

find the correct IP address, the local DNS server queries one of the root name servers. The

root name server, in effect, says, “Ah—you’re looking for information about a server in the

.com domain? I know just the server for you to talk to.” From there, the root server refers

example.com’s local DNS server to the generic top-level domain server for the .com zone.

This server, in turn, passes back a reference specifically to the DNS server responsible for

the apple.com domain. Now, example.com’s local DNS server can query the server that

is authoritative for the apple.com domain, which can actually answer the question. It

retrieves the answer to the query, with a forward or reverse lookup, from the hosted DNS

service and passes it to the client that originally made the query. The local DNS server will

also now cache this result, allowing it to directly answer this question for any other clients

in the future, until the expiration of that record.

About DNS Server Configurations
The previous example discusses several different DNS servers, each running with a particu-

lar configuration. This is important to point out, because a particular configuration should

be matched to the need at hand. Following are common DNS server configurations:

P A caching-only name server, such as a configured server that is not authoritative for

any zone, recursively looks up all queries, and caches what it can.

Configuring DNS Services 93

P In a split-DNS setup, the local, internal DNS server is configured to be authoritative

for the company domain (or domains). Meanwhile, the “master” authoritative DNS

server is still hosted, and the local DNS answers all queries from devices inside the

network. Devices outside of the network continue to query the hosted DNS service.

This provides an interesting opportunity: The internal DNS server does not have to

mirror the external DNS database exactly. The administrator may choose to augment

the local version with internal-only resources. Because devices on the outside cannot

access them, internal-only records do not need to exist in the hosted DNS server data-

base. In essence, this creates one namespace behind the local LAN’s edge router, and a

separate one for the world at large.

In the case of a company like Apple, with all of its network resources, many internal-only

addresses reside behind a security system, intended only for people on the Apple network

(or, perhaps, accessing the network via a VPN). An internal DNS server could serve the

internal network and the internal-only addresses, as well as act as a DNS cache, saving

bandwidth on external lookups.

Finally, if an administrator at Apple decided to enter information about the example.com

domain on the local internal DNS server, it would affect only devices on the Apple net-

work. Everyone else in the world would still be referred to the hosted example.com DNS

server for authoritative DNS information about the example.com domain.

Configuring DNS Services
Now that you understand DNS from a high-level perspective, you also need to understand

some DNS specifics, and details on how Mac OS X implements the DNS system.

Using BIND
The primary interface for configuring DNS services on Mac OS X Server is the graphi-

cal Server Admin utility. Similar to many other subsystems on Mac OS X Server, and

Mac OS X in general, DNS is handled by a freely available, open source product: the

Internet System Consortium’s Berkeley Internet Name Domain (BIND). You can config-

ure BIND via Server Admin on Mac OS X Server, or manually on Mac OS X.

BIND is the most widely deployed DNS server on the Internet. Mac OS X includes a full

installation of BIND, which includes essential utilities such as the named name daemon,

94 Working with DNS and NTP

which is responsible for handling all queries, and rndc, a utility to control the name

server. The DNS service can be configured and run entirely from a command-line shell.

Also, by basing this service on a standard, Mac OS X easily interoperates with other DNS

name servers—both BIND and non-BIND.

The DNS system classifies records into different types:

P A: IPv4 address record. Maps a name to an IPv4 address for a forward lookup.

P AAAA: IPv6 address record. Maps a name to an IPv6 address for a forward lookup.

P CNAME: Canonical name. An alias that points to a separate DNS record.

P MX: Mail Exchanger. Supplies the name and priority for a machine that accepts mail

for the given domain.

P NS: Name server. Defines a name server for the zone.

P SRV: Service. Stores information about a service.

P HINFO: Hardware info. Stores information about a machine’s hardware and/or software.

P TXT: Text. Provides descriptive text about a record.

P PTR: Pointer record. Maps an IP address to a name, allowing reverse lookups.

Basically, a PTR record is the opposite of an A record.

These record types form the database files for each zone created. Database files are cre-

ated in the /var/named hierarchy on the file system. In Leopard, Apple has chosen to

allow a mixed approach: The changes made in Server Admin are written to one set of

files, and you can make manual changes to a different set of files. Manual changes update

the canonical files, while Server Admin edits some Apple-specific files. Interestingly, this

fact shows off Server Admin’s ability to interpret these files. Where past OS versions had a

much more straightforward graphical user interface–to–config file relationship, new capa-

bility is evident in the main configuration file for BIND: /etc/named.conf.

The latest version of BIND, version 9, supports a concept called views. Views allow a BIND

server to present different zones and zone data to different viewers of the data based on

several criteria—all from a single BIND instance. While Mac OS X Server v10.5 is the

first version to explicitly use views, the functionality is not exposed in the graphical user

interface. In fact, all zones are simply contained in one master view called com.apple.

ServerAdmin.DNS.public. To understand this better, look at /etc/named.conf:

Configuring DNS Services 95

include “/etc/rndc.key”;

controls {

 inet 127.0.0.1 port 54 allow {any; }

 keys { “rndc-key”; };

 };

options {

 include “/etc/dns/options.conf.apple”;

};

logging {

 include “/etc/dns/loggingOptions.conf.apple”;

};

include “/etc/dns/publicView.conf.apple”;

The comments from this file have been stripped out to show how minimal the code is.

Unlike previous OS versions that wrote all configuration options directly into the named.

conf file, Leopard puts the “real” directives in external files that are then pulled into the main

file via include statements. This same tactic is used for the database files, as discussed below.

Piecing the configuration together in order, the options.conf.apple file contains three

statements:

directory “/var/named”;

forwarders {};

allow-transfer { none; };

The directory statement sets where named should find any zone files referenced in

the remainder of the config file. The forwarders statement is set to an empty list,

and the allow--transfer statement is disallowed. If you remember the graphical user

interface setup for each zone, “Allows zone transfer” is enabled by default, as shown in

the figure below:

96 Working with DNS and NTP

So how is the allow-transfer directive set to none in the config file? This goes back to

the support for BIND views, which will be covered in the discussion below about the

publicView.conf.apple file.

The loggingOptions.conf.apple file consists of the following lines:

category default {

 apple_syslog;

};

channel apple_syslog {

 file “/Library/Logs/named.log”;

 severity info;

 print-time yes;

};

These lines ensure that all named logging information is logged to the /Library/Logs/

named.log file.

Finally, named.conf includes /etc/dns/publicView.conf.apple. Its contents vary with the

zones configured in Server Admin. Also, a globally unique identifier (GUID) that is

unique to each server installation is generated for this file by Server Admin. Here is a sam-

ple named.conf file (again, stripped of any comments for space reasons):

acl “com.apple.ServerAdmin.DNS.public” {localnets;};

view “com.apple.ServerAdmin.DNS.public” {

//GUID=4E258421-4C6B-4922-A00A-1AA4A5CB923F;

 allow-recursion {“com.apple.ServerAdmin.DNS.public”;};

 zone “marczak.net.” {

 type master;

 file “db.marczak.net.”;

 allow-transfer {any;};

 allow-update {none;};

 };

Configuring DNS Services 97

 zone “100.168.192.in-addr.arpa.” {

 type slave;

 file “bak.100.168.192.in-addr.arpa.”;

 masters {192.168.100.12;};

 };

 zone “radiotope.com.” {

 type slave;

 file “bak.radiotope.com.”;

 masters {192.168.100.12;};

 };

 zone “.” {

 type hint;

 file “named.ca”;

 };

 zone “localhost” IN {

 type master;

 file “localhost.zone”;

 allow-update { none; };

 };

 zone “0.0.127.in-addr.arpa” IN {

 type master;

 file “named.local”;

 allow-update { none; };

 };

};

The first line defines an access control list (ACL) named com.apple.ServerAdmin.DNS

.public to be used with a view, and allows the ACL localnets. This corresponds to the

list in the Server Admin DNS Settings pane. While BIND allows very fine-grained use

of ACLs, Server Admin does not press them into service—limiting their use to defining

recursion abilities. The definition of localnets is built into BIND, along with several other

definitions. An ACL of localnet matches all IP addresses and subnets of the server on

which named is invoked. Other built-in values are any, none, and localhost.

98 Working with DNS and NTP

The second line defines a view. Views in BIND are an all-or-nothing proposition—once in

use, all zones must be defined in a view. This named.conf file takes the simple way: It cre-

ates one “master” view and defines all zones inside that.

The next line allows recursive lookups for clients matching the ACL for this view, which is

to say, all clients, which matches the setting in Server Admin.

Following are definitions for each zone defined in Server Admin. The allow-transfer direc-

tives in each primary zone definition match the zone setting in Server Admin.

Several definitions are required without which named would not function properly. The

first required definition is zone “.”—the root zone. This allows the name server to contact

one of the root name servers on the Internet, as described in the section “Using DNS: The

Big Picture.” /var/named/named.ca contains the names and IP addresses of all root name

servers. It is important that this file be kept up-to-date, because the information about the

root servers changes from time to time. Fortunately, this is easy to do using the dig utility:

dig . ns > /var/named/named.ca

Ideally, you should run this simple utility periodically from a cron or launchd job. The

root servers do not change often; scheduling this update to run once a month would

be adequate.

G5:zones apple$ cat db.pretendco.com.zone.apple

 ;GUID=A5C42059-099F-4209-A359-2B540AA4EA05

$TTL 10800

pretendco.com. IN SOA ns.pretendco.com. admin.pretendco.com. (

 2008052901 ;Serial

 86400 ;Refresh

 3600 ;Retry

 604800 ;Expire

 345600 ;Negative caching TTL

)

pretendco.com. IN NS ns.pretendco.com.

ns IN A 192.168.1.2

_http._tcp IN PTR http._http._tcp.pretendco.com.

Configuring DNS Services 99

mail IN CNAME ns.pretendco.com.

www IN CNAME ns.pretendco.com.

pretendco.com. IN MX 0 mail.pretendco.com.

http._http._tcp IN SRV 0 0 80 pretendco.com.

http._http._tcp IN TXT "=/"

G5:zones apple$ cat db.1.168.192.in-addr.arpa.zone.apple

 ;GUID=BE77D3EF-F1BD-40BC-B21A-327C91901A08

$TTL 10800

1.168.192.in-addr.arpa. IN SOA ns.pretendco.com. admin.pretendco.com. (

 2008041400 ;Serial

 86400 ;Refresh

 3600 ;Retry

 604800 ;Expire

 345600 ;Negative caching TTL

)

1.168.192.in-addr.arpa. IN NS ns.pretendco.com.

2.1.168.192.in-addr.arpa. IN PTR ns.pretendco.com.

The next and final two zone definitions in the named.conf example file define a forward

and reverse zone for localhost, respectively.

editing and Importing BIND Files
Leopard allows manual editing of DNS configuration files. You can edit the canonical

BIND files without having to face any real Apple-specific hurdles. The advantages are

clear: People coming from other UNIX-like platforms should immediately feel at home.

Any utilities that manipulate DNS configuration or zone files can work unaltered and not

cause the loss of Server Admin as a DNS editing utility.

There is a caveat, however: Any zones or machines added into these files are not visible in

Server Admin. Importing a zone file is a good example of this issue.

Imagine that a company is migrating from Linux servers to a Mac OS X Server setup.

Because DNS is already configured on the Linux servers, the company already has valid

and accurate DNS files. These can be used as-is on Mac OS X Server.

100 Working with DNS and NTP

To import one or more of these files requires three main steps: Update the /etc/named.conf

file; copy the zone file into place; and restart named, as described in the following steps:

1 Update named.conf.

Using root-level access, add the zone definition to /etc/named.conf. Since views are in

play, the zone must be wrapped in a view. A sample entry with view and zone defini-

tion follows:

view “MyView” {

zone “example.com” IN {

 type master; // Primary zone

 file “db.example.com”; // Name on filesystem

 allow-update { none; };

};

};

2 Copy the zone file into place.

Copy the zone file from the original system into the /var/named directory, giving it

the same name specified in the zone definition.

3 Restart named.

Again, as root, issue the following two commands:

serveradmin stop dns

serveradmin start dns

Alternatively, rndc is available for this task and reduces the work to a single statement:

rndc -s 127.0.0.1 -p 54 reconfig

Creating Secure and Private DNS Servers
The accuracy and security of a network DNS system cannot be undervalued. Not only do

zone files need maintenance to keep data in sync with reality, the system needs to be secured

so that results cannot be altered, intentionally or unintentionally. Out-of-date or incorrect

zone files may point users or services to incorrect or nonexistent hosts. Similarly, because

Configuring DNS Services 101

data in a DNS server contain a “map” of a network, it is important that a DNS server pro-

vide protection from attackers. As with any software, bugs in the code have, in the past,

allowed attackers to compromise the DNS server. Finally, as with any service, a DNS server

uses other resources (such as CPU and bandwidth) and therefore has finite capacity.

This section describes some standard DNS configurations. Protected with a firewall and

thereby inaccessible from the public Internet, these configurations are also secure. These

standard configurations include a caching-only name server; restricted zone transfers;

authoritative-only services (also known as nonrecursive servers); and forward servers.

Using Caching-Only Name Servers

One common configuration is a caching-only name server. By placing a DNS server inside

a network firewall, DNS lookups can be cached for later use, speeding queries and limiting

the number of slower links to the outside world. However, if an enterprise DNS server is

not protected, the opposite may occur: Unauthorized queries can unexpectedly load down

the system, using greater bandwidth and slowing lookups for internal users. If a caching-

only name server is publicly available, or if there is an unexpected number of users within

a large organization, performance can suffer and impact other services.

Fortunately, the default configuration forestalls one of the issues out of the box: The

problem of allowing unexpected users the use of a DNS server. By default, only local-

nets are allowed recursion—basically, the use of a DNS server past itself. A caching-only

name server is of little use otherwise. The solution to this problem of lock-in is simple:

Using Server Admin, set an ACL, using the Settings pane, to restrict recursion to specific

machines, subnets, or both. (To see the impact of DNS queries, trace some network traf-

fic and watch how many DNS queries are made—thanks to almost complete reliance on

DNS—even on a seemingly idle machine. Multiply this by the number of devices in a

large organization, and you can appreciate the impact of DNS queries on a network.)

Restricting Zone Transfers

Another way to keep a primary or secondary DNS server secure is to restrict zone trans-

fers to authorized sources only. By default, the “Allows zone transfer” checkbox is enabled

for each zone created, which means that anyone who can issue queries against a server

can also request a copy of the entire zone file. This is an especially bad security risk when

a server is world-accessible. You should configure named to allow zone transfers only to

authorized secondary DNS servers. Locking down zone transfers also prevents denial of

service (DoS) by zone transfer to unexpected hosts.

102 Working with DNS and NTP

There are two ways to tackle unauthorized transfers: Via the named configuration or by

using the firewall. The method you choose depends on your needs and policies.

Going the configuration file route will unfortunately require moving the zone into the

/etc/named.conf file (as shown in “Configuring DNS Services”), and losing the ability to

manage this zone via Server Admin. Once configured in /etc/named.conf, add the follow-

ing line to the zone definition:

allow-transfer { 192.168.55.22; 192.168.32.18; };

The allow-transfer statement creates a whitelist of IP addresses that are allowed to transfer

the entire zone to themselves. You should add addresses for all the secondary DNS servers

that need to transfer the zone.

You can also restrict transfer using a firewall (host-based, like the ones built in to

Mac OS X Server) or using router ACLs. For example, you can restrict inbound access

from the secondary zone needing to transfer a zone to TCP port 53 on the DNS server,

and deny all others. Since standard client queries use User Datagram Protocol (UDP),

zone transfers can be limited in this way.

Providing Authoritative-Only Services

Another option for a DNS server is to provide authoritative-only services; this configura-

tion is also known as a nonrecursive server. For various reasons, it may be desirable to have

a name server that can answer queries about its primary or secondary zones and no oth-

ers. Such a configuration restricts certain networks from recursion access to the server.

This setup is easy when using Mac OS X Server: Simply set up zones as usual, and then

remove all recursion from the DNS Settings pane in Server Admin, including localnets,

as shown here:

Configuring DNS Services 103

Configuring Forward Servers

A twist on the authoritative-only server is the forward server. When configured in this

way, a DNS server forwards any query for which it is not authoritative to a server in its

forwarders list. You can enter forwarders in the Server Admin DNS Settings pane.

A forward server typically contains a primary or secondary zone, allowing it to quickly

answer queries about the records in its local database, while all others are sent to a sepa-

rate server. There are several reasons for deflecting queries. A simple reason is security—

perhaps a Mac OS X Server is acting as an Open Directory master and DNS server. This

server can be locked down from an access perspective, with no external access at all, not

even to return DNS queries. To resolve queries about outside entities, the server can for-

ward those requests to another internal DNS server that does have access.

For example, in the following diagram, client computers are configured to use the DNS

server at 10.1.17.1, which is configured as a forwarding server. The forwarding DNS server

is configured to forward queries to 10.1.0.1 that it cannot answer.

104 Working with DNS and NTP

Configuring for Scale
As sites grow to include remote offices accessed via wide area network (WAN) links, DNS

infrastructure can become strained. Most of the configurations discussed previously in

this chapter can come into play.

Consider using forward servers when you need to build up a site-wide cache. Having

all DNS queries go through a single host—or set of hosts on a large network—can save

bandwidth by reducing outbound queries.

When several sites share a common infrastructure, keep in mind that secondary servers can

also provide zone transfers. So there is no need to mercilessly pound a single DNS server for

zone transfers of a particular zone. Secondary DNS servers across a WAN link can provide

zone updates to other secondary DNS servers that are closer on the network—do whatever

makes sense for a particular topology.

As a final note, remember that a secondary DNS server can be used as a primary server

to a network device. In other words, there is no reason to have all clients query a primary

name server first. Ensure that the load is spread among all DNS servers as applicable.

 Using Network Time Protocol
Network Time Protocol (NTP) provides a time

server that all clients on a network can query to

keep their system clocks in sync. It is critical to

keep each computer on a network referencing the

same time, for several reasons. Several subsystems

rely on having correct time, such as Kerberos,

which uses synchronized time to prevent replay

attacks and synchronize authentication services.

A standard time reference also helps preserve the

sanity of system administrators—with the integ-

rity of all timestamps ensured (including those for

mail headers, database transactions, and file system

metadata), correlating log files and events is easier.

It would be a waste of time to apply an offset to

the timestamps in various files just to match up a

login or other event.

Using Network Time Protocol 105

NTP is a hierarchical system, disseminating Coordinated Universal Time (UTC), created by

several strata of servers. Strata 0 servers, including atomic and GPS clocks, are the highest in

the sequence and, therefore, the most accurate. Strata 0 servers feed strata 1 servers, which

also have a high level of precision. Strata 1 servers typically include time servers run by

governments and institutions of science. Strata 2 servers are any NTP servers that sync their

time from a Strata 1 server. Strata 3 servers sync from Strata 2, and so on.

NTP clients can sync to any time server that they are authorized to access. However, two

rules apply: The closer the NTP server the better, to reduce latency; and all devices on a

given LAN should sync to the same time source. This time source will preferably be an

internal resource acting as an NTP server (such as Mac OS X).

Understanding the NTP Service
Mac OS X uses the open source ntpd software suite to provide time services. The ntpd dae-

mon performs the actual work, sending NTP queries on UDP port 123. When enabled,

the daemon is active full-time (not on demand), as in the following:

ps ax | grep ntp

 44 ?? Ss 0:24.03 /usr/sbin/ntpd -n -g -p /var/run/ntpd.pid -f /var/db/ntp.drift

It is easy to enable the ntpd service using the Server Admin graphical user interface. Select

the server, then select the General tab in the Settings pane, as shown here:

You can configure and control NTP using two command-line utilities: serveradmin and

systemsetup. On Mac OS X Server, serveradmin can configure the NTP service with the fol-

lowing commands:

P info:ntpServerName = “(server-address)”

P info:ntpTimeServe = (yes | no)

106 Working with DNS and NTP

P info:previousNTPServerName = “(server-address)”

P info:ntpTimeSync = (yes | no)

For example, to set the time source to time.apple.com, you can run the following command:

serveradmin command info:ntpServerName=”time.apple.com”

The systemsetup command configures the NTP client. The following switches are valid

when using systemsetup to configure NTP:

P getusingnetworktime

P setusingnetworktime (on | off)

P getnetworktimeserver

P setnetworktimeserver (server-address)

For example, to determine if time sync is currently enabled, you can use the following

command:

systemsetup -getusingnetworktime

Network Time: On

Like many other services, Leopard brings ntpd directly under the control of launchd. The

plist for this service can be found at /System/Library/LaunchDaemons/org.ntp.ntpd.plist.

Interestingly, there is a very Apple-specific thumbprint on this startup: Rather than call

ntpd directly, the launchd plist runs /usr/libexec/ntpd-wrapper. The bulk of the work in the

wrapper script is handled by three lines:

ipconfig waitall

ntpdate -bvs

exec $sb /usr/sbin/ntpd -n -g -p /var/run/ntpd.pid -f /var/db/ntp.drift

The first line pauses execution of this script until a network interface or interfaces are

active. This corrects a problem from pre-Leopard systems in which ntpd would load before

any network was available.

The second line uses the ntpdate utility to set the current time before invoking the ntpd

daemon itself.

Troubleshooting 107

The third line also requires a little explanation because the comments have been stripped

from the context. The $sb variable can contain the path to the sandbox-exec loader, which

would run the ntpd daemon in a sandbox. A sandbox is a security utility that imposes rules

on a running program. These rules can allow or disallow access to network resources or

parts of the file system. By default, ntpd does not run in a sandbox—the $sb sandbox vari-

able is commented out and left undefined, causing the exec statement to ignore $sb com-

pletely. With the $sb variable undefined, ntpd does not run in a sandboxed environment.

The final action of the ntpd wrapper is to run ntpd with these parameters:

P -n —Do not fork. Required for launchd compatibility.

P -g—Essentially, ignore all clock differences and set the time.

P -p—PID file.

P -f—Drift file. This file allows ntpd to track the frequency of clock drift, and if it does

not exist at ntpd startup, it will be created.

Although ntpd is capable of using keys to validate servers to clients, Mac OS X does not

currently press this capability into service.

The ntpd daemon uses a sophisticated algorithm to determine the interval at which it polls

external time servers. A machine typically starts with a short 64-second interval and grad-

ually increases the polling to 1024 seconds (approximately 17 minutes).

In all, NTP is a very straightforward service. When launchd loads the NTP plist, it waits for

network interfaces to be available and performs clock correction. This behavior testifies to

how important this service is—Apple wants it to run flawlessly.

Troubleshooting
The DNS system can fail in subtle and not-so-subtle ways; however, it is typically the

administrator that fails the DNS system. First and foremost, zone records must remain

accurate and in sync with reality. Dropping sensitive files on the wrong host because DNS

mismapped a name (enabled by a common ID and password on all internal systems)

can be a serious problem. Possibly more frustrating is a DNS record that simply points

nowhere, leaving no route to a host. Troubleshooting DNS involves both knowledge of the

system, and testing and sleuthing work. Follow log files, look for clues, and test.

108 Working with DNS and NTP

Testing at the Server
When DNS issues arise, the easiest place to start troubleshooting is often at the DNS

server itself. If things are not right there, the client has no chance of retrieving correct

information, or any information at all.

Access a root shell on the primary DNS server—or, the server that clients query—using

direct login or Secure Shell (SSH). Use the ps command to check whether named is running:

ps ax | grep named

16029 ?? Ss 0:04.17 /usr/sbin/named -f

(and yes, the process is named and not bind.)

If named is not running, see the next section, “Checking the Logs and the Process,” for fur-

ther troubleshooting steps. If it is running, ensure that you can actually perform lookups:

dig @127.0.0.1 www.example.com

If all of this works as expected, the issue is most likely with the client or the network—

perhaps a firewall or router ACL that is preventing access sits between the client and DNS

server. If a client uses Dynamic Host Configuration Protocol (DHCP) for configuration,

ensure that the DHCP server is also supplying a (correct) DNS server.

Checking the Logs and the Process
There are many reasons that named may refuse to start, but only one place to look: the logs

to /Library/Logs/named.log. Unfortunately, Server Admin sometimes gives DNS the green

light, even though named is not running. The most common reason for named to not start

up properly is bad syntax in one of the configuration files. While you cannot predict what

this bad syntax will be, the following is an example:

15-Mar-2008 12:32:28.710 loading configuration from ‘/private/etc/named.conf’

15-Mar-2008 12:32:28.713 /etc/dns/publicView.conf.apple:31: zone ‘100.168.192.

in-addr.arpa’: already exists previous definition: /etc/dns/publicView.conf.apple:23

15-Mar-2008 12:32:28.713 reloading configuration failed: failure

15-Mar-2008 12:32:28.715 shutting down

15-Mar-2008 12:32:28.715 stopping command channel on 127.0.0.1#54

15-Mar-2008 12:32:28.716 no longer listening on 127.0.0.1#53

15-Mar-2008 12:32:28.716 no longer listening on 192.168.100.16#53

15-Mar-2008 12:32:28.723 exiting

Troubleshooting 109

The log shows exactly what the problem is (zone ‘100.168.192.in-addr.arpa’: already

exists previous definition: /etc/dns/publicView.conf.apple:23) and where to look (/etc/

dns/publicView.conf.apple, line 31). Interestingly, this log comes from a server that had

never been hand-edited, therefore Server Admin miswrote the file.

You may also see a line like this in your log:

15-Mar-2008 12:36:29.632 checkhints: view com.apple.ServerAdmin.DNS.public:

L.ROOT-SERVERS.NET/A (199.7.83.42) missing from hints

This is telling you that the root server cache (/var/named/named.ca) has a bad entry—

in this case, for L.ROOT-SERVERS.NET—and needs updating. Update this file as shown

earlier in “Configuring DNS Services.”

On a server that acts as a secondary DNS server, you may see this in the named.log file:

1-Feb-2008 17:53:02.588 zone radiotope.com/IN/com.apple.ServerAdmin.DNS.public:

refresh: failure trying master 10.10.10.12#53 (source 0.0.0.0#0): operation canceled

For some reason, the DNS server could not contact the master to load the zone. Its own

network interface may be down, the master may be down, or a network issue may be

causing the failure. The problem caused by this lack of connectivity is that a secondary

DNS server will continue to serve DNS requests from its cached copy of the zone, which

now may be out of sync with the master and giving incorrect results.

Checking the Configuration File Syntax
This step is an extension of the previous troubleshooting tip, “Checking the Logs and the

Process.” The BIND config file syntax is exacting and sometimes nonintuitive. If there has

been any hand-editing, double-check edits if BIND will not load a particular zone or pick

up its changes, or if it will not load at all.

Syntax errors will be pointed out in the named.log file.

Testing the Client Service
If all of the above tests come back clean, the issue is most likely on the client side. Simple

things to check include the following:

P Is the client making requests of the correct name server?

P Is DHCP pushing out the correct name server?

110 Working with DNS and NTP

P Is a DNS server entry set at all?

P Does the client have a stale entry in its cache?

The last point is important: Just like DNS servers, clients cache results. This way, once

an entry is looked up, further requests do not need to take up resources on the server.

However, if DNS is updated after a client caches the result, the two will be out of sync.

Typically this does not cause a problem, but sometimes the issue raises its head. A client

can flush its local cache with dscacheutil:

dscacheutil -flushcache

If these suggestions do not work, you should investigate whether the DNS server set on

the client is actually reachable. Use the dig utility to test lookups from the client:

$ dig www.example.com

; <<>> DiG 9.4.1-P1 <<>> www.example.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63675

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:

;www.example.com. IN A

;; ANSWER SECTION:

www.example.com. 172741 IN A 208.77.188.166

;; AUTHORITY SECTION:

example.com. 172741 IN NS a.iana-servers.net.

example.com. 172741 IN NS b.iana-servers.net.

;; ADDITIONAL SECTION:

a.iana-servers.net. 10080 IN A 192.0.34.43

;; Query time: 71 msec

Troubleshooting 111

;; SERVER: 192.168.100.12#53(192.168.100.12)

;; WHEN: Mon Mar 17 22:48:15 2008

;; MSG SIZE rcvd: 113

There are two important parts here: that an answer is returned in the ANSWER SECTION, and

the server that answered the question (in the statistics section at the bottom of the out-

put). If the output of dig is too dense, you can use the +short flag:

$ dig www.example.com +short

208.77.188.166

Alternatively, use nslookup:

$ nslookup www.example.com

Server: 192.168.100.12

Address: 192.168.100.12#53

Non-authoritative answer:

Name: www.example.com

Address: 208.77.188.166

The Non-authoritative answer line simply means that a server other than the server author-

itative for this zone provided the results.

Many services that depend on DNS require that both forward and reverse DNS entries

resolve correctly. You can test the forward lookup using dig or nslookup, and the reverse

using host or dig:

$ dig www.radiotope.com +short

69.55.239.95

$ host 69.55.239.95

95.239.55.69.in-addr.arpa domain name pointer www.radiotope.com.

Checking NTP
Like all network-bound services, connectivity is typically the biggest issue. Ensure that

firewall rules—host- or network-based—are not blocking access to NTP servers. NTP uses

UDP port 123 for both client and server operation.

112 Working with DNS and NTP

ntpd logs all information using the syslog facility, an important place to check if ntp is not

behaving as expected.

The ntpd daemon stays running at all times. Use the ps command to check the ntpd dae-

mon running status.

If the daemon is running, the ntpq (NTP query) command can be used. The rv command

displays the state of the local clock:

$ ntpq -c rv

assID=0 status=06f4 leap_none, sync_ntp, 15 events, event_peer/strat_chg,

version=”ntpd 4.2.2@1.1532-o Mon Sep 24 01:42:27 UTC 2007 (1)”,

processor=”Power Macintosh”, system=”Darwin/9.2.0”, leap=00, stratum=3,

precision=-20, rootdelay=100.756, rootdispersion=43.373, peer=26021,

refid=17.254.0.27,

reftime=cb8afd96.e1abf593 Tue, Mar 18 2008 22:48:54.881, poll=10,

clock=cb8afee5.537b3508 Tue, Mar 18 2008 22:54:29.326, state=4,

offset=-4.128, frequency=23.587, jitter=0.855, noise=1.765,

stability=0.060, tai=0

$ ntpq -c rv

assID=0 status=06f4 leap_none, sync_ntp, 15 events, event_peer/strat_chg,

version=”ntpd 4.2.2@1.1532-o Mon Sep 24 01:42:27 UTC 2007 (1)”,

processor=”Power Macintosh”, system=”Darwin/9.2.0”, leap=00, stratum=3,

precision=-20, rootdelay=100.756, rootdispersion=43.373, peer=26021,

refid=17.254.0.27,

reftime=cb8afd96.e1abf593 Tue, Mar 18 2008 22:48:54.881, poll=10,

clock=cb8afee5.537b3508 Tue, Mar 18 2008 22:54:29.326, state=4,

offset=-4.128, frequency=23.587, jitter=0.855, noise=1.765,

stability=0.060, tai=0

Similarly, the pe command displays information about the peers that ntpd is contacting:

$ ntpq -c pe

 remote refid st t when poll reach delay offset jitter

==

*time1.apple.com 17.106.100.13 2 u 721 1024 367 92.074 -4.128 0.855

Review Quiz 113

What You’ve Learned
This chapter covered two services that are critical to a network infrastucture: DNS and

NTP. The following points should be clear:

P DNS provides a name-to-IP address and IP address-to-name mapping.

P Many services rely upon DNS, particularly Open Directory, Kerberos, and email.

P DNS provides a map of hosts on a network, so it is important to secure a DNS server

properly. This can be accomplished by limiting zone transfers or via firewall protection.

P NTP is relied upon to keep system clocks in time with each other.

P Kerberos uses NTP to prevent replay attacks and synchronize authentication services.

P NTP is important to an administrator for any timestamps—file system, database, and

log entries—which allow correlation of events across systems.

references
P Internet Systems Consortium: http://www.isc.org

P Mac OS X Server, Network Services Administration, v10.5: http://images.apple.com/

server/macosx/docs/Network_Services_Admin_v10.5.pdf

P Albitz, Paul and Liu, Cricket, DNS and BIND (O’Reilly Media, Inc., 6th edition, 2006)

P NTP home page: http://www.ntp.org

P Network Time Protocol (Version 3) Specification, Implementation and Analysis:

RFC 1305

review Quiz
1. What is the name of the daemon that runs the DNS service in Mac OS X?

2. What function does a DNS A record perform?

3. What is the name and full path of the configuration file for named?

4. Are there any security issues in exposing an internal DNS server to the public Internet?

5. Why is NTP important for daily administration?

6. Why is NTP important to Kerberos?

http://www.isc.org
http://images.apple.com/server/macosx/docs/Network_Services_Admin_v10.5.pdf
http://images.apple.com/server/macosx/docs/Network_Services_Admin_v10.5.pdf
http://www.ntp.org

114 Working with DNS and NTP

7. Which are the most accurate set of NTP servers?

8. Which port and protocol does the NTP service use?

Answers

1. named is the daemon that runs the DNS service in Mac OS X.

2. An A record maps a name to an IPv4 address, allowing a forward lookup.

3. /etc/named.conf is the name and full path of the configuration file for named.

4. Security issues in exposing an internal DNS server to the public Internet include

making available a list of valid hostnames and IP addresses to the network, if zone

transfers to everyone are not disabled. Also, potential bugs in BIND can be exploited

to compromise a computer. If a DNS server is exposed in error, queries from public

sources will consume resources and compete with other services at your site.

5. With multiple machines, it is important to be able to correlate system events accurately.

6. Kerberos uses the time on each machine to prevent replay attacks. By default,

Kerberos authentication fails if clocks differ by 5 minutes or more.

7. The servers that make up strata 0 are the most accurate NTP sources.

8. The NTP service listens on UDP port 123.

This page intentionally left blank

6
 Time This lesson takes approximately 45 minutes to complete.

 Goals Learn how to control access via technological means

 Learn the different firewall options in Mac OS X

 Learn how to use the RADIUS service to require authentication to
Apple AirPort wireless access points

117

Chapter 6

Controlling Access to
Resources

Never before has security been so critical when administrating a system.

All network-connected systems are constantly being probed and attacked,

sometimes intentionally and sometimes unintentionally. Attacks can

come from both internal and external sources. This chapter focuses on

mitigating and controlling access with network-level controls.

These controls consist of Mac OS X firewalls designed to block access

and Remote Authentication Dial In User Service (RADIUS), a client-

server protocol used to authenticate and account for entry at given

access points.

118 Controlling Access to Resources

Configuring Firewall Service
The term firewall originated prior to the digital firewalls that technologists have come to

know. Originally, the term was used to describe a fireproof wall designed to contain fire

from spreading, such as from a car engine into the passenger section. Computer firewalls

share similar qualities, as they work to contain improper network packets from breaching

a host or network perimeter.

Mac OS X has two firewalls: IP Firewall (ipfw) and the Application Level Firewall (ALF).

While ipfw is available in both Mac OS X and Mac OS X Server, only Mac OS X Server has

a graphical user interface for the service, as well as the Adaptive Firewall, which can add

and remove firewall rules based on network events.

NOTe P Technically, the ipfw program is now in its second generation, and some-

times is called ipfw2. It consists of both the ipfw and ip6fw programs for restricting

IPv4 packets and IPv6 packets, respectively. It is generally referred to as ipfw, as it will

be in this text.

Mac OS X Server v10.5 contains a host-based firewall service. Based on ipfw software devel-

oped by Berkeley Software Distribution (BSD), it is a traditional stateful packet firewall (a

stateful firewall keeps track of the state of network connections traveling across it). The

Adaptive Firewall is new to Leopard Server. While most documentation makes this seem

like a second firewall, the Adaptive Firewall is really just a monitor that creates and disables

rules in the ipfw firewall as needed. The behavior that currently calls the Adaptive Firewall

into action is 10 failed login attempts. Such behavior blocks the requesting IP address for 15

minutes—an action that makes brute-force password guessing virtually impossible.

Accessing the Firewall Setup
You can access the main firewall setup through Server Admin.app. The Address Groups

tab in the Settings pane enables you to logically group addresses and create address ranges

to which you can then apply rules.

Accessing the Firewall Setup 119

Clicking the Add (+) button at the bottom of the Server Admin window allows you to add

new groups; click the pencil button to edit existing groups.

The Services tab defines the rules in place for a given address group.

 By default, all traffic is allowed out and only Apple

administrative ports and established traffic are

allowed in. Established traffic is traffic that has validly

been sent out and is receiving a reply. Established traf-

fic may receive reply traffic on ports that are closed,

but because the firewall software tracks established traffic, use of the ports is allowed for

established traffic streams.

120 Controlling Access to Resources

The Services tab contains a long list of predefined services, any of which may be activated

for a given address group. If the service or port range needed has not been predefined, it

is easy to add a custom service. Clicking the Add (+) button brings up a dialog box that

allows you to define a custom service to be added to the list.

If you are not sure which port to add for a given service, you can get that information

from several places. You can find well-known services in the /etc/services file on your local

computer. Use grep to filter out terms:

$ grep -i quake /etc/services

quake 26000/udp # quake

quake 26000/tcp # quake

NOTe P Two good sources to refer to when determining port numbers are Apple and

the Internet Assigned Number Authority (IANA).

For Apple services: http://docs.info.apple.com/article.html?artnum=106439

For general services: http://www.iana.org/assignments/port-numbers

Clicking the Active Rules button in the toolbar displays the currently active rules for all

rule sets and address groups.

http://docs.info.apple.com/article.html?artnum=106439
http://www.iana.org/assignments/port-numbers

Accessing the Firewall Setup 121

As mentioned earlier in “Configuring Firewall Service,” the firewall service in Mac OS X

Server is built atop ipfw, a kernel-based application. You can also control ipfw via the

same-named command-line program. Unlike Mac OS X Server, in Mac OS X the com-

mand-line ipfw program is the only interface available.

An easy way to verify firewall rules is to list them. This list corresponds to the list in the

Active Rules pane in Server Admin. With ipfw, use the list verb:

ipfw list

01000 allow ip from any to any via lo0

01010 deny ip from any to 127.0.0.0/8

01020 deny ip from 224.0.0.0/4 to any in

01030 deny tcp from any to 224.0.0.0/4 in

12300 allow tcp from any to any established

12301 allow tcp from any to any out

12302 allow tcp from any to any dst-port 22

12302 allow udp from any to any dst-port 22

12303 allow udp from any to any out keep-state

12304 allow tcp from any to any dst-port 53 out keep-state

12304 allow udp from any to any dst-port 53 out keep-state

12305 allow udp from any to any in frag

12306 allow tcp from any to any dst-port 311

12307 allow tcp from any to any dst-port 625

12308 allow udp from any to any dst-port 626

12309 allow icmp from any to any icmptypes 8

12310 allow icmp from any to any icmptypes 0

12311 allow igmp from any to any

65534 deny ip from any to any

65535 allow ip from any to any

In the Server Admin Settings pane, under the Advanced tab, you can set stealth options

and create custom rule sets for the firewall service. Stealth options drop denied packets

rather than sending the requesting computer an error message.

122 Controlling Access to Resources

Once you have completed setup and testing, you should enable the Stealth Mode option

for both TCP and User Datagram Protocol (UDP), which makes the job for attackers

much more difficult because clients trying to connect to closed ports will not receive fail-

ure notifications.

The rules in the Firewall Settings Services pane operate with the rules shown in the Advanced

pane. Usually, the broad rules in the Advanced pane block (or open) access for all ports. These

broad, lower-priority (higher-numbered) rules apply after the rules in the Services pane.

The rules created in the Services pane open access to specific services. Higher in priority,

Services rules take precedence over those created in the Advanced pane. For most normal

uses, using the Advanced pane to open access to designated services is sufficient.

If you create multiple rules in the Advanced pane, the rule number determines the prece-

dence for a rule. This number corresponds to the order of the rule in the Advanced pane.

You can reorder rules in the Advanced pane by dragging them up or down in the list. If

necessary, you can add more rules using the Advanced pane.

Although Server Admin treats the firewall as a service, it does not implement the firewall

by a running process like other services. Implementation is simply a set of behaviors in the

Accessing the Firewall Setup 123

kernel, controlled by the ipfw and sysctl tools. To start and stop the firewall, Server Admin

sets a switch using the sysctl tool. Use the sysctl tool to enable the firewall as follows:

$ sysctl -w net.inet.ip.fw.enable=1

You can also disable the firewall by changing the setting to 0:

$ sysctl -w net.inet.ip.fw.enable=0

Regardless of this setting, the rules loaded in the firewall remain. But they are ignored

when the firewall is disabled.

You can also use the ipfw command-line program to manipulate firewall rules. This is

practical when working remotely, over ssh, or when a scripted solution is needed.

As an example rule, imagine the following scenario: An Xserve with multiple network

interfaces—physical or virtual—is running AFP for file access. The security team decides

that AFP should only be available on the subnets that it is serving. AFP does not have the

control to specify which interface it binds to. However, you can use the built-in firewall,

ipfw, to block AFP on the unwanted ports. For example, to block AFP on the en0 interface,

you can use the following command to add the appropriate rule:

ipfw add deny dst-port 548 via en0

The keywords to ipfw are as follows:

P add Denotes adding a rule

P deny Indicates what type of rule

P dst-port Denotes which port the rule affects and is specified by number or service name

P via Applies rules to packets arriving via the specified interface or IP address

If a rule number is not specified, ipfw will assign a default number to the added rule.

You may want to specify this rule number yourself, because the firewall evaluates rules

in a sequential order. When a default rule number is assigned, it will be done in such

a way that the rule becomes the last rule, prior to the default rule. The following com-

mand adds an equivalent AFP blocking rule; however, it specifies the rule number (6000).

124 Controlling Access to Resources

The command lists the destination port by service name (afpovertcp) and gives an IP

address, rather than an interface name:

ipfw add 6000 deny dst-port afpovertcp via 10.10.15.68

If a rule is incorrect or no longer needed, you can remove it with the del (delete) com-

mand, as follows:

ipfw del 6000

Using Firewall Log Files
The firewall sends log messages to /var/log/ipfw.log. A sample follows:

Apr 17 09:41:17 server17 servermgrd[58]: servermgr_ipfilter:ipfw

config:Notice:Flushed IPv6 rules

Apr 17 09:41:19 server17 servermgrd[58]: servermgr_ipfilter:ipfw

config:Notice:Enabled firewall

Apr 17 09:41:24 dawn ipfw[1940]: 1040 Deny TCP 10.1.17.2:49232 10.1.17.200:548

in via en0

Apr 17 09:41:59 dawn ipfw[1940]: 1040 Deny TCP 10.1.17.2:49232 10.1.17.200:548

in via en0

Apr 17 09:42:31 dawn ipfw[1940]: 1040 Deny TCP 10.1.17.2:49232 10.1.17.200:548

in via en0

Apr 17 09:43:31 dawn ipfw[1940]: 100 Accept TCP 10.221.41.33:721 192.168.12.12:515

in via en0

Each entry follows a similar form:

P Time of entry: In this sample, it is Apr 17....

P Hostname: In this sample, it is dawn.

P Process name and ID: Here it is ipfw[1940].

P The log message. The first two lines in this sample simply state that the firewall is

starting and enabled.

Accessing the Firewall Setup 125

For the firewall itself, each message follows this pattern:

P Matching rule number. Why the firewall took this behavior.

P Action. The action taken—Deny, Accept, and so on.

P Protocol. Which protocol this affected (TCP, UDP, and so on).

P Source. The source IP address of packet.

P Destination. The destination IP address of packet.

P Interface. On which network interface this packet appeared. In the example, it is

in via en0, but it could also be lo0 (loopback), en1, and so on.

You can fine-tune logging from the Server Admin graphical user interface (Settings >

Logging) or the serveradmin command-line utility. For example, to log all allowed packets,

you can make the following serveradmin call:

serveradmin settings ipfilter:logAllAllowed = yes

Configuring Firewall Files
In Mac OS X Server, the firewall is a service that can be configured by administrators.

In contrast, Mac OS X does not support the firewall directly; the ipfw-based firewall has

no graphical user interface, but users can manipulate it via the command line. However,

Mac OS X does contain the Application Level Firewall, which you can configure using the

Security Preference pane. This topic shows you how to configure both services.

Mac OS X Server uses several files for its ipfw-based firewall. The following configuration

files are stored in /etc/ipfilter:

-r--r--r--@ 1 root wheel 281 Apr 17 12:56 ip6fw.conf.apple

-r--r--r-- 1 root wheel 0 Apr 17 12:33 ip6fwstate-on

-rw-r--r-- 1 root wheel 41219 Apr 17 12:56 ip_address_groups.plist

-r--r--r-- 1 root wheel 38243 Sep 23 2007 ip_address_groups.plist.default

-rw-r--r-- 1 root wheel 1874 Sep 23 2007 ipfw.conf

-r--r--r--@ 1 root wheel 1353 Apr 17 12:56 ipfw.conf.apple

-r--r--r-- 1 root wheel 1874 Sep 23 2007 ipfw.conf.default

-r--r--r-- 1 root wheel 0 Apr 17 12:33 ipfwstate-on

-r--r--r-- 1 root wheel 632 Sep 23 2007

standard_services.plist.default

126 Controlling Access to Resources

Server Admin writes to these configuration files. Note that:

P IPv6 and IPv4 rules are kept in separate files.

P Any files with a name ending in “state-on” exist only if the service is running. They

are flags used at boot time to indicate if the firewall should be enabled.

P The plist files contain information presented in Server Admin. They are well com-

mented, and you can customize services and addresses seen in Server Admin. For

example, if you have a custom application that communicates with other servers on a

particular port, you can add an entry to this file so that this service appears in the list

of ports that may be selected with a checkbox.

P The *.apple files are edited by servermgrd. Changes made in these files risk being over-

written by changes in Server Admin and may render Server Admin unable to manage

the firewall service. You can make changes in other configuration files, such as ipfw.

conf. Rules added to ipfw.conf will be loaded into ipfw at start time. The ipfw.conf file

lists rules in the same format as rules added with the ipfw command line, minus the

ipfw command itself. For example:

add 03000 allow tcp from any to any http

When added to ipfw.conf, rule 3000 is appended to the rule list, allowing HTTP on any

interface. In addition, two premigration files may exist if the server was upgraded to ver-

sion 10.5 from an earlier version.

As the earlier section, “Using Firewall Log Files,” states, the Mac OS X Server ipfw logs

messages to /var/log/ipfw.log. The Mac OS X Server Adaptive Firewall is configured by

and uses several files:

P /etc/af.plist lists Adaptive Firewall preferences.

P /var/db/af/whitelist contains addresses that will not be blocked.

P /var/db/af/blacklist contains addresses that will always be blocked.

P /System/Library/LaunchDaemons/com.apple.afctl.plist contains the launchd plist.

Do not edit the whitelist and blacklist files manually. Rather, you should use the com-

mand-line utility afctl to manipulate these files. The Apple Event Monitoring daemon,

emond, performs the actual monitoring and spurs the Adaptive Firewall into action. While

emond is an off-limits subsystem, the man page claims that “emond accepts events from various

Accessing the Firewall Setup 127

services, runs them through a simple rules engine, and takes action.” One of its rules is

/etc/emond.d/rules/AdaptiveFirewall.plist.

This rule is activated on too many failed login attempts.

The Mac OS X Application Level Firewall also contains configuration files that affect its

behavior. The Application Level Firewall is configured using the Security Preference pane.

The Application Level Firewall can also be configured using the command line. The

socketfilterfw program, which resides in /usr/libexec/ApplicationFirewall, can query and

configure the Application Level Firewall. There is no man page for socketfilterfw, but a

usage statement can be printed when using the -h switch.

By default, Application Level Firewall is set to allow all incoming connections. When con-

figured to “Set access for specific services and applications,” Application Level Firewall

offers two choices for any given application: “Allow incoming connections” and “Block

incoming connections.”

The Application Level Firewall logs its activity at /var/log/alf.log when logging is enabled

in the dialog box.

128 Controlling Access to Resources

A sample log snippet follows:

Apr 29 16:16:00 dhcp-172-26-94-100 Firewall[38]: Deny Microsoft Word data in from

192.168.92.234:52684 uid = 0 proto=17

You can set the Application Level Firewall state from the command line using the defaults

command to alter preferences:

defaults write /Library/Preferences/com.apple.alf globalstate -int 1

In this command, the integer passed is one of the following:

P 0 = Off

P 1 = On for specific services

P 2 = On for essential services

For more on the defaults command, see “Defaults” in Chapter 9, “Automating Systems.”

The files that comprise the Application Level Firewall are as follows:

P The main preference file, /Library/Preferences/com.apple.alf.plist

P The executable files in /usr/libexec/ApplicationFirewall

Configuring rADIUS
RADIUS is a client-server protocol for authenticating users at RADIUS-enabled access

points. It also provides accounting by logging usage as users supply required credentials.

The service included in Mac OS X Server was designed with Apple AirPort base stations

in mind, but other devices that support RADIUS, such as firewalls and third-party wire-

less access points, can use it too. Configuring the service consists mainly of configuring

RADIUS devices.

RADIUS ties into Open Directory and Password Server to grant authorized users access

to the network through a RADIUS device. When a user attempts access, the device com-

municates with the RADIUS server using the Extensible Authentication Protocol (EAP) to

authenticate the user. Users are given access if their user credentials are valid and they are

authorized to pass through the device.

Configuring RADIUS 129

Using rADIUS
You can access RADIUS through Server Admin and its graphical user interface. To config-

ure RADIUS, follow these steps:

1 Enable the service in Server Admin and then choose one of the following options:

P Use Server Admin: Click the Configure RADIUS Service button in the Overview

pane to display an assistant that walks you through the process of setting up Apple

AirPort base stations.

P Use AirPort Admin: Configure RADIUS from an AirPort base station using

AirPort Admin. Choose the Access tab and fill in the appropriate values.

130 Controlling Access to Resources

By default, all users with Open Directory accounts will be authenticated successfully.

NOTe P Only AirPort base stations with firmware version 2.0.4 or greater are sup-

ported. The original Graphite base station is not among the supported models. Also,

a maximum of 64 base stations can be added to the RADIUS service.

2 To limit which users and groups are allowed, use Server Admin to create a system

access control list (SACL):

P Click the server name in Server Admin and click the Access tab.

P Choose “For selected services below,” and click RADIUS.

P Select the “Allow only users and groups below” option.

P Click the Add (+) button at the bottom of the user list to display a list of users

and groups that can be dragged into the list. Only the users in this list can authenti-

cate to the RADIUS service.

Configuring RADIUS 131

3 To connect wirelessly on a client machine:

P Choose the base station from the AirPort menu and choose WPA2 Enterprise

from the pop-up menu.

P Fill in the correct user name and password corresponding to Open Directory.

P Choose the correct certificate generated by the server.

P Click Join to make the connection.

Remember that the user name and password supplied are the user’s Open Directory

credentials. The shared secret is not a password for authentication, nor does it generate

encryption keys to establish secure tunnels between nodes. It is a token that the key man-

agement systems use to trust each other. The shared secret must be entered on the server

or a base station, but not on an end-user computer.

Using rADIUS Configuration and Log Files
The RADIUS service relies on a directory of configuration files. It also logs its activity to

two log files. The RADIUS service is built entirely on the open source FreeRADIUS proj-

ect and uses the same configuration files and log files.

As an addition to the FreeRADIUS project, Apple created the modules necessary to

authenticate via Open Directory. This fact distinguishes the FreeRADIUS version supplied

by Apple from a stock FreeRADIUS download.

132 Controlling Access to Resources

The first important file is the launchd plist file. The RADIUS service is started and managed

by launchd, which uses the /System/Library/LaunchDaemons/org.freeradius.radiusd.plist file.

The RADIUS service depends on several files for its runtime configuration, all of which

are stored in /etc/raddb.

RADIUS service logging occurs in two places:

P /Library/Logs/radiusconfig.log records configuration changes, such as adding or

removing a device.

P /var/log/radius/radius.log documents regular activity.

For more information, see the man page for radiusd. (For information on using man pages,

see “Getting Help” in Chapter 9, “Automating Systems.”)

Troubleshooting
Both the firewall and RADIUS services discussed in this chapter require little setup or

in-depth knowledge. Of course, this workhorse quality makes it a little more complicated

when things do not run as expected, especially with the firewall service.

The firewall service requires planning. You should make one change at a time and ensure

that it has the intended effect. Too many changes at once make it difficult to locate the

source of a problem. Documenting changes is key. If there are several administrators who

can make changes to the firewall rules, it is imperative that each be kept current with the

actions of others.

If rules look like they should be working, but they are not, and time is not an issue, a packet

sniffer will allow you to view the problem from the inside. Mac OS X ships with the popu-

lar open source tcpdump packet sniffer. tcpdump can print information in real time for a quick

determination, or it can write its dump to a file for later, offline analysis. To dump all pack-

ets passing through the en0 interface to stdout, use the following commands:

tcpdump -i en0

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on en0, link-type EN10MB (Ethernet), capture size 96 bytes

06:42:37.514597 IP server.example.com.ssh > 72.14.228.89.11667: P

3011092458:3011092650(192) ack 3151495640 win 33312 <nop,nop,timestamp 1488505430

575729407>

Troubleshooting 133

06:42:37.523288 IP 72.14.228.89.11667 > server.example.com.ssh: .

ack 0 win 65535 <nop,nop,timestamp 575729408 1488505364>

06:42:37.589744 IP 72.14.228.89.11667 > server.example.com.ssh: .

ack 192 win 65535 <nop,nop,timestamp 575729409 1488505430>

06:42:37.637216 IP comproxy2.example.net.53730 > 192.168.1.1.9090:

UDP, length 74

06:42:37.760644 arp who-has 192-168-232-92.in-

addr.arpa.example.com tell 192-168-232-1.in-addr.arpa.example.com

06:42:38.137423 IP comproxy2.example.net.53730 > 192.168.1.1.9090:

UDP, length 74

06:42:38.320315 arp who-has 69-55-228-118.in-

addr.arpa.johncompanies.com tell 69-55-228-1.in-

addr.arpa.johncompanies.com

^C

316 packets captured

349 packets received by filter

0 packets dropped by kernel

Press Control-C to stop the capture. Each line displays the time that the packet was received,

the protocol, the source of the packet, its destination, and, optionally, any set flags. To limit

the tcpdump capture to a specific IP address, specify the host in the tcpdump command:

tcpdump -i en0 host 192.168.55.72

Perhaps even more useful when troubleshooting a firewall problem is limiting the capture

to a specific port—port 80 in this example:

tcpdump -i en0 port 80

You can also negate a filter with the not keyword. For example, if you are troubleshooting

remotely via Secure Shell (SSH), the SSH traffic that makes up your session is typically

noise. Furthermore, you can combine filters with the and conditional. The following com-

mand listens for all traffic from the host at 192.168.55.8, but filters out traffic on port 22:

tcpdump -i en0 host 192.168.55.8 not port 22

Sometimes, analyzing tcpdump on the fly is not enough. For deeper analysis, you can write

dumps to a file and analyze them offline with a more powerful program, such as the open

134 Controlling Access to Resources

source Wireshark. For deeper analysis, you can also increase the size of the packet capture.

By default, tcpdump captures only the first 96 bytes of each packet. For a deeper look, you

should capture the entire packet. To capture all traffic of unlimited packet size and write it

to a file, you can use the -s (size) and -w (write) switches:

tcpdump -i en0 -s0 -w server_trace.pcap

The -s0 (“ess zero”) designates unlimited packet size, and the -w switch in this example

writes all capture data to the file server_trace.pcap. In most cases, all that you are look-

ing for on a server is any activity getting through the firewall, or to the local interface.

The more detailed traces are typically more helpful from the client side. In a worst-case

scenario, you can document and back up the current firewall rule set, and then flush the

current rules entirely. Then you can add half of the rules back in at a time, starting the

firewall service each time that you introduce a new set of rules. Incrementally adding back

rules will make it easier to determine which rule is causing the undesired behavior.

When working remotely with the firewall service, it is critical that you make available

another way to enter the system, or configure a “dead-man’s switch” that disables the fire-

wall after a period of time. An example of an alternate path would be a secondary inter-

face—physical or virtual—that is not affected by the firewall or has different rules applied.

This alternate can include a virtual private network (VPN) interface. A dead-man’s switch

can be as simple as one line. The following line waits 90 seconds, and then stops the fire-

wall completely, ensuring that access is unrestricted:

sleep 90; sudo serveradmin stop ipfilter

This tactic can be useful when making a potentially access-stopping change.

If you become completely lost with the firewall configuration, you may want to back

it up and start from scratch. For instructions on resetting the firewall to default val-

ues, see “Resetting the Firewall to the Default Setting” in the Apple Network Services

Administration document at: http://images.apple.com/server/macosx/docs/Network_

Services_Admin_v10.5_2nd_Ed.pdf.

The RADIUS service depends on both certificates and a shared secret (essentially a pass-

word or passphrase). If only certain devices are not working as expected, double-check their

shared secret. You can easily reset the device and re-add it, if necessary. If the problem is

more widespread, check the certificate being handed out. Did it expire or become

http://images.apple.com/server/macosx/docs/Network_Services_Admin_v10.5_2nd_Ed.pdf
http://images.apple.com/server/macosx/docs/Network_Services_Admin_v10.5_2nd_Ed.pdf

What You’ve Learned 135

corrupted? You can manage certificates in Server Admin by choosing the server and clicking

the Certificates tab. Finally, RADIUS depends on these default ports for communication:

P Port 1812—RADIUS

P Port 1813—RADIUS Accounting

If these ports are blocked between any RADIUS device and the server, authentication

at that device will not be possible. Note that the ports are configurable by changing the

appropriate value in the /etc/raddb/radiusd.conf file.

For both firewall and RADIUS services, if the issue seems to be service-level, first check

the log files. (For the location of log files, see “Using Firewall Log Files” and “Using

RADIUS Configuration and Log Files” in this chapter. The Application Level Firewall

logs its activity at /var/log/alf.log; see “Configuring Firewall Files.”) Increase logging levels

when necessary. You can change these levels with the graphical user interface, or, in some

cases, via the command line. The RADIUS service can log useful extra information with

the following directives:

radiusconfig -setconfig log_auth yes

radiusconfig -setconfig log_auth_goodpass yes

radiusconfig -setconfig log_auth_badpass yes

Good server backup is critical. Most of the configuration files reside somewhere in the /etc

hierarchy. Simply by practicing good backup habits, these key files will be preserved, and

can be restored if needed. (For more on key configuration files, see “Configuring Firewall

Files” and “Using RADIUS Configuration and Log Files” in this chapter.)

What You’ve Learned
This chapter discusses two network-level methods of protecting and controlling access to

resources. You have learned the following:

P Mac OS X and Mac OS X Server contain a built-in stateful packet firewall that keeps

track of the state of network connections traveling across it. The packet firewall is

based on the open source ipfw project.

P Mac OS X Server runs a service called emond that monitors bad login attempts. Ten

consecutive incorrect login attempts cause emond to use the Adaptive Firewall to inject

a rule into ipfw, blocking it entirely for 15 minutes.

136 Controlling Access to Resources

P The Mac OS X Server packet firewall uses rules to make decisions on which packets to

allow or deny. You can modify these rules using the Server Admin.app graphical user

interface, or the ipfw command-line tool. ipfw logs its messages in /var/log/ipfw.log.

P The RADIUS service in Mac OS X provides network-level authorization and account-

ing. RADIUS is based on the open source FreeRADIUS. Apple has provided the ability

to allow FreeRADIUS to authenticate accounts in Open Directory.

P Mac OS X contains an Application Level Firewall. Unlike a traditional stateful firewall,

Application Level Firewall grants or denies access to specific applications.

P tcpdump is an excellent utility to use when troubleshooting a service that is not con-

necting and a firewall is a suspected reason.

review Quiz
1. What is the stateful firewall that is built into Mac OS X and Mac OS X Server?

2. When enabling the default set of firewall rules in Mac OS X Server, which traffic

is allowed?

3. What is the primary way the Mac OS X Application Level Firewall differs from ipfw?

4. Why is tcpdump such a good utility for troubleshooting the firewall configuration?

5. When using the RADIUS service, how can use of wireless base stations be restricted to

a certain group of users?

Answers

1. The IP Firewall, ipfw, is the stateful firewall built into Mac OS X and Mac OS X Server.

2. By default, all traffic is allowed out, and only Apple administrative ports and estab-

lished traffic is allowed in.

3. The Application Level Firewall uses the application generating or receiving traffic

in the decision-making process about which traffic to let through. ipfw strictly uses

ports, not knowing which application is behind the traffic.

4. When used on the server side, tcpdump enables you to see whether traffic is making

it past the firewall and arriving at the application layer. On a client, it lets you know

whether traffic is being generated and accepted on the remote end.

5. Use Server Admin to apply a system access control list (SACL) to the RADIUS service.

AdministrationPart 3

7
 Time This lesson takes approximately 60 minutes to complete.

 Goals Learn the different classifications of accounts in Mac OS X

 Learn how to disable hardware via altering drivers

 Learn about public key encryption

 Learn how to work with digital certificates

 Learn how to grant additional privileges using the authorization database

 Learn to alter file system permissions via POSIX permissions, flags,
and ACLs

139

Chapter 7

Securing Access to
Resources

To provide deep protection, Mac OS X Server security is built on layers

of defense. Various methods safeguard the system by authorizing whether

a user or computer has the right to perform a restricted operation, and

authenticating (that is, verifying) the identity of an account or service.

These system-level methods of security complement the network-level

methods discussed in Chapter 6, “Controlling Access to Resources.”

Features for securing access to resources exist at all system levels, from

hardware and the operating system to services and networks. Several sub-

systems, such as services that are running and the file system, comprise

system-level methods and offer additional ways to control end users.

140 Securing Access to Resources

These various system-level security methods include the following:

P Hardware—A firmware password (also known as an OpenFirmware password) appli-

cation helps prevent people who access your hardware from gaining root-level access

to your computer files.

P Secure authentication protocols—Kerberos and public-key encryption secure the

authentication process.

P Secure networking—A firewall, along with digital certificates and encryption, help

protect resources and communication.

P Secure applications—Encryption in Keychain and FileVault helps prevent intruders

from using your applications and viewing data on your computer.

P Operating system—Portable Operating System Interface (POSIX) permissions and

access control lists (ACLs) help secure access to files.

About Authentication and Authorization
Authentication and authorization, while similar, handle two separate aspects of the secu-

rity model.

Authentication is the process of verifying the identity of an account or service. You

are accustomed to authenticating at the login window when the computer first boots.

Sometimes, though, applications and operating system components carry out their own

authentication. An account is authorized in some manner using credentials—most com-

monly, a user name and password pair. However, there are other methods for authenticat-

ing accounts, including digital keys and two-factor authentication, such as using “smart

cards.” This book covers only passwords and keys. For information on two-factor authen-

tication and Mac OS X–compatible solutions, see http://www.cryptocard.com.

Authorization is the process by which an entity, such as a user or a computer, obtains the

right to perform a restricted operation. Authorization can also refer to the right itself, for

example, an account authorized to run a certain program. Authorization typically involves

first authenticating the entity and then determining its permissions.

http://www.cryptocard.com

About Authentication and Authorization 141

About Mac OS X Accounts
Each object and action in Mac OS X takes place in the context of an account. Mac OS X

has four types of accounts, as follows:

P Standard users have full permission over their own home directory, but are restricted

from the rest of the system. They have read-write access to files that they place in

/Users/Shared and /tmp.

P Admin users can configure the OS, and have broader access to system directories, such

as /Applications. Admin users can override most limitations on the system, and have

near-complete control. Only trusted users should be granted admin-level privileges.

P There is only one root user, and it is not constrained by many of the normal limita-

tions in Mac OS X. The root account is not prompted or initially restrained by the

hurdles placed in front of admin-level users. See “Enabling and Disabling the Root

Account” in the following section for more information.

P A system account is used by services rather than end users in Mac OS X, which

requires that all actions be associated with an account. A system account is not a full

account with a home folder or login password. It is preinstalled by Apple, or created

by the software that requires it.

enabling and Disabling the root Account
For security considerations, the root account is disabled in Mac OS X. In contrast,

Mac OS X Server keeps root enabled by default. On either platform, root can be enabled

or disabled. You can use the dsenableroot command to enable or disable the root account.

An admin-level user simply needs to run the command and answer the prompted ques-

tions when asked:

$ dsenableroot

username = marczak

user password:

root password:

verify root password:

dsenableroot:: ***Successfully enabled root user.

142 Securing Access to Resources

The password for the root account will be set to the password supplied. You can set the -d

switch to disable the root account:

$ dsenableroot -d

username = marczak

user password:

dsenableroot:: ***Successfully disabled root user.

Mac OS X Server uses the root account while creating an Open Directory replica. If dis-

abled in OS X Server, root must be re-enabled during the replica creation process. Once

the replica is created, root can be disabled.

Protecting Hardware
Protecting hardware is as important, if not more so, than each of the other security methods

described in this chapter. Sadly, protecting hardware is often an afterthought. Servers act as a

central repository for large amounts of data, making them, or more specifically their storage,

desirable targets. High-profile news stories have highlighted the plight of companies that do

not protect their mobile devices, such as laptops, while out of the office.

If someone can physically access a computer, it can always be compromised. Given physi-

cal access, unauthorized users can install malicious software or various event-tracking and

data-capturing services.

To protect hardware, use as many layers of physical protection as possible:

P Restrict access to rooms containing computers that store or access sensitive informa-

tion. Provide room access only to individuals who must use those computers. If pos-

sible, lock the computer in a secure container when it is not in use, or bolt or fasten it

to a wall or piece of furniture.

P Take special care with storage units—hard drives, tapes, USB Flash drives, and so on.

Lock or secure this hardware. If users can install your storage device on another sys-

tem, they can bypass any safeguards that you have set up. If you cannot guarantee the

physical security of a storage device, consider using encryption: FileVault for home

folders, or encrypted disk images for other data.

P If you have a mobile device, keep it secure. Lock it up or hide it when it is not in use.

When in transit, never leave it in an insecure location.

Protecting Hardware 143

P Consider buying an attaché case or computer bag with a locking mechanism, and lock

the equipment in when you are not using it.

P Be aware that a computer left unattended and logged in can be a security risk. To pro-

tect your computers from being used when on and unattended, enable a password-

protected screen saver.

Disabling Hardware
If your company policy requires it, hardware components such as wireless features and

microphones can be physically disabled (but only by an Apple Certified Technician).

Physically disabling hardware may not be practical in all circumstances.

You can also disable hardware by removing the software driver, because the operating

system interfaces with hardware via kernel extensions (.kext files). Removing kernel exten-

sions does not permanently disable the components, and you will need administrative

access to restore and reload them. Disabling hardware by removing the software driver

is not as secure as physically disabling the hardware, but is more secure than disabling it

through system preferences.

Kernel extensions are stored in /System/Library/Extensions. You can disable the following

hardware by removing or stubbing the listed extensions:

AirPort:

P AppleAirPort.kext

P AppleAirPort2.kext

P AppleAirPortFW.kext

Bluetooth:

P IOBluetoothFamily.kext

P IOBluetoothHIDDriver.kext

Audio:

P AppleOnboardAudio.kext

P AppleUSBAudio.kext

P AudioDeviceTreeUpdater.kext

144 Securing Access to Resources

P IOAudioFamily.kext

P VirtualAudioDriver.kext

External iSight camera:

P AppleUSBVideoSupport.kext

P Apple_iSight.kext

External mass storage devices:

P IOUSBMassStorageClass.kext

P IOFireWireSerialBusProtocolTransport.kext

Simply dragging these files to the Trash will suffice to remove the extension. Even more

secure is to provide stubs for these files (empty files with the same name as the folder

being replaced) and to lock them, which will prevent future updates from adding newer

versions back. If you have trashed a file, remember to trash it again after applying any

system update. In either case, you should also remove the contents of the Cache directory

and immediately restart the system.

Xserve hardware also has the ability to lock FireWire and USB ports. The physical key on

the front panel engages and disengages this lock. However, keyboard and mouse devices

can be excepted in software, using the toggle in the Security Preference pane of the Xserve.

Using Hardware Passwords
Any Leopard-compatible Macintosh is capable of setting a hardware password, using

OpenFirmware for PowerPCs or Extensible Firmware Interface (EFI) for Intel-based

machines. When enabled, hardware password protection blocks the ability to do

the following:

P Use the C key to start up from an optical disc.

P Use the N key to start up from a NetBoot server.

P Use the T key to start up in Target Disk Mode (on computers that offer this feature).

P Use the D key to start up from the Diagnostic volume of the Install DVD (Intel only).

P Start up a system in single-user mode by pressing the Command-S key combination

during startup.

Authenticating Accounts 145

P Reset the parameter RAM (PRAM) by pressing the Command-Option-P-R key com-

bination during startup.

P Start up in verbose mode by pressing the Command-V key combination during startup.

P Start up in Safe Boot mode by pressing the Shift key during startup.

In addition, hardware password protection requires the password to use the Startup

Manager, accessed by pressing the Option key during startup.

To enable a hardware password, start from the Leopard installation DVD and choose

Utilities > Firmware Password Utility. Select the option to “Require password to change

Open Firmware settings”; then type and verify the password, and click OK.

You can disable a forgotten hardware password by powering down the hardware, chang-

ing the RAM configuration (for example, removing 2 GB from a 4 GB machine), and

rebooting. This procedure works for all Macintosh machines except the first-generation

MacBook Air, which contains no user-serviceable RAM (the chips are soldered to the

motherboard). If you forget a hardware password for a MacBook Air, contact your local

Apple authorized service center.

Authenticating Accounts
Authentication is the process of identifying an account or service, and verifying its right

to perform a restricted operation. Mac OS X uses several different methods of authenti-

cation, along with separate subsystems. All system utilities tie into directory services to

verify credentials.

For example, imagine a server with Open Directory accounts and a FileMaker Pro server

for custom databases. Users can authenticate to Application Level Firewall and Secure

Shell (SSH) using their Open Directory credentials; however, accessing FileMaker Pro

databases will require an entirely different set of credentials. Even if user names are kept

the same between systems, each technically has two separate sets of credentials.

Using sudo

Many traditional UNIX administrators are accustomed to logging in as and working with

a root account. However, Mac OS X administrators are discouraged from doing so, because

root can bypass normal access restrictions in most cases. Root is normally disabled in

146 Securing Access to Resources

Mac OS X, but it is still possible to effectively authenticate as a root-level account without

using the actual root account. The sudo tool allows granting rights to users and groups to

run programs that they may not have access to otherwise. Using sudo, you can grant a user

the ability to run one specific program with root privileges, all the way up through gaining

a root-level shell to work in.

sudo uses the /etc/sudoers file as a configuration file to determine which accounts can

gain elevated privileges. You should always use the visudo program to edit the sudoers file,

because the program performs locking and syntax checks upon saving. The general format

of sudoers is formulaic. Following is an example of a typical entry in the sudoers file:

%itops ALL = /bin/mkdir, /bin/chmod, /bin/chown

The percent sign (%) indicates that the rule applies to a group (in this case, itops). The ALL

designation refers to a machine group, checked by host name. In this case, the group is

allowed regardless of the machine name (“all machines”). Finally, the entry specifies the

commands that this group can use with the sudo command, to run with root-level privi-

leges. As a member of the itops group, you could create a new directory in a protected

area by using sudo and supplying the account password:

$ sudo mkdir /usr/sbin/extras

See the sudoers man page for more ways of granting rights with sudo; for instructions on

using man pages, see “Getting Help” in Chapter 9.

Setting Password Policies

Open Directory supports several password policy rules. These are available globally in

Server Admin or per user in Workgroup Manager. You can also set the policy on the com-

mand line using the pwpolicy tool.

To view the current policy settings, use the -getGlobalPolicy flag:

$ pwpolicy -getglobalpolicy

You may find the settings easier to read if you run them through tr:

$ pwpolicy -getglobalpolicy | tr ‘ ‘ ‘\n’

This converts spaces to new lines and lists each policy on its own line.

Authenticating Accounts 147

pwpolicy lists each policy. To change a policy, use the -setGlobalPolicy switch with a space-

delimited list of policies to set. For example, to set the minimum number of characters for

a password and disallow the password from matching a user ID, you would issue the fol-

lowing command:

$ pwpolicy -a diradmin -n /LDAPv3/127.0.0.1 -setglobalpolicy “minChars=6

passwordCannotBeName=1”

This command will enact policies against a server’s Open Directory (LDAP) database. The

-n switch specifies the node to operate on. You will also need to authenticate as a directory

administrator (in this example, diradmin).

Using PAM
A pluggable authentication module (PAM) is a mechanism that originated on the Linux

platform. Apple has ported PAM to Mac OS X because Mac OS X uses several open source

applications that rely on PAM for authentication. PAM uses libraries and modules that

describe which credentials are allowed and valid for a particular service. Of special impor-

tance are the Apple-specific authentication methods that Apple has added to its imple-

mentation of PAM, which allow PAM to authenticate accounts stored in Open Directory.

PAM service definitions are stored as a configuration file or files in /etc/pam.d. These con-

figuration files define the connection between applications (services) and the pluggable

authentication modules that perform the actual authentication tasks. When a PAM-aware

privilege-granting application starts, it activates its attachment to the PAM application

programming interface (API). This activation performs numerous tasks—most impor-

tantly, reading the configuration files in the /etc/pam.d/ directory. These configuration

files list which PAMs will do the authentication tasks required by this service, and how the

PAM API should behave if individual PAMs fail.

PAM Management Groups

PAM separates the tasks of authentication into four independent management groups:

account, authentication, password, and session. These management groups carry out dif-

ferent aspects of a typical user’s request for a restricted service:

P account provides account verification types of service: Has the user’s password

expired? Is this user permitted access to the requested service?

148 Securing Access to Resources

P authentication establishes that the user is who they claim to be. Typically, this is via some

challenge-response request that the user must satisfy, such as, “If you are who you claim

to be, please enter your password.” In place of standard approaches to authentication,

you can give PAM greater flexibility by substituting one of the many ways to prove iden-

tity, such as the use of smart cards and biometric devices, for passwords.

P password updates authentication mechanisms, such as standard UNIX password-

passed access.

P session covers tasks that should be done prior to a service being granted and after it

is withdrawn. Examples include maintaining audit trails and unmounting the user

home directory. These tasks provide both an opening and closing hook for modules

to affect the services available to a user.

One service of particular significance that relies on PAM is SSH. The configuration file that

PAM uses is/etc/pam.d/sshd. The contents of a sample configuration file are as follows:

sshd: auth account password session

auth required pam_nologin.so

auth optional pam_afpmount.so

auth sufficient pam_securityserver.so

auth sufficient pam_unix.so

auth required pam_deny.so

account required pam_securityserver.so

password required pam_deny.so

session required pam_launchd.so

session optional pam_afpmount.so

PAM Rules

Each line of the preceding sample code represents a rule for PAM to follow when authenticat-

ing a user for this service. The contents of each line are broken down into the following fields:

P Type is the management group to which a rule corresponds. It is used to specify

with which of the management groups the module is to be associated. Valid entries

are account, auth, password, and session, as described in the earlier section, “PAM

Management Groups.”

Authenticating Accounts 149

P Control specifies the behavior of the PAM API if the module fails to authenticate.

Valid control values are as follows:

requisite: Failure of the PAM module results in the authentication process immedi-

ately being terminated.

required: Failure of the PAM module ultimately causes the PAM API to return failure,

but only after the remaining modules have been invoked.

sufficient: Success of the PAM module satisfies the authentication requirements of the

stack of modules. (If a prior required module has failed, the success of this one is ignored.)

optional: The success or failure of this module is important only if it is the only mod-

ule in the stack associated with this service and type.

P module-path: Either the full filename of the PAM to be used by the application (if it

begins with a /), or a relative pathname from the default module location of /usr/lib/

pam/. You can also supply modules, on a per-module basis, with arguments to influ-

ence their behavior.

Using SSH and Digital Key Pairs
SSH is a valuable tool, used to access a shell on a remote machine. The SSH shell is desig-

nated “secure” because all network traffic between the client station and the SSH server is

encrypted, which stops eavesdroppers on the network from capturing traffic and reading

its contents. SSH can use passwords and Kerberos for authentication, as well as a form of

public-key encryption that calls for key pairs.

Key-pair authentication enables you to log in to an SSH server without having to supply

a password, and can be more secure than password authentication. The key-pair method

requires that you have the private-key file and know the password that lets you access that key

file. Password authentication alone can be compromised without needing a private-key file.

NOTe P Don’t confuse key-pair authentication with Kerberos authentication, which

takes place for the SSH service if you are using an Open Directory user account and

have already logged in. A valid Kerberos ticket also will let you log in without supply-

ing a password.

150 Securing Access to Resources

Here is how the process works:

1 A private and a public key are generated by the user (see “Generating a Key Pair” in this

chapter). Each key pair is associated with a user name to establish that user’s authentic-

ity. When a user attempts to log in, the user name is sent to the remote computer.

2 The remote computer is sent the user’s public key by the client SSH program.

3 A challenge is then sent by the SSH server to the user based on that individual’s

public key.

4 Using the private portion of the key pair to decode the challenge, the user verifies his

or her identity.

5 Once the challenge is decoded, the remote computer logs in the user without requir-

ing a password.

Generating a Key Pair

To generate the identity key pair, use the ssh-keygen command on the local computer:

$ ssh-keygen -t dsa

When prompted, enter a filename to save the keys in. By default, the public and private

key files will be stored in the user home directory, inside the .ssh subdirectory. Enter a

password followed by password verification (empty for no password). A sample session

looks like this:

Generating public/private dsa key pair.

Enter file in which to save the key (/Users/Alice/.ssh/id_dsa): frog

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in frog.

Your public key has been saved in frog.pub.

The key fingerprint is:

2a:3c:6a:9d:3d:37:8b:e5:c9:5a:ad:00:b5:b6:a7:56 user@example.com

The key-pair process creates two files. Your identification or private key is saved in one file

(~/.ssh/id_dsa) and your public key is saved in the other (~/.ssh/id_dsa.pub). The key

Authenticating Accounts 151

fingerprint, which is derived cryptographically from the public key value, is also displayed.

This secures the public key, making it difficult to duplicate.

NOTe P A server’s SSH key is /etc/ssh_host_key.pub. Back up this key in case you

need to reinstall your server software. Once your server software is reinstalled, you

can retain the server identity by putting the key back in its folder.

Append a copy of the contents of the resulting public key to the .ssh/authorized_keys file

in the user’s home folder on the remote computer. The next time you log in to the remote

computer from the local computer, you will not need to enter a password.

The /etc/ssh/sshd_config file that configures an SSH server’s behavior has two parameters

relating to handling authentication. The PubkeyAuthentication parameter can be set to yes

or no to allow or disallow the use of public keys, respectively. To disallow passwords and

only use public-key authentication, set the PasswordAuthentication to no.

Updating SSH Key Fingerprints

The first time you connect to a remote computer using SSH, the local computer prompts

for permission to add the remote computer’s fingerprint to the user’s ~/.ssh/known_hosts

file. A message like this appears:

The authenticity of host “server1.pretendco.com” can’t be established.

RSA key fingerprint is f8:0e:37:53:74:f1:dd:cd:5a:a4:1d:b3:57:a9:a6.

Are you sure you want to continue connecting (yes/no)?

The first time you connect, you have no way of knowing if this is the correct host key. Most

people simply respond “yes.” The host key is then inserted into the ~/.ssh/known_hosts file

for comparison in later sessions. Make sure that this is the correct key before accepting it. If

at all possible, distribute the host key either through Secure FTP (SFTP), encrypted email,

downloading, or personally, so that users can be sure of the identity of the server.

When you try to connect later, a warning message may appear about a man-in-the-middle

attack (a third computer that sits in between the client and server and captures all SSH

traffic), possibly because the key on the remote computer no longer matches the key

stored on the local computer. Mismatched keys can occur in these circumstances:

P The SSH configuration on either the local or remote computer is changed.

P The server has been reinstalled.

152 Securing Access to Resources

P The remote machine has changed its IP address since the last time you connected.

The IP address can change on networks using Bonjour names and DHCP.

To connect again, first figure out why the key on the remote computer has changed. Then

delete the entries corresponding to the remote computer that you are accessing (which

can be stored by both name and IP address) from the ~/.ssh/known_hosts file. Be aware,

however, that removing an entry from the known_hosts file bypasses a security mecha-

nism that would help you thwart imposters and man-in-the-middle attacks.

Using Certificates for Authentication
Like digital key pairs, digital certificates are another form of public-key encryption, and

another method of authenticating a user.

Mac OS X Server supports many services that ensure encrypted transfer of data, which

is facilitated by certificates. To generate and maintain certificates of identity, Mac OS X

Server uses a Public Key Infrastructure (PKI) system. PKI allows two parties in a data

transaction to be authenticated to each other, and to use encryption keys and other infor-

mation in identity certificates to encrypt and decrypt messages traveling between them.

You can think of certificates almost like a driver’s license. When you are asked to show

identification, others believe the information presented on your driver’s license because

the Department of Motor Vehicles (DMV) has certified it. If you make your own license,

it would be viewed as suspect. The DMV in this example plays the role of a public certifi-

cate authority (CA) in a digital certification infrastructure.

To encrypt data transmission for mail, web, directory, and other services, Mac OS X Server

uses Transport Layer Security (TLS) technology. TLS technology relies on a PKI system for

secure data transmission and user authentication. It creates an initial secure communication

to negotiate a faster, secret key transmission. TLS is the successor to SSL and remains similar

in implementation. It is common to see references to SSL/TLS, denoting the similarity.

Before you can use SSL in the Mac OS X Server services, you must create or import the

certificates—easily done with Server Admin. You can create your own self-signed certifi-

cate, generate a Certificate Signing Request (CSR) to send to a CA, or import a certifi-

cate previously created with OpenSSL. Each installation of Mac OS X Server v10.5 also

includes a unique, self-signed certificate.

Using Certificates for Authentication 153

Server Admin has various features that make it easy to manage SSL certificates: Certificate

Manager, for creating, using, and maintaining identities for SSL-enabled services; and the

Certificate Assistant application, which allows you to issue and sign certificates as a CA.

About Public Key Infrastructure
It’s helpful to understand how PKI works as well as the terminology it uses.

Public and Private Keys

Within PKI, two digital keys are created: the public key and the private key. These keys

are mathematically linked in such a way that data encrypted with one key can only be

decrypted by the other, and vice versa. The public key can (and should) be distributed to

other communicating parties. In contrast, the private key is just that: private to the owner

and not meant to be distributed to anyone. It is often encrypted by a passphrase.

Table 7-1 summarizes the capabilities of public and private keys.

Table 7-1 Comparision of Capabilities of Private and Public Keys

Public Keys Can Private Keys Can

Verify the signature on a message coming Digitally sign a message or certificate,

from a private key. claiming authenticity.

 Decrypt messages that were encrypted

 with the public key.

Encrypt messages that can only be Encrypt messages that can only be

decrypted by the holder of the decrypted by the corresponding

corresponding private key. private key.

As an example, if a user named Bob distributes his public key, user Alice could use it to

encrypt a message and send it to him. Only Bob is able to decrypt and read the message

because only he has his private key. In this scenario, Alice still has to verify that the key

that is supposedly from Bob is really from him. Suppose a malicious user posing as Bob

sent Alice his own public key. The malicious user would then be able to decrypt Alice’s

message, which might have been intended for Bob only.

154 Securing Access to Resources

To verify that it’s really Bob who is sending Alice his public key, a trusted third party can

verify the authenticity of Bob’s public key. In SSL parlance, this trusted third party is known

as a certificate authority. The CA signs Bob’s public key with its private key, creating a certifi-

cate. Now, anyone can verify the certificate’s authenticity using the CA’s public key.

Public Key Certificates

Public keys are often contained in certificates. A user can digitally sign messages using his or

her private key, and another user can verify the signature using the public key contained in

the signer’s certificate, which was issued by a CA within the PKI.

A public key certificate (sometimes called an identity certificate) is a file in a specified for-

mat (Mac OS X Server uses the x.509 format) that contains the following:

P The public-key half of a public-private key pair.

P The key user’s identity information, such as a person’s user name and contact

information.

P A validity period (how long the certificate can be trusted to be accurate).

P The URL of someone with the power to revoke the certificate (its “revocation center”).

P The digital signature of either a CA or the key user.

Certificate Authorities (CAs)

A CA is an entity that signs and issues digital identity certificates claiming trust of the

identified party. In this sense, it is a trusted third party between two transactions.

In x.509 systems, CAs are hierarchical in nature, with CAs being certified by CAs, until

you reach a “root authority.” The hierarchy of certificates is always top-down, with a root

authority’s certificate at the top. A root authority is a CA that is trusted by enough or

all of the interested parties, so that it does not need to be authenticated by yet another

trusted third party.

A CA can be a company that, for a fee, signs and issues a public-key certificate stating

that the CA attests that the public key contained in the certificate belongs to its owner, as

recorded in the certificate. In a sense, a CA is a digital notary public. A user applies to the

CA for a certificate by providing identity and contact information, as well as the public

key. A CA must check an applicant’s identity, so that users can trust certificates issued by

that CA to belong to the identified applicant.

Using Certificates for Authentication 155

Identities

Identities, in the context of the Mac OS X Server Certificate Manager, are the combination

of a signed certificate for both keys of a PKI key pair. The system keychain makes identi-

ties available to the various services that support SSL.

Self-signed certificates are certificates that are digitally signed by the private key of the

key pair included in the certificate. Each installation of Mac OS X Server v10.5 includes a

unique, self-signed certificate. This is done in place of a CA signing the certificate.

By self-signing a certificate, you are attesting that you are who you say you are. No trusted

third party is involved.

Using Certificate Manager
Server Admin features Certificate Manager to help you create, use, and maintain identities

for SSL-enabled services. Certificate Manager integrates management of SSL certificates in

Mac OS X Server for all services that allow their use.

Certificate Manager allows creation of self-signed certificates and CSRs to obtain a certifi-

cate signed by a CA. The certificates, either self-signed or signed by a CA, are accessible by

the services that support SSL.

Identities that were previously created and stored in SSL files can also be imported into

Certificate Manager, where they are accessible to all the services that support SSL. Certificates

are stored in the system keychain, located at /Library/Keychains/System.keychain.

Certificate Manager displays the following for each certificate:

P The domain name for which the certificate was issued.

P Its dates of validity.

P Its signing authority, such as the CA entity. If the certificate is self-signed, it reads

“Self-Signed.”

Certificate Manager in Server Admin does not allow you to sign and issue certificates as

a CA, nor as a root authority. However, you can perform these functions with Certificate

Assistant; see “Creating a CA Using Certificate Assistant” later in this chapter.

156 Securing Access to Resources

Requesting a Certificate from a Certificate Authority

Certificate Manager helps you create a CSR to send to your designated CA. To request a

signed certificate:

1 Open Server Admin.

2 In the Server list, select the server for which you are requesting a certificate.

3 Click Certificates.

4 Click the Add (+) button.

5 Fill out all identity information.

6 Click the Done button.

7 Follow the onscreen directions for requesting a signed certificate from your chosen CA.

8 Click Done.

9 Click the preferences Gear button and choose Generate Certificate Signing Request

(CSR). When the CA replies to the email, it includes the signed certificate in the

email text.

10 Click the preferences Gear button and choose Add Signed Certificate.

11 From your CA certificate email, copy the characters from ==Begin CSR== to ==End CSR==

into the text box. Then click OK.

12 Click Save.

Creating Self-Signed Certificates

Whenever you create an identity in Certificate Manager, you also create a self-signed cer-

tificate. First you specify the key size (512 to 2048 bits), and Certificate Manager creates a

Using Certificates for Authentication 157

public-private key pair at the specified key size in the system keychain, as well as the cor-

responding self-signed certificate.

At the same time that Certificate Manager creates the self-signed certificate, it generates

the CSR. The CSR is not stored in the keychain, but is written to disk at /etc/certificates/

cert.common.name.tld.csr, where common.name.tld is the Common Name of the certificate

that was issued.

To create a self-signed certificate, follow steps 1 through 11 of the procedure in “Requesting

a Certificate from a Certificate Authority”; in Step 12, save the request to the CA.

Importing Certificates

In Certificate Manager, you cannot create self-signed and CA-issued certificates, but you

can import previously generated SSL certificates and private keys. The items are stored in

the list of identities and are available to SSL-enabled services.

Follow these steps to import an existing SSL certificate:

1 Open Server Admin.

2 In the server list, select the server into which you are importing a certificate.

3 Click Certificates.

4 Click the preferences Gear button and choose Import Certificate.

5 In the Certificate File field, enter the existing certificate’s filename and path.

Alternatively, click Browse and locate your certificate file.

6 In the Private Key File field, enter the existing private key filename and path.

Alternatively, click Browse and locate your private key file.

7 In the Certificate Authority File field, enter the existing certificate authority filename

and path. Alternatively, click Browse and locate your certificate authority file.

8 Enter the private key passphrase.

9 Click Import.

158 Securing Access to Resources

Modifying Certificates

After a certificate is created and signed, you should not have to do much more with

it. Certificates are editable only in Server Admin. Only self-signed certificates can be

changed; CA-signed certificates cannot be changed. Certificates should be deleted if they

have expired, if their contents (such as contact information) are no longer correct, or if

you believe the key pair has been compromised in some way.

You can modify all the fields of a self-signed certificate, including domain name, private

key passphrase, private key size, and so on. If the identity was exported to disk from the

system keychain, it must be exported again after editing.

Follow these steps to edit a certificate:

1 Open Server Admin.

2 In the Computers & Services list, select the server with the certificate you are editing.

3 Click Certificates.

4 Select the Certificate Identity to edit. You can edit only self-signed certificates.

5 Click the Edit button.

6 Modify the certificate settings.

7 Click Save.

Follow these steps to delete a certificate:

1 Open Server Admin.

2 In the Computers & Services list, select the server with the certificate you are deleting.

3 Click Certificates.

4 Select the Certificate Identity to delete.

5 Click the Delete (–) button to delete the certificate.

6 Click Save.

Using Certificates for Authentication 159

Configuring Certificates via the Command Line
To modify certificates via the command line, you have several choices in command-line

utilities. Because certificates are stored in keychains, keychain manipulation utilities such

as security and systemkeychain can manipulate certificates as well as other keychain entries.

Also, certtool exists as a certificate-specific utility that manipulates keychains to import

certificates, create key pairs, create certificates, and create CSRs.

The security tool is capable of importing, exporting, and verifying certificates in key-

chains. Additionally, it can add certificates to the list of trusted certificates. For example, to

import a Privacy Enhanced Mail (PEM) certificate into the current user’s default keychain,

use the security import command:

$ security import ~/mailcert.pem -f pem

The systemkeychain command only manipulates the system keychain. This is significant

because system certificates are stored in the active system keychain. For example, to create

a new, empty keychain and establish it as the primary system keychain, the following com-

mand can be issued:

systemkeychain -C

The unlocking of the designated system keychain is automatically handled by the system.

If a password is specified after the -C switch, the keychain can be unlocked with that pass-

word; otherwise, the keychain has no password and can only be unlocked by the system.

The certtool is often used to import certificates into a keychain—either a user keychain

or system keychain. For example, to import the certificate certificate.pem into the current

user’s mycerts keychain file, use the following command:

$ certtool i certificate.pem k=~/Library/Keychains/mycerts c

The i command specifies an import operation, and the k command specifies the keychain

to operate on. In this example, the k command is followed by the c option, which causes

the keychain to be created if it does not already exist.

For more information on command-line certificate manipulation, see the respective man

page for each utility.

160 Securing Access to Resources

Configuring Services to Use Certificates
The following services can be configured to use certificates to protect data transfer:

P iCal (via the web service)

P iChat

P Mail

P Open Directory

P RADIUS

P VPN

P Web

The process for enabling certificate use is similar across all services: Use the Server Admin

Settings tab to specify a certificate to use for the service. For example, to enable the iChat

service to use an SSL certificate for encryption, do the following:

1 Open Server Admin.app.

2 Choose the iChat service in the list of services from the enabled services on the left of

the Server Admin window.

3 Choose the Settings icon in the toolbar.

4 On the General tab of the Settings page, change the SSL Certificate drop-down menu

from No Certificate to the certificate that you want to use.

Each installation of Mac OS X Server v10.5 includes a unique, self-signed certificate that

can be used with the services listed above.

Creating a Certificate Authority to Sign Certificates
If your server must communicate using SSL with external computers that are out of your

control, you should purchase SSL certificates from a well-known CA. Once you have

obtained the certificates, configuring the services is the same, whether the certificates were

purchased from a vendor or signed by your own CA.

If you are setting up an internal network and only need to encrypt local traffic, set up a

CA to sign SSL certificates for the internal network. While the security is only as good as

Using Certificates for Authentication 161

the security of the CA, in many cases this is sufficient to enable encrypted communication

between a web or mail server and their clients.

The basic steps to set up an internal SSL-encrypted network are as follows:

P Create a CA. You can use either Certificate Assistant or the command line.

P Use the CA to sign the certificates that the servers will use.

P Distribute the CA certificates to client systems.

Creating a CA Using Certificate Assistant

The Certificate Assistant application included in Mac OS X Server allows you to sign and

issue certificates both as a CA and as a root authority. (You can use these corresponding

CA-issued and self-signed certificates in Certificate Manager by importing them.) You can

also use Certificate Assistant to create a CA, as described in the following procedure.

Certificate Assistant is located in /System/Library/CoreServices/ and is available as a menu

item in the Keychain Access application.

It is critical that you perform this procedure on a secure computer. The security of your

certificates depends on the security of the CA. Make sure that the computer is physically

secure and not connected to any network.

To create the CA using Certificate Assistant, follow these steps:

1 Open Certificate Assistant and click Continue.

2 Select Create a Certificate Authority (CA).

3 Deselect “Certificate will be self-signed (root).”

Selecting this option creates a self-signed root certificate authority, which is often

used for testing purposes in place of certificates signed by proper CAs.

4 Fill out the certificate information.

The common name is the fully qualified domain name (FQDN) of the server that uses

SSL-enabled services. The validity period is the number of days the certificate is valid.

5 Click Continue.

162 Securing Access to Resources

6 Choose an issuer for the certificate. An issuer signs the certificate that you are going

to create. Click Continue.

7 Select the key size (2048 bits, by default) and algorithm (RSA, by default) used to cre-

ate your key pair for the CA. Click Continue.

8 Select the key size (2048 bits, by default) and algorithm (RSA, by default) that specify

the public and private key-pair information for users of this CA when they request a

certificate. Click Continue.

9 Set the Key Usage Extension (KUE) for this CA. Deselect “This extension is critical” if

it is safe for the software using the certificate to ignore the extension if unrecognized;

otherwise, if the software does not recognize a critical extension, the certificate will be

rejected. Click Continue.

These extensions identify the security capabilities of the CA certificate and how it can be

used. For example, a certificate can be created to sign emails, but not to encrypt them.

10 Set the Key Usage Extension for users of this CA, if required. Click Continue.

11 Set the miscellaneous extensions for this CA by selecting the following options and

then clicking Continue:

P “Include Basic Constraints extension (Extension is always critical)” to indicate

whether the certificate is a CA and the maximum allowable depth of the certifi-

cate chain.

P “Use this certificate as a certificate authority.”

P If required, “Include Subject Alternate Name extension” for this CA. This

allows the CA to use additional names for the certificate subject and provides for

flexible controls.

12 Set the miscellaneous extensions for the users of this CA, if required, by selecting

“Include Basic Constraints extension (Extension is always critical)” and “Use this cer-

tificate as a certificate authority.”

13 Select “Include Subject Alternate Name extension,” if required for the users of the CA.

Click Continue.

Using Certificates for Authentication 163

14 Specify a location for the certificate by choosing a keychain where the certificate will

be stored. Click Continue.

15 Create a CA configuration file by entering the name of the CA configuration file. This

file can be used by others to easily request a certificate from you.

16 Select “Make this CA the default,” if necessary. Click Continue. Your CA is then cre-

ated and is ready to issue certificates.

Creating a CA from the Command Line

You can also create a CA from the command line.

Again, it is critical that you perform this procedure on a secure computer. The security of

your certificates depends on the security of the CA. Make sure that the computer is physi-

cally secure and not connected to any network.

To create the CA using the openssl command, follow these steps:

1 Enter the following in Terminal.app to create a certificate directory:

$ cd /usr/share

$ sudo mkdir certs

$ cd certs

2 Generate a key pair with the openssl command:

$ sudo openssl genrsa -des3 -out ca.key 2048

This command generates a Triple Data Encryption Standard (Triple-DES) encrypted RSA

public-private key pair named ca.key. The length of the key in bits is 2048. On creating

the key, OpenSSL asks for a passphrase for it. Use a strong passphrase rather than a single-

word password, and keep it secure. A compromise of this passphrase undermines the

security of your entire certificate system.

Storing the CA Private Key

Remember, the CA private key should remain private. For added security, you can store

the keychain containing the private key on removable media, to keep the CA private key

unavailable when connected to the network.

164 Securing Access to Resources

Signing a Newly Created CA

After the key pair is created, the public key is signed to create an SSL certificate that can be

distributed to other systems. Later, when you sign other server certificates with your CA

private key, any client can then use the CA’s SSL certificate (containing its public key) to

verify those signatures. When a CA signs a server’s certificate with its private key, it means

that it is vouching for the authenticity of those certificates. Anyone who can trust the CA

can then trust any certificate the CA signs.

To sign the newly created CA’s public key to produce a certificate for distribution, use

this command:

$ sudo openssl req -new -x509 -days 365 -key ca.key -out ca.crt

When prompted, enter a strong passphrase for the key, as well as these fields:

P Country Name

P Organizational Unit

P State or Province Name

P Common Name

P Locality Name (city)

P Email Address

P Organization Name

Fill out these fields as accurately as possible; leave blank those that do not apply. You must

fill in at least one field.

This command sequence creates a self-signed certificate named ca.crt, using the keys in

ca.key, which is valid for a year (365 days). You can set the limit for a longer period of

time, for less security. The issue of security is similar to changing passwords regularly. You

must find a balance between convenience and security.

Creating Folders and Files for SSL

When signing certificates, SSL looks for keys and related information in directories speci-

fied in its configuration file openssl.cnf, which is found in /System/Library/OpenSSL/.

Using Certificates for Authentication 165

To create the directories and files where SSL expects to find them by default, use this code:

$ cd /usr/share/certs

$ sudo -s

$ mkdir -p demoCA/private

$ cp ca.key demoCA/private/cakey.pem

$ cp ca.crt demoCA/cacert.pem

$ mkdir demoCA/newcerts

$ touch demoCA/index.txt

$ echo “01” > demoCA/serial

Now the CA is ready to sign certificates for servers, enabling encrypted communication

between servers and clients.

Distributing Server Certificates to Clients

Mac OS X Server ships with certificates only from well-known commercial CAs. If you

are using self-signed certificates, a warning pops up in most user applications saying that

the certificate authority is not recognized. Other software, such as the LDAP client, simply

refuses to use SSL if the server CA is unknown. To prevent this warning, your CA certificate

must be exported to every client computer that will be connecting to the secure server.

To distribute the self-signed CA certificate, follow these steps:

1 Copy the self-signed CA certificate (the file named ca.crt) onto each client computer.

This is preferably distributed using non-rewritable media, such as a CD-R. Using

non-rewritable media prevents the certificate from being corrupted.

2 Double-click the ca.crt icon where it was copied onto the client computer; this action

opens the Keychain Access tool.

3 Add the certificate to the X509Anchors keychain using Keychain Access. This can also

be performed using the certtool command in Terminal:

$ sudo certtool i ca.crt k=/System/Library/Keychains/X509Anchors

Now, any client application that checks against the system’s X509Anchors keychain (such

as Safari and Mail) recognizes any certificate signed by your CA.

166 Securing Access to Resources

Authorizing Accounts
Authorization defines whether an account is allowed to perform an action. Each object

and action in Mac OS X takes place in the context of an account. Each time an action is

performed, such as a file being accessed, Mac OS X checks to verify that the account per-

forming the action is permitted to do so.

Authorization takes place at many levels, from login to service access and file access.

editing System rights
Certain Mac OS X services use a policy database to determine account capabilities. This

information is stored in a single file: /etc/authorization. The authorization file contains

two halves. The first half contains rights, or the level of permission to be granted. The

rights are applied when conditions from rules, detailed in the second half, are met.

One example of this in action is the screensaver. When configured to require a password to

be dismissed, it uses a right in /etc/authorization to determine the rules to allow unlocking.

When presented with an authorization dialog box, you can determine the right being

requested using the disclosure triangle for Details. In the case of unlocking a screensaver,

the right is system.login.screensaver. The existing rule in the policy database (/etc/authori-

zation) allows the owner and any administrator to unlock the screensaver. You can add to

or edit the policy database, to allow an additional rule or modify an existing one.

Altering the policy database is a good way to give certain users or groups admin-like rights

without giving full admin accessibility to a machine. Be aware, however, that /etc/authoriza-

tion is a system file, and that you should make a backup before making changes and work

only on a copy. Also be aware that /etc/authorization may get updated along with a system

update, so keep good backups of this file if you are relying on customized changes.

The existing system.login.screensaver right from the database follows:

<key>system.login.screensaver</key>

 <dict>

 <key>class</key>

 <string>rule</string>

 <key>comment</key>

 <string>The owner or any administrator can unlock the screensaver.</string>

Authorizing Accounts 167

 <key>rule</key>

 <string>authenticate-session-owner-or-admin</string>

 </dict>

The right contains a rule key, specifying which rule it will follow. In this case, the right is

authenticate-session-owner-or-admin. Traveling further down the file reveals the rule details:

<key>authenticate-session-owner-or-admin</key>

 <dict>

 <key>allow-root</key>

 <false/>

 <key>class</key>

 <string>user</string>

 <key>comment</key>

 <string>Authenticate either as the owner or as an administrator.</string>

 <key>group</key>

 <string>admin</string>

 <key>session-owner</key>

 <true/>

 <key>shared</key>

 <false/>

 </dict>

As this example shows, the group admin and the session owner both allow the rule to suc-

cessfully authorize.

To alter the behavior of the screensaver unlocking mechanism, you can modify /etc/autho-

rization. Since other applications use this database, it is best to add a right and rule, rather

than alter any existing entries. Create a copy of the authenticate-session-owner-or-admin

rule, and place it directly beneath the original. Rename the rule authenticate-session-

owner-or-itops by changing the <key> value. Additionally, allow the group itops in the rule.

It should look like the following:

<key>authenticate-session-owner-or-itops</key>

 <dict>

 <key>allow-root</key>

 <false/>

168 Securing Access to Resources

 <key>class</key>

 <string>user</string>

 <key>comment</key>

 <string>Authenticate either as the owner or as an administrator.</string>

 <key>group</key>

 <string>itops</string>

 <key>session-owner</key>

 <true/>

 <key>shared</key>

 <false/>

 </dict>

Now, go back to the system.login.screensaver right, and edit it to use the rule that you just

created. Change the value for the rule key to read:

<key>rule</key>

 <string>authenticate-session-owner-or-itops</string>

This change allows anyone in the itops group to unlock the screensaver.

Setting File Permissions
Files and folders are protected by setting permissions that restrict or allow user access.

(It is important to note these distinctions in terminology: “Permissions” refers only to the

permission settings applied to a file. “Privileges” refers to the combination of ownership

and permissions.)

Mac OS X Server supports two methods of setting file and folder permissions:

P Portable Operating System Interface (POSIX) permissions—standard for UNIX oper-

ating systems.

P Access control list (ACL) permissions—used by Mac OS X, and compatible with

Microsoft Windows NTFS.

ACLs use POSIX in their process of verifying file and folder permissions. The process that

ACL uses to determine whether an action is allowed or denied includes checking specific

rules called access control entries (ACEs). If none of the ACEs applies, then standard

POSIX permissions are used to determine access.

Authorizing Accounts 169

Setting POSIX Permissions

Mac OS X Server bases file permissions on POSIX standard permissions, such as file own-

ership and access. Every share point, file, or folder has read, write, and execute permission

defined for three different categories of users (owner, group, and everyone).

There are four types of standard POSIX access permissions that you can assign to a share

point, folder, or file: Read & Write, Read Only, Write Only, and None.

Viewing POSIX Permissions

Apple Training Series: Mac OS X Server Essentials v10.5 taught you how to use Server

Admin and the Finder to set and view permissions. Shell-based tools provide more con-

cise and accurate ways to query and manipulate permissions. To view the permission of

folders or files, use the ls command with the -l (“ell”) switch:

$ ls -l

total 500

drwxr-xr-x 2 alice alice 68 Apr 28 2006 Artwork

-rw-r--r-- 1 alice alice 43008 Apr 14 2006 file.txt

The POSIX permissions can be interpreted by reading the 10 bits in the first column of

this listing.

In the preceding example, the Artwork directory has the POSIX permissions of

drwxr-xr-x and has an owner and group of alice. The d of the POSIX permissions signifies

that Artwork is a directory. The first three letters after the d (rwx) signify that the owner

has read, write, and execute permission for that folder. The next three characters, r-x,

signify that group has read and execute permission. The last three characters, r-x, signify

that all others have read and execute permission.

Occasionally, you will see a t instead of an x for others’ privileges on a folder used for

collaboration. This t is sometimes known as the “sticky bit.” Enabling the sticky bit on a

folder prevents people from overwriting, renaming, or otherwise modifying other people’s

files. This is something that can become common if several people are granted rwx access.

The sticky bit being set can appear as t or T depending on whether the execute bit is

set for others. If the execute bit appears as t, the sticky bit is set and has searchable and

executable permissions. See the sticky man page for more information; see “Getting Help”

in Chapter 9 for instructions on using man pages.

170 Securing Access to Resources

Modifying POSIX Permissions

After you determine the current POSIX permission settings, you can modify them using

the chmod command:

$ chmod g+w file.txt

This adds write permission for the group owner to file.txt.

Setting Flags

Flags can protect files and folders. These flags override standard POSIX permissions and

can be used to prevent the system administrator (root) from modifying or deleting files

or folders. Use the chflags command to enable and disable flags. The flag can only be set

or unset by the file’s owner or an administrator using sudo. To display flags set on a folder,

use the ls command with the -o switch:

$ ls -lo MyFolder

-rw-r--r-- 1 alice alice uchg 0 Mar 1 07:54 MyFolder

In this example, the flag settings for a folder named MyFolder are displayed. The uchg, or

“unchangeable,” flag is set.

You can modify flags using the chflags command. This is equivalent to the Locked check-

box in a Finder’s Get Info window. To lock a file or folder using flags, specify the uchg

argument to the chflags command:

$ sudo chflags uchg MyFolder

In this example, the folder named MyFolder is locked. To unlock the folder, change uchg

to nouchg.

For more information, see the chflags man page; see “Getting Help” in Chapter 9 for

instructions on using man pages.

Setting ACL Permissions

For greater flexibility in configuring and managing file permissions, Mac OS X implements

ACLs. An ACL is an ordered list of rules that control file permissions. Each ACE refers to a

user or group, and grants or denies a set of permissions. In cases where a user and a group

exist with the same name, you can specify the type by adding the “user:” or “group:” prefix,

respectively. The rules specify the permissions to be granted or denied to a user or group,

and how these permissions are propagated throughout a folder hierarchy.

Authorizing Accounts 171

To determine whether an action is allowed or denied, Mac OS X considers the ACEs in

order. The first ACE that applies to a user determines the permission, and no further

ACEs are evaluated. If none of the ACEs applies, then standard POSIX permissions deter-

mine access.

The chmod command has been extended to add and manipulate ACLs for files and folders.

To set ACL permissions for a file, use this command:

$ chmod +a “joe allow read” file.txt

This command adds the specified ACE to the file file.txt. Group permissions can be han-

dled in a similar manner:

$ chmod +a “admins allow delete” file.txt

To deny access to a file or folder, add a deny rule:

$ chmod +a “mikeg deny write” file.txt

View ACL permissions using the ls command with the -e switch:

$ ls -le file.txt

-rw------- 1 ajohnson admin 43008 Apr 14 2006 secret.txt

0: joe allow read

1: mikeg deny write

2: admins allow delete

When using chmod to apply an ACL to a directory, existing files inside do not receive the

applied ACEs. Use the chmod -R switch to recursively copy ACEs through a directory struc-

ture. New files and directories put in the directory do not inherit ACEs applied to the

parent unless the file_inherit or directory_inherit permissions, or both, are applied. For

example, to ensure that the files from the group sales inherit the same permissions applied

to the New_Clients directory, you could add the following ACE:

$ chmod +a “sales allow file_inherit,directory_inherit” New_Clients

Now, any new files or directories created in the New_Clients directory by users in the sales

group will inherit the same permissions that are applied to the New_Clients directory.

For more information, see the chmod man page; see “Getting Help” in Chapter 9 for instruc-

tions on using man pages.

172 Securing Access to Resources

Altering Initial File Permissions

Every file or folder has POSIX permissions associated with it. When you create a new file

or folder, the umask setting determines the initial POSIX permissions applied. The umask

can be altered for files and folders created in the shell.

The default umask setting of 022 removes group and other write permissions. The umask

is applied by removing the corresponding bits from full permissions (777). For example,

if you change the umask setting to 027, files and folders can still be read and run by group

members, but cannot be accessed in any way by others. If you want to be the only user

who can access your files and folders, set the umask to 077.

The umask setting affects only the initial POSIX permissions that have been applied. They

may be changed later with the chmod command.

To change the current umask value, use the umask command:

umask 027

This change affects any new files created in the shell. To keep a particular behavior

between new shells, add the umask command to your ~/.bash_profile file.

Setting Service Access Privileges
Service access control lists (SACLs) allow you to add another layer of access control on

top of standard and ACL permissions. SACLs are a powerful method of controlling access

to services on a server. You should use SACLs to authorize services only to specified users

and groups, and apply them to each service early in its life.

SACLs are stored in a group record in the directory. You can manipulate these records

with dscl. The GroupMembership and GroupMembers attributes control the SACL for a given

service. GroupMembership lists a user or group short name, and GroupMembers lists a user or

group GeneratedUID. For example, to add the group Shell_Users to the SACL for SSH, you

need the following two commands:

$ dscl -u admin . append /groups/com.apple.access_ssh GroupMembership Shell_Users

$ dscl -u admin . append /groups/com.apple.access_ssh GroupMembers 98162A2C-49D7-

488E-8B70-182790889E10

Authorizing Accounts 173

The first command lists the group by short name, while the second command appends

the group’s Globally Unique ID (GUID) to the GroupMembers attribute. Both commands

require authentication, with the appropriate credentials supplied partially with the -u

switch (user name) and partially on the command line when prompted.

To display the members in a SACL, read the GroupMembership attribute from the specified

group. For example, to list the members of the SSH SACL, use the following command:

dscl . read /groups/com.apple.access_ssh GroupMembership

To remove a member of a SACL group, use dscl to remove the appropriate values. For

example, to remove the Shell_Users group added earlier, use the dscl delete command:

$ dscl -u admin . delete /groups/com.apple.access_ssh GroupMembers 98162A2C-49D7-

488E-8B70-182790889E10

$ dscl -u admin . delete /groups/com.apple.access_ssh GroupMembership Shell_Users

Another method of displaying SACLs is possible with the serveradmin command-line tool.

To display possible administrative SACL names or the list details, respectively, use the fol-

lowing commands:

serveradmin settings info:adminControlListNames

serveradmin settings info:adminControlLists

To display possible SACL names or their contents, respectively, use the following commands:

serveradmin settings info:accessControlListNames

serveradmin settings info:accessControlLists

You also use SACLs in Workgroup Manager and Server Admin when creating limited, or

“junior,” administrators.

174 Securing Access to Resources

In Server Admin, under the Access > Administrators tab, individual services can be

assigned users and groups, which can either administrate or only monitor them.

To add or remove a user or group from the monitoring groups, use dscl to manipulate

the appropriate com.apple.monitor group. For example, to add a user to the DNS SACL for

monitoring, use the following commands:

$ dscl -u admin . append /groups/com.apple.monitor_dns GroupMembership mgalke

$ dscl -u admin . append /groups/com.apple.monitor_dns GroupMembers 228CC345-E0DD-

4591-B536-5733167821E9

Workgroup Manager also has the feature to give certain users and groups administrative

control over other users and groups. This is also handled via directory record entries.

encrypting Files
Encryption uses a key to transform plain text information so that it is unreadable to any-

one without the decryption key. Encryption can protect both information on disk and

information in transit over a network.

Using FileVault
Mac OS X Server includes FileVault, which can encrypt your home folder and all the files

contained within it. You should enable FileVault on mobile computers and on any other

machines whose physical security cannot be guaranteed.

Enabling FileVault copies all data from your home folder into an encrypted home

folder—a sparse-bundle disk image that uses AES-128 encryption. After copying, FileVault

erases the unencrypted data.

The home folder’s sparse format allows the image to maintain a size proportional to its

contents, which can save disk space. When files are removed from a FileVault-protected

home folder, the space is reclaimed on logout.

If you insecurely delete files before using FileVault, those files are still recoverable after

activating it.

By default, FileVault insecurely erases the unencrypted data. You should enable the secure

erase option when enabling FileVault on a home directory, so that your unencrypted data

Encrypting Files 175

is securely erased. When initially enabling FileVault, you also can securely erase free space

using Disk Utility or the diskutil shell tool. The following command will securely erase

free space on the boot drive with one pass of random data:

diskutil secureErase freespace 1 /

See the diskutil man page for other secure erase options; see “Getting Help” in Chapter 9

for instructions on using man pages.

FileVault does not encrypt or protect files transferred over the network or saved to remov-

able media. However, you can create an encrypted disk image separate from FileVault that

can protect files outside the home directory. If you mount these encrypted images over

a network link, all data transmitted over the network will be encrypted with AES-128

encryption. See “Encrypting Disk Images” later in this chapter for more information.

To set up FileVault, you should create a master password. If you forget your login password,

you can use the master password to recover encrypted data. If you forget both your login

password and your master password, you cannot recover your data. Consider sealing your

master password in an envelope and storing it in a secure location. You can also use Password

Assistant to help create a complex master password that cannot be easily compromised.

Setting a FileVault Master Keychain

You can set a FileVault master keychain to decrypt any account that uses FileVault to

encrypt data. You should set a FileVault keychain to ensure that data is not lost in the

event of a forgotten password. If you forget the FileVault account password, which is used

to decrypt encrypted data, you can use the FileVault master keychain to decrypt the data.

To create the FileVault master keychain, set a master password using the Security Preference

pane in System Preferences. This creates a keychain called FileVaultMaster.keychain

located in /Library/Keychains/.

The FileVault master keychain now contains both a FileVault recovery key (self-signed

root CA certificate) and a FileVault master password key (private key). You should delete

the private key from FileVaultMaster.keychain, after backing it up. This ensures that even

if someone is able to unlock the FileVault master keychain, that person would be unable

to decrypt the contents of a FileVault account because no FileVault master password pri-

vate key is available for the decryption.

176 Securing Access to Resources

Centrally Managing FileVault

Once you modify the FileVault master keychain, you can distribute it to all of your net-

work computers. Distribution is done by transferring FileVaultMaster.keychain to the

desired computers in one of these ways: using Apple Remote Desktop, executing a dis-

tributed installer on each computer, scripting using various techniques, or just includ-

ing it in the original disk image if your organization restores systems with a default

image. Copying the FileVaultMaster.keychain file to target computers provides network

management of any FileVault account created on any computer with the modified

FileVaultMaster.keychain located in the /Library/Keychains/ folder. These computers indi-

cate that the master password is set in Security preferences.

When a new user account is created and the modified FileVault master keychain is pres-

ent, the public key from the FileVault recovery key is used to encrypt the dynamically

generated AES 128-bit symmetric key. The latter key is used for the encryption and

decryption of the encrypted FileVault disk image.

To decrypt the encrypted disk image, the FileVault master password private key is required

to decrypt the original dynamically generated AES 128-bit symmetric key. The user’s orig-

inal password continues to work as normal. However, it is assumed that you are using the

master password service because the user has forgotten the password, or the organization

must perform data recovery from a user’s computer.

encrypting Disk Images
Encrypted disk images are a perfect way to transport data on external media, save files to

removable media, and protect files on shared systems.

FileVault does not protect files transmitted over the network or saved to removable media.

However, Mac OS X Server includes utilities for encrypting disk images. Using a server-

based encrypted disk image provides the added benefit of encrypting all network traffic

between the computer and the server hosting the mounted encrypted disk image.

You can create a read-write or sparse image to encrypt and securely store data. A read-write

image takes up the entire space that was defined when the image was created. For example, if

the maximum size of a read-write image is set to 10 GB, then that image will take up 10 GB

of space even if it contains only 2 GB of data. A sparse image will only take up the amount

Troubleshooting 177

of space containing data in the image. For example, if the maximum size of a sparse image is

10 GB and the data contained in it is only 2 GB, it will occupy only 2 GB of space.

Creating an encrypted image from existing data copies the data from an unprotected area

into the encrypted image. If the data is sensitive, it is better to create the image prior to

creating the documents, because the working copies, backups, or caches of files would all

be created in the encrypted storage from the start.

To create a new encrypted disk image, use hdiutil. The following is an example that cre-

ates a 1 GB sparse image named secure_files.sparseimage:

hdiutil create -size 1G -encryption -type SPARSE -fs HFS+ secure_files.

A sparse image can expand as data in the image grows. To create a fixed-size image, simply

leave off the -type SPARSE switch.

You can also create a disk image from the contents of an existing folder. This is accom-

plished with the hdiutil -srcfolder create subcommand. Here’s an example command that

creates an encrypted disk image named sales_2008.dmg from an existing folder named 2008:

hdiutil create -encryption -srcfolder /Volumes/Sales/2008 -fs HFS+ sales_2008

Troubleshooting
Typically, authentication and authorization are set once and then forgotten about. As

with most other topics in this book, if problems occur, you should look first in the logs.

However, determining which log to look in can be a bit perplexing. Most subsystems

log to /var/log/system.log when running into problems. Authorization issues are logged to

/var/log/secure.log. When an SSH session fails to authorize, log lines such as the following

are entered into secure.log:

May 3 12:24:16 dawn com.apple.SecurityServer[35]: Failed to authorize right system.

login.tty by client /usr/sbin/sshd for authorization created by /usr/sbin/sshd.

May 3 12:24:16 dawn sshd[79271]: error: PAM: Authentication failure for illegal user

baduser from example.com

May 3 12:24:16 dawn sshd[79271]: Failed keyboard-interactive/pam for invalid user

baduser from 10.10.149.201 port 34348 ssh2

178 Securing Access to Resources

Additionally, some services offer verbose output on their connection status. Using SSH as

an example, the SSH client offers the -v switch for use when diagnosing problems:

$ ssh -v dawnadmin@dawn.radiotope.com

OpenSSH_4.7p1, OpenSSL 0.9.7l 28 Sep 2006

debug1: Reading configuration data /etc/ssh_config

debug1: Applying options for *

debug1: Connecting to dawn.radiotope.com [192.168.100.18] port 22.

debug1: Connection established.

debug1: identity file /Users/marczak/.ssh/identity type 0

debug1: identity file /Users/marczak/.ssh/id_rsa type -1

debug1: identity file /Users/marczak/.ssh/id_dsa type -1

debug1: Remote protocol version 2.0, remote software version OpenSSH_4.5

debug1: match: OpenSSH_4.5 pat OpenSSH*

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_4.7

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-cbc hmac-md5 none

debug1: kex: client->server aes128-cbc hmac-md5 none

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug1: Host ‘dawn.radiotope.com’ is known and matches the RSA host key.

debug1: Found key in /Users/marczak/.ssh/known_hosts:15

debug1: ssh_rsa_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password,keyboard-interactive

debug1: Next authentication method: publickey

debug1: Trying private key: /Users/marczak/.ssh/id_rsa

Troubleshooting 179

debug1: Trying private key: /Users/marczak/.ssh/id_dsa

debug1: Next authentication method: keyboard-interactive

The output lists each step in the transaction—if keys are located and tried, key exchanges

attempted, and so on. If SSH prints alerts about a man-in-the-middle attack or a mis-

matched IP address, make sure that the machine you are connecting to is valid. These

messages are often printed when computers are assigned addresses via DHCP. Servers

using static IP addresses should never change, but maintenance may inadvertently remove

keys. If this happens, administrators must communicate this to users.

Unlike Linux systems, it is rare that PAM files are modified on Mac OS X. However, given

problems, PAM issues are logged to /var/log/secure.log.

Digital certificates tend to have issues in two places: on importing a CA-issued certificate

and expiration. When accepting a certificate from a certificate authority, not all authorities

issue them with UNIX systems in mind. Also, email programs can alter the line endings

that are so important to the process. When you import a certificate, system.log may receive

lines like the following:

[error] mod_ssl: Init: Pass phrase incorrect (OpenSSL library error follows)

[error] OpenSSL: error:0D07207B:asn1 encoding routines:ASN1_get_object:header too long

Ensure that the text file being imported has UNIX line endings—line feed (0x0A)—not

DOS CRLF or Mac CR (0x0d). Command-line utilities like xxd offer a hexdump of a text

stream that can be useful for decoding this information.

Another issue occurs when a certificate is already in use, but a session starts displaying

errors. This typically happens when the certificate expires.

 You can determine information about a certifi-

cate and whether it has expired in several ways.

The easiest way is if the certificate is being used

for a web server. Connect with a web browser,

such as Safari, and click the lock icon in the

upper right corner to display information

about the certificate in use.

The resulting display clearly shows the expira-

tion date.

180 Securing Access to Resources

If the certificate is being used with other services, however, openssl is the best multiuse

utility. The most general purpose command is s_client. openssl will connect to an SSL-

protected service and return heaps of information regarding the certificates—too much to

print here. For example, to connect to an SSL-enabled Internet Message Access Protocol

(IMAP) server, you can use the following command:

$ openssl s_client -connect smtp.example.com:993

The output will contain information about the certificates returned, including expiration

information. You can use this information to determine whether an expired certificate is

causing problems. The output also provides an interactive session where you can issue

commands to the service that you have connected to. If you are only after the certificate

information, press Control-C to end the session and return to the command prompt. If

the certificate has expired, follow the instructions in “Creating Self-Signed Certificates”

earlier in this chapter to generate a new certificate.

Finding problems in the authorization realm depends primarily on the service in ques-

tion. File system privileges are a good example.

While POSIX permissions are fairly simple, ACLs can get out of hand quickly if not man-

aged properly. Using groups in ACEs, rather than individual users, is one way to simplify

the amount of entries on the system, and allows management at a higher level.

 If a set of permissions is ever an issue, use the

Server Admin Effective Permissions Inspector

(EPI). To view the Effective Permissions Inspector,

open Server Admin, click the server that mounts

the file system, and click the File Sharing button in

the toolbar. Click the preferences Gear button and

choose Show Effective Permissions Inspector from

the pop-up menu.

Choose a share point, or browse the file system for

files and folders. Drag the user name from the user

list into the EPI window. The EPI will composite

all permissions applicable to this user for the file in

question, and report on their ultimate permissions.

What You’ve Learned 181

What You’ve Learned
This chapter addresses some of the most fundamental reasons why administrators exist.

Not just anyone can walk into a company and rifle through filing cabinets and access any

document they like. Doors and filing cabinets are locked and only appropriate people are

given keys. Company policy should define what and when to lock, and system adminis-

trators enforce those policies via technology. Mac OS X provides broad means to do so.

Specific points to understand about this process are as follows:

P Authentication is the process of identifying credentials for an account. Authorization

processes determine an account’s right to perform a specific operation.

P Credentials may be supplied as a name and password combination, two-factor

authentication (ID/password plus smartcard), or public-key ID certificates.

P Physically protecting systems is equally as important as the digital barriers. Given

physical access to a machine, it can always be compromised.

P Hardware can be disabled in software by removing or stubbing the kernel extensions

that interface with specific hardware.

P A hardware password (also known as an “OpenFirmware password”) can prevent

modifications to parameter RAM and block most startup keys.

P PAMs, or pluggable authentication modules, use libraries and modules to determine

if supplied credentials are valid for a specific service. Apple has created both libraries

and modules that tie into Apple-specific technology, such as Password Service that

integrates services into the Mac OS X single sign-on model.

P SSH provides a secure remote shell. All data is encrypted between the SSH client and

SSH server. As credentials, SSH can use traditional name and password pairs, or digi-

tal key pairs. ssh-keygen generates an identity key pair. Connecting to an SSH server

records its public key, or “fingerprint,” in the account’s ~/.ssh/known_hosts file.

P Another form of PKI exists in Mac OS X in the form of SSL certificates. Mac OS X

Server contains a Certificate Manager in Server Admin, while Mac OS X can manage

certificates via the openssl command. Both platforms contain Certificate Assistant,

which can generate CA files. A CSR is required for a public CA to be able to sign a

self-generated certificate.

182 Securing Access to Resources

P If your company chooses to run an internal CA, you must distribute the root cer-

tificate to internal clients for them to trust the certificate. The certificate must be

imported into the system’s X509Anchors keychain.

P The /etc/authorization file represents the Mac OS X policy database. It defines rights

and rules. Most authorization attempts utilize the policy database to determine if an

action is authorized. This file can be modified to grant greater or lesser rights to users.

P Mac OS X uses both POSIX permissions and ACLs to determine access rights for

file objects. Access control lists are made up of a series of rules called access control

entries (ACEs). Each ACE is evaluated in order, and the first to match applies. If no

ACE applies, the POSIX permissions are enforced.

P chmod is used to set both POSIX and ACL permissions on files and folders. ls is used to

view permissions—POSIX or ACL—applied to files and folders.

P Service access control lists (SACLs) are a method of defining which users and groups

have access to a given service. Definitions for SACLs are simple groups in a directory

service. These can be manipulated from the shell using dscl.

P Encryption transforms plain text information into a version that is unreadable to any-

one without the decryption key.

P The Mac OS X FileVault uses an encrypted disk image to protect an entire home

directory via AES-128 encryption. Setting a FileVault master password creates a key-

chain called FileVaultMaster.keychain located in /Library/Keychains/. New FileVault

accounts created on a computer with this keychain in place will also include the capa-

bility for recovery using the master password.

P hdiutil can create plain or encrypted disk images. Encrypted disk images can be used

to protect files and folders outside of FileVault, particularly those on removable or

portable storage.

review Quiz
1. What is the definition of authentication?

2. What is the definition of authorization?

3. What is the command-line utility used to enable the root user on an out-of-the-box

installation of Mac OS X?

Review Quiz 183

4. What is the command-line utility used to enable the root user on an out-of-the-box

installation of Mac OS X Server?

5. What command should be used to edit the sudoers file?

6. The contents of which file should be copied to a remote host to provide key-based

authentication for the SSH protocol?

7. Which file contains the system’s authorization database?

8. Which command-line utility is used to set file system ACLs?

9. Where are certificates stored?

10. Which command-line tool creates disk images, including encrypted disk images?

Answers

1. Authentication is the process of identifying the identity of an account or service.

2. Authorization is the process by which an entity gains the right to perform a restricted

operation.

3. dsenableroot

4. The root user is enabled by default on Mac OS X Server, so there is no need to enable

it after a default installation.

5. visudo, because it checks the syntax of the file upon save.

6. The user public key, typically ~/.ssh/id_rsa.pub, or ~/.ssh/id_dsa.pub.

7. The authorization database is contained in the /etc/authorization file.

8. The chmod command sets file system ACLs.

9. Certificates are stored in a keychain file.

10. The hdiutil command manipulates disk images and can create encrypted disk images.

8
 Time This lesson takes approximately 90 minutes to complete.

 Goals Learn the details of the Apple System Logger and the logging infrastructure
used in Mac OS X

 Understand the predefined log levels and facilities used by syslogd

 Learn the tools available for viewing data in log files

 Learn the tools available for monitoring system activity

 Learn monitoring tools specific to Xserve hardware

 Learn about methods of notification

 Learn to create reports containing important system properties

185

Chapter 8

Monitoring Systems

No computer system can simply be set up and then forgotten. The best

case is that a device will need only occasional attention. In the case of

modern servers providing one or more services to users, an adminis-

trator must regularly monitor the services and system to ensure that

resources are performing adequately. In a larger system, it is also impor-

tant to monitor production systems for underutilization. This chapter

teaches administrators the logging and monitoring structure and utili-

ties in Mac OS X.

NOTe P All utilities in this chapter need root-level access to run

unless specified otherwise.

186 Monitoring Systems

Using the System Log and ASL
A log file is a chronological recording of activities. Traditionally, UNIX-based systems ran

syslogd, the system logging daemon. The syslogd daemon is responsible for receiving mes-

sages and logging them in an appropriate text-based log file.

While you can still use traditional log-viewing methods, it is important to understand

and use the Apple-supplied tools. Apple has created a completely custom system, and a

system that respects prior methods of logging. Thanks to this, previous logging utilities

and methods from other UNIX-like systems will continue to work. Apple has taken the

traditional logging system and modified it in some subtle and some not-so-subtle ways.

Improvements to the Apple-based syslogd and Leopard syslog since their debut in v10.4

address criticisms of that early version.

Veteran administrators coming from other UNIX-based platforms may not even realize that

Mac OS X runs the Apple System Logger (ASL). The evidence is in the man page for syslogd:

SYSLOGD(8) BSD System Manager’s Manual SYSLOGD(8)

NAME

 syslogd -- Apple System Log server

Apple usurped the syslogd name with a completely custom logging agent. Rather than

immediately logging to various text-based log files, ASL logs to a binary database of log

messages. This data store is located at /var/log/asl.db. The database can be viewed and

manipulated with the syslog command. Again, ASL and its database system is unique to

Mac OS X.

The structure of ASL borrows from the past, but adds features on top. The syslogd dae-

mon accepts and processes log messages. Modules of syslogd can accept messages using

various sources, such as the syslog application programming interface (API) and User

Datagram Protocol (UDP) sockets from other syslog-capable devices. These messages are

accepted and written to the ASL database. They are then also written to various traditional

log files based on rules. Unlike traditional logs, the ASL database is treated as a real data-

base. Rather than the data store being rolled and compressed, old log messages are pruned

and cleaned in place by the syslogd daemon. The cleaning is also rule-based, respecting

the type and severity of the log entry. For example, login entries are retained longer than

some other log types.

Using the System Log and ASL 187

About Log Levels and Facilities
Once ASL accepts a log message, besides logging it in /var/log/asl.db, it will also respect

the traditional syslog system by writing plain-text messages into the files specified in /etc/

syslog.conf. By default, messages are sent to files in the /var/log directory.

The syslog.conf file routes log messages to appropriate log files based on log level and facil-

ity. The log level is also called the severity. Basically, that means “How important is this

message? Is it simple information, or is it considered an emergency?” The facility catego-

rizes which subsystem the message applies to, using both predefined and user-definable

labels. The log level is one of the following eight predefined values:

Table 8-1 Log Level Values

Value Definition

Debug (level 7) Message that contains information normally of use only

when debugging a program

Info (level 6) Informational message

Notice (level 5) Condition that is not an error, but that may need special

handling

Warning (level 4) Cautioning message

Error (level 3) Error

Critical (level 2) Serious condition, such as a hard drive error

Alert (level 1) Condition that needs immediate attention, such as a

corrupt database

Emergency (level 0) A panic condition

The built-in facilities are auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog, user,

uucp, and local0 through local7. The local0 through local7 facilities are available for use at

an administrator’s discretion. For example, as a site, you may decide that all log informa-

tion from internal intrusion detection systems (IDSs) use local5. This way, it’s easy to cor-

relate all IDS information.

188 Monitoring Systems

The combination of a facility and level is called a selector. In the syslog.conf file, a dot sep-

arates the selector facility and level. Sample entries from /etc/syslog.conf illustrate this. For

example, this entry denotes that messages of the facility mail and of log level crit should

be written to the log file /var/log/mail.log:

mail.crit /var/log/mail.log

This entry directs messages in the ftp facility of any level—indicated by the wildcard

asterisk character—to the /var/log/ftp.log file:

ftp.* /var/log/ftp.log

Semicolons separate multiple selectors on the same line:

auth.info;authpriv.*;remoteauth.crit /var/log/secure.log

The “at” symbol (@) sends log entries to a host specified by name or IP address. The

remote host must accept remote syslog messages:

. @yew.radiotope.com

You can use multiple definitions of the same selector, which allow routing the same mes-

sage to separate destinations:

local5.* /var/log/firewall.log

local5.* @yew.radiotope.com

To enable a Mac OS X v10.5 Server (or plain old Mac OS X) to accept remote syslog mes-

sages and become a central log server, the launchd plist file for ASL must be edited. Edit

/System/Library/LaunchDaemons/com.apple.syslogd.plist and remove the comments

(the opening <!-- and closing -->) from around this block of XML:

 <key>NetworkListener</key>

 <dict>

 <key>SockServiceName</key>

 <string>syslog</string>

 <key>SockType</key>

 <string>dgram</string>

 </dict>

Using the System Log and ASL 189

Then, with a root-level account, issue the following commands:

#launchctl unload /System/Library/LaunchDaemons/com.apple.syslogd.plist

#launchctl load /System/Library/LaunchDaemons/com.apple.syslogd.plist

Now, set up a client to test with. Edit a client machine’s /etc/syslog.conf file to include the

following line (substituting the DNS name or IP address for “server.name.here”):

user.* @sever.name.here

Use launchctl to restart syslogd. Then use logger to send the message into ASL:

$logger test

This produces the following line in /var/log/system.log:

Mar 21 12:51:58 192.168.100.163 Jack-Kerouac marczak[5429]: test

and the following in asl.db:

Fri Mar 21 12:51:58 192.168.100.163 Jack-Kerouac marczak[5429] <Notice>: test

Alternatively, you can use the Apple-specific syslog command to send messages:

syslog -s -r yew.radiotope.com -l 2 “This is a test”

The -s flag directs syslog to send a message, -r sends the message to the remote server that

follows, and -l specifies the log level. The test message is enclosed in quotes. The result

looks like this in system.log:

Mar 21 12:52:31 192.168.100.163 Jack-Kerouac.local syslog[5431]: This is a test

and this in asl.db:

Fri Mar 21 12:52:31 192.168.100.163 Jack-Kerouac.local syslog[5431] <Critical>: This

is a test

190 Monitoring Systems

About Log Formats
The log formats, by default, differ only in the display of a log level. It is important to be able

to read logs properly. As an example, here is a breakdown of the preceding log message:

Fri Mar 21 12:52:31—The date and time that this message was logged, using the local time

of the syslog server and displayed in 24-hour clock format

192.168.100.163—The IP address of the host generating the message

Jack-Kerouac.local—The host name of the device generating this message

syslog[5431]—The name and process ID (PID) of the process that sent this message

<Critical>:—The severity of the message

This is a test—The actual log message

All of the preceding lines are valid for log files that route through ASL and syslogd. An

interesting fact about logs, however, is that they are simply text files. Applications are free

to ignore syslogd and simply append log entries to the file of their choice. As an example,

Apache—the web server at work in Mac OS X—does just this. It writes its logs to /var/log/

apache2/access_log on its own, with no help from syslogd. Samba, the process responsible

for providing file services to Server Message Block (SMB) clients, also writes logs without

sending entries into syslogd. Similarly, many Apple processes write their logs to /Library/

Logs. Finally, an application is absolutely free to write entries to both a file of its choice

and syslogd. (Samba can also do this, but is not configured by Apple to log in this man-

ner.) While services that create their own logs are free to come up with a completely cus-

tom logging format, most are very similar to the format just described.

reading Log Files
Mac OS X provides various ways to read log files. First is the GUI-based Console.app.

Second, on Mac OS X Server, is another graphical user interface-based utility, Server

Admin.app (referred to simply as Server Admin). Finally, several tools are available in

your favorite shell.

Console.app has steadily improved, version by version. It provides quick and easy access

to all major log files on the system, and is an excellent exploratory tool. Clicking the Show

Using the System Log and ASL 191

Log List icon in the toolbar will reveal the list, as shown in the following Console.app

screen shot:

Console.app can insert a line of text, a “marker,” into its display to make tracking sections

of a log easier. These markers do not get written back into the actual log file. One down-

side to Console.app is that it does not update the display as the log file itself is updated. To

see the current state of a log file before it’s refreshed on its own, click the Reload button

in the toolbar. A nice upside to Console.app, however, is the ability to search, by plugging

in a search term. All log lines in the current log that have a non-case-sensitive match are

displayed. You can perform advanced searches, basing queries on log text, sender facility,

and more, by choosing File > New Log Database Query. This query can also be saved to

the Console.app sidebar for quick access.

Server Admin also has a feature for viewing logs. Clicking the Logs icon displays logs

related to the selected server or service, as shown here:

Server Admin lets you select a file by a descriptive name, and also shows the full path to

the log file in a breadcrumb trail on top of the log itself. Like Console.app, Server Admin

periodically refreshes the view of the log file and has the ability to search.

192 Monitoring Systems

Finally, there are many shell tools that allow an administrator to view log files, including

syslog, which is the only real way to interact with asl.db. The asl.db file is also the only file

that syslog works with—you cannot use syslog to monitor arbitrary log files. Traditional

utilities such as tail, grep, and less continue to be of use for the remainder of the text files

on the system (which really comprise everything besides asl.db itself).

Typing syslog by itself will print out the entire contents of the asl.db datastore, which is

typically of little use. The syslog utility, however, can do much better. Entries in asl.db are

stored in raw key-value pairs, and syslog can query based on this scheme. For example, to

view all entries sent by mDNSResponder, issue this command:

syslog -k Sender mDNSResponder

Multiple -k flags are ANDed together. If one wishes to see mDNSResponder messages only

from the past four hours, use the following:

syslog -k Sender mDNSResponder -k Time ge -4h

The syslog man page contains full details and examples for querying the datastore.

Finally, syslog can follow the log store as it changes. The -w switch causes syslog to wait

for changes:

syslog -w

Any new entries to asl.db are quickly written to the syslog output (typically the Terminal,

unless redirected).

The best way to watch files, other than asl.db, as they change is the tail utility. The com-

mand is simple:

tail -f file.log

The tail utility will output the last 10 lines of the file and then follow it—by printing out

any changes that occur to the log file.

In a similar fashion, less will follow log files and much more. To load a file into less, sim-

ply enter the filename:

less /var/log/system.log

Using the System Log and ASL 193

Scroll through the file using the Up and Down arrow keys. Control-F and Control-B scroll

forward and back a page, respectively. More importantly, you can search in a file by press-

ing the forward slash [/], and then typing a regular expression to match. Matches will

then be highlighted through the file. Press N to go to the next match. Shift-N jumps to the

previous match. Even better, pressing Shift-F will act like tail and follow the current file.

Unlike tail, though, previous search results are still active in less, and matches on new

lines are also highlighted. This is a great way to pick out patterns in a log file.

Creating a Monitoring Policy
As a system administrator, you should help your company come up with a monitor-

ing policy. Monitoring log files is only useful if you have a plan to take action when you

are made aware of an issue. A response should be planned as much as possible, and not

decided on casually when faced with an issue. It is also important to know what to moni-

tor and what not to monitor.

When creating a monitoring policy, compile a list of services and devices that require

monitoring, and determine how and where it will be logged. Check with your legal

department to determine if there are sources that need monitoring and logging. Also,

determine if there are any systems that should not be monitored or logged.

A monitoring policy should contain the following sections:

P Purpose: Describe the purpose of providing monitoring

P Scope: Describe who and what this policy applies to

P Policies: List all the monitoring and logging areas

P Retention: Length of time that logs will be kept

P Response: What actions will occur when a problem is detected

Use Google to find sample monitoring policies, such as those listed on http://www.

comptechdoc.org/independent/security/policies/server-monitoring-policy.html. Seeing

samples of other policies can help you hone your work.

When crafting the retention portion of the policy, understand that Mac OS X has a built-

in system to clean logs. The newsyslog program handles log maintenance. Logs are first

rolled—compressed and renamed with a numeric suffix that denotes the order. Logs at

the end of the rotation are deleted to save disk space.

http://www.comptechdoc.org/independent/security/policies/server-monitoring-policy.html
http://www.comptechdoc.org/independent/security/policies/server-monitoring-policy.html

194 Monitoring Systems

The newsyslog program is configured using the /etc/newsyslog.conf file. This configuration

file informs newsyslog when to roll a log, based on time or size, how to protect the newly

rolled archive (through permissions), and how many compressed versions to keep.

Just as important as planning how to monitor is planning responses to problems encoun-

tered via monitoring or notifications. This section of the policy should include a list of

issues, each with the following subsections:

P Contact: Who to contact when this issue presents itself, and contact methods (phone,

email, and so on).

P Method: Is someone required to be onsite, or is it acceptable to work remotely?

P Documents: Pointers to documents that aid in a resolution.

P Response time: How quickly does the problem need to be resolved?

P Testing: How to ensure that the problem is resolved.

Overall, a monitoring policy helps a business think through how to manage log assets.

From an IT perspective, monitoring provides alerting, but also data about the frequency

of issues. Recognizing these trends will help plan future needs. From a business perspec-

tive, certain log assets may be helpful to mine data from, but there may also be legal impli-

cations to which logs to keep and which to destroy after a certain period of time. Work

with your company’s legal department if you are not sure.

Using Tools and Utilities
The value of log files cannot be disputed, but log files do not complete the entire picture

of system activity. There are many other activities and statistics that do not appear in log

files, such as network utilization, open file count, memory use, CPU load, and more.

Each of the components in a system affects the overall performance.

One of the most common components to monitor is CPU, with the primary question

being “How busy is it?” There are actually two ways to view this. Contrary to many peo-

ple’s view, CPU usage is a sign of a healthy system. CPUs should not sit idle. Typically, it

is not so much the percentage of CPU usage that you should be worried about, but rather

the load average. That is not to say that percentage of CPU usage is not an important

Using Tools and Utilities 195

statistic. While a CPU should be in use, it should not be used needlessly. Small, poorly

planned applications, typically looping tightly in code, can drain a CPU, and those pro-

cesses need to be identified.

top, CPU Percentage, and Load Averages
The first utility to reach for is top, a console-based (text) process monitor that will refresh

its output and sort by various criteria. Its goal is to show you the “top” processes accord-

ing to your sort. It does not give you every statistic possible, but understanding the data it

presents is crucial to understanding what is happening with your system.

The top utility will primarily display data about processes in user space. It also displays

system CPU utilization and process 0—called kernel_task—that gives information about

the kernel. You won’t see this in a standard ps listing. The kernel_task process begins dur-

ing the boot sequence, called into existence as one of the kernel’s first jobs (see the xnu

kernel source, available from http://developer.apple.com/opensource/).

When running with the default settings, top displays a list of processes, sorted by descend-

ing process ID, with associated statistics about each. Besides each individual process, you’ll

see a dashboard of statistics, similar to the following:

Processes: 129 total, 3 running, 122 sleeping... 438 threads 22:12:18

Load Avg: 0.71, 0.95, 0.95 CPU usage: 17.39% user, 10.00% sys, 72.61% idle

SharedLibs: num = 8, resident = 63M code, 412K data, 4280K linkedit.

MemRegions: num = 27913, resident = 1302M + 19M private, 289M shared.

PhysMem: 354M wired, 1319M active, 763M inactive, 2436M used, 1627M free.

VM: 16G + 371M 567026(0) pageins, 106583(0) pageouts

The first line displays how many processes the Berkeley Software Distribution (BSD)

UNIX layer currently is responsible for, the number of processes that are active, how many

are idle, the total number of threads (remember that each process is further broken down

into threads of execution), and the current time.

On the next line is the statistic of load average. Explanations for the load average range

from fairly straightforward to very complex. First, the load average metric appears in several

places: the top utility, the uptime command, the output from w, and more. One thing remains

constant: As in the example above, three numbers appear. They are the 1-minute, 5-minute,

and 15-minute load averages—the result of the number of jobs in the run queue, or the load

http://developer.apple.com/opensource/

196 Monitoring Systems

on the system. Some say it’s the most important metric, and some say it’s of little use. In

either case, you have to know the system in question, and load average is just another data

point for your investigation.

Load average is not solely CPU usage. It also encompasses disk I/O and network-bound

processes. It is not just an average—it is a time-based damped average. In short, a load aver-

age of 0 means you have a completely idle system (not unheard of, but rare). A load average

of 1 means that your CPU is handling things fine—there is a 1:1 ratio of instructions in the

run queue to the CPU processing them. Less than 1 means that you have more headroom

to spare, and more than 1 means that the system could benefit from a more powerful single

processor, or multi-core processors to handle the load. It is situation-dependent, and will

mean different things depending on the use of the system: A machine acting solely as a data-

base server—even under heavy use—will have a completely different load average pattern

than a file server or a shell server. So, while somewhat confusing, load average is certainly

not a useless metric. Watch it, and learn the patterns from your system or systems.

Following load average is CPU usage. Don’t panic when the CPU load rises. It’s the job of

Mac OS X to make sure that the CPU is getting used. There is no sense in having a CPU if

you’re not going to put it to work. The values displayed in the example show CPU usage

segmented into user processes, system use, and percent idle. You’re likely to see these num-

bers jumping about as the CPU does its job. Even though you may run a basic user space

program such as, say, iTunes, the kernel still has to work keeping track of all the resources

used by the application. These values are affected by everything the CPU needs to handle—

running applications, processing interrupts (think video cards, network interfaces, and so

on), moving memory around, and more. Once again, you need to learn the patterns of the

system that you’re monitoring. In conjunction with the load average metric, you can get a

good idea if processes are suffering or flourishing with the CPU usage statistics.

The next line after CPU usage summarizes statistics about shared libraries. Basically, a

shared library is a set of code that multiple programs use in common. For example, the

Secure Sockets Layer (SSL) libraries contain routines that are useful to many other pro-

grams. You don’t want each of those programs to have to implement its own SSL routines,

nor do you want each to use memory on loading its own copy. So, they all can load the

precompiled libssl and use its proven routines. To pull this off, multiple applications are

able to share the code.

Using Tools and Utilities 197

The MemRegions line lists the number and size of allocated memory regions. This is broken

down into private (library and non-library) components and shared components.

The PhysMem line is just what you’d expect: the breakdown of physical memory allocation.

“Wired” memory is active memory that cannot be moved out of real RAM; it’s wired down.

The active and inactive portions add up to how much memory is used. “Used” plus “free”

equal the total RAM in your machine. Like CPU usage, these RAM statistics are often misin-

terpreted. Don’t panic when free RAM is low; that’s just the way Mac OS X works. About the

only time free RAM is high is just after booting up. However, as Mac OS X runs over time, it

starts to fill RAM for different purposes. It doesn’t release RAM into the free pool immedi-

ately after a program is finished with it; rather, it then becomes “inactive.” Mac OS X keeps

this data available in case it needs it. If not, and it really needs more real RAM for some task,

it first purges the inactive memory to make room. Mac OS X has a sophisticated and effec-

tive memory management scheme that shuffles pages of memory out to disks, wires them

down, caches memory, and frees it as needed.

The final line in the example displays statistics about virtual memory. The VM statistic does

not refer to virtual memory as simple swapping to disk. The first statistic on that line

represents the entire virtual address space currently in use. You can match this number by

adding up everything in the VSIZE column. VSIZE is a fairly useless statistic under Mac OS X

because Mac OS X always gives applications a generous virtual address space to work in.

But VSIZE gives you a good sense of the total address space in use, or about how much

RAM you would really need if Mac OS X had no virtual address space.

Finally, you’ll see pageins and pageouts statistics. A pagein happens when a page is copied

from “swap” (or the “backing store”) into main memory. A pageout occurs when memory

is written to the backing store. Unlike older methods, Mac OS X pages rather than swaps.

In earlier systems, a program was either fully in main memory or was swapped out

entirely. Mac OS X, on the other hand, can take pages—4k blocks—of RAM and get them

out of the way, or pull them back in as needed. A pager is responsible for moving pages in

and out of RAM. A page-fault occurs when the system looks for something that should be

in core memory but doesn’t find it. A page-fault then causes the pager to read the appro-

priate page or pages from the backing store and into core memory. What does top have to

say about all of this?

198 Monitoring Systems

The top utility simply displays the current number of pageins and pageouts requested by

a pager. These counts are shown as the total number, followed by the recent counts in

parentheses. The recent counts are the number of pageins or pageouts in the last 1 sec-

ond for the respective counter. These are important values to watch. Normally, these are

0—especially for pageouts. If you’re watching top, and the number of recent pageouts stays

above 0, your system is short on real RAM. The count of pageouts will rise occasionally.

However, if you’re witnessing a surge of pageouts over a long period of time, your system

is thrashing—the system spends more time paging in and out than actually accomplishing

any real work. If you see your pageouts keep creeping up, the course for system improve-

ment is to increase the RAM in your machine.

To get more specific and detailed information about VM statistics, use the vm_stat com-

mand. This simple tool gives grand-total and interval-based statistics regarding the VM

system, such as free and wired pages and pagein and pageout totals. See the man page for

further information on the vm_stat command.

Besides the dashboard for top, the lower half of the display looks similar to this:

PID COMMAND %CPU TIME #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE

 405 Safari 33.3% 8:50:53 19 618+ 3762 348M+ 44M 345M+ 1009M+

 8438 top 12.8% 0:01.67 1 19 34 1512K 200K 2104K 19M

 213 Terminal 2.8% 52:39.76 3 102 1007 23M 22M 27M 417M

 0 kernel_tas 1.3% 3:00:21 60 2 753 13M 0 233M 299M

 70 WindowServ 0.9% 66:39.06 5 479 1482 13M 102M 115M 515M

 7799 Mail 0.3% 21:58.11 13 342 608 93M 52M 136M 565M

 7625 Microsoft 0.3% 1:43.14 5 120 670 132M 36M 181M 624M

 196 SystemUISe 0.2% 4:31.74 13 482 519 8732K 17M 15M 380M

 573 DashboardC 0.2% 23:20.40 4 105 158 2732K 11M 6328K 334M

 8134 diskimages 0.1% 0:11.71 3 70 59 5128K 10M 7212K 39M

 260 screen 0.1% 2:14.24 1 11 56 8308K 400K 8240K 45M

Using Tools and Utilities 199

This sample is sorted by %CPU, issued with top -u. This makes the process area of

top dynamic, always sorting the highest CPU-using tasks to the top. The columns are

described as follows:

P PID—The BSD process ID

P Command—The name of the program or application bundle

P %CPU—The percentage of CPU cycles used during top’s refresh interval for this pro-

cess, including both kernel and user space

P Time—CPU time used by this process since launch, in minutes:seconds:hundredths

format

P #TH—Number of threads in use by this process

P #PRTS—Number of machine ports used by the process

P #MREGS—The number of memory regions this process has allocated

P RPRVT—The amount of resident private memory—probably the best of these statis-

tics to determine how much real memory a program is using

P RSHRD—The amount of resident shared memory used

P RSIZE—Resident memory size

P VSIZE—The total address space allocated to the program

There are other switches to top that will alter the number of columns and amount of

information displayed. See the top man page (type man top) for more information.

The -l switch turns on logging mode, which makes top noninteractive—it just dumps its

output raw to stdout. You can tell top how many times it should output. A value of 0 causes

top to loop until you interrupt it by pressing Control-C. For example, top -l 0 -u -n 15 is

useful to find issues when waking from sleep (too much happens before you can open a ter-

minal and run anything to record the activity): Run top with the -l switch before putting a

machine to sleep. This way, there will be a record of what happens on wake.

Other System Monitoring Utilities
Similar information to that gleaned from top can be obtained from Activity Monitor.app,

a GUI-based utility, installed by default in the Utilities directory and shown in the follow-

ing illustration. The CPU and System Memory tabs display identical information as seen

in top, presented in the section “top, %CPU, and Load Averages.”

200 Monitoring Systems

The Disk Activity tab displays statistics for system disk I/O, such as total amount read

and written, and transactions per second. Similar data can be found using the command

iostat. The main difference is that iostat can break down these statistics for individual

devices. See the iostat man page (type man iostat) for more information.

The Disk Usage tab displays disk capacity statistics on a given device. You can also get this

information using the df command-line utility. Passing in the -h (“human readable”) and

-t (“type”) switches can produce nice results:

df -h -t hfs

Filesystem Size Used Avail Capacity Mounted on

/dev/disk0s2 200Gi 177Gi 23Gi 89% /

/dev/disk1s2 558Gi 315Gi 243Gi 27% /Volumes/Data

/dev/disk2s2 40Gi 15Gi 25Gi 38% /Volumes/Users

 In this example, -t hfs limits the output

to devices that are hierarchical file system

(HFS) formatted (the default Macintosh

file system). In the category of disk

access, Activity Monitor also can display

the open files (and network ports) of a

running process. Double-clicking the

process row in the process list displays a

detail window, as shown here, for the

Open Files and Ports tab.

Using Tools and Utilities 201

You can also get a report of this information from a shell by using the lsof command.

When you pass the -p switch and the PID of the process in question, lsof will limit its out-

put to files related only to that process’s files:

lsof -p 5684

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Firewall 5684 marczak cwd DIR 14,2 1258 2 /

Firewall 5684 marczak txt REG 14,2 43008 12653878 /usr/libexec/

ApplicationFirewall/Firewall

Firewall 5684 marczak txt REG 14,2 1059776 12653820 /usr/lib/dyld

Firewall 5684 marczak txt REG 14,2 132886528 12758680 /private/var/db/dyld/

dyld_shared_cache_i386

Firewall 5684 marczak 0r CHR 3,2 0t0 88316804 /dev/null

Firewall 5684 marczak 1 PIPE 0x6fa91f4 16384

Firewall 5684 marczak 2 PIPE 0x6fa91f4 16384

Firewall 5684 marczak 43u unix 0x100c9088 0t0 ->0x10d96330

Consult the lsof man page (type man lsof) for its many more useful abilities. Of course, the

list of files that a process has open is dynamic.

A complementary tool to lsof is fs_usage. The fs_usage tool can display file system activ-

ity in real time, system-wide, or limited to a certain process or type of activity. Running

fs_usage with no parameters includes the activity of all processes (except the current

fs_usage process, Terminal, telnetd, sshd, rlogind, tcsh, csh, and sh—but this behavior can

be overridden). The fs_usage tool can also filter its output based on certain criteria. For

example, to view just the network activity for any processes named “Mail,” fs_usage could

be invoked with the following flags:

fs_usage -w -f network Mail

(Remember: UNIX treats just about everything as a file—including network sockets. This

is how fs_usage monitors network activity.) Being able to view file system activity as it

occurs can help determine which configuration file an application is reading or writing as

it runs. For example, to watch all files accessed by Microsoft Word as it runs, you can run

the following command:

fs_usage -f filesys “Microsoft Word”

202 Monitoring Systems

Finally, the Network tab in the Activity Monitor displays statistics about systemwide

network activity. This includes total packets and data sent and received, and packets and

data per second. You can get this information in a shell using the netstat command. Once

again, the command-line version can provide per-interface details. When given the -b and

-I switches, netstat provides totals for a given interface:

netstat -b -I en1

Name Mtu Network Address Ipkts Ierrs Ibytes Opkts Oerrs

Obytes Coll

en1 1500 <Link#6> 00:17:f2:e6:eb:d9 27181164 2455107 14894908477 24950784 0

7706401964 0

en1 1500 Jack-Keroua fe80::217:f2ff:fe 27181164 - 14894908477 24950784 -

7706401964 -

en1 1500 192.168.100 192.168.100.163 27181164 - 14894908477 24950784 -

7706401964 -

When also used with the -w (“wait”) switch, netstat provides statistics at the given interval:

netstat -b -I en1 -w 2

 input (en1) output

 packets errs bytes packets errs bytes colls

 0 1 0 6 0 234 0

 0 0 0 12 0 468 0

 0 2 0 12 0 372 0

 0 2 0 6 0 186 0

 0 3 0 6 0 186 0

Pressing Control-C stops the output. The -a flag will show the state of all sockets and, as a

result, can be used to detect a process that is listening on the network but not generating

any network activity.

To delve deeper into network traffic, the tcpdump utility can display and capture the IP

packets that are arriving and leaving on a given interface. To view all traffic on the en0

interface, run tcpdump with the following flags:

tcpdump -s0 -v -i en0

Using Tools and Utilities 203

The -s0 switch instructs tcpdump to capture the entire packet (because, by default, only 68

bytes of each packet are captured); -v causes verbose output; and -i en0 makes tcpdump

watch the interface named en0.

You may notice that a lot of data scrolls by on your screen. Consider two options. One is

that your terminal has a scroll-back option; use it. Alternatively, tcpdump will line buffer its

output when using the -l (ell) switch, which enables the output to be piped into a pager,

such as less, in order to scroll through at your own pace.

The tcpdump utility can also write its output to a file with the -w switch. This is useful in

three ways. First, it allows you to play back the file and inspect it at your own pace. Use

the tcpdump -r switch to denote a file to read. Second, many other utilities read the output

of tcpdump. (tcpdump is based on the libpcap packet capture library. Any program that works

with libpcap files—often just shortened to “pcap”—will read a file created with tcpdump.)

Other programs may perform additional analysis or allow you to visualize the results

(such as the excellent Wireshark application). Last, having tcpdump output in file form

allows you to send the file to someone else who may be able to help you interpret it.

Instruments and DTrace
Completely new to Leopard, a single utility can sum up just about everything mentioned

so far: Instruments. Instruments can dynamically examine currently running code—either

user-based or OS-based. While Instruments is a very impressive utility, there are some

caveats. First, it takes some learning to use the tool thoroughly and effectively. The second

is more a matter of policy. Instruments is installed as part of the Apple Xcode developer

tool environment. It is often considered a security risk to install developer tools—partic-

ularly compilers—on certain production equipment, because this enables an attacker to

upload source code and compile it on the system. You must understand your company’s

policy and what is permissible, and the risks associated, before installing.

Instruments is based on the command-line utility dtrace. Both applications can col-

lect disparate statistics and information about running processes on a given system.

Instruments presents its results graphically, allowing you to visualize activity patterns and

associations. While a full tutorial in using Instruments is beyond the scope of this book, a

quick introduction is necessary and useful.

204 Monitoring Systems

Installing Xcode also installs Instruments in the Xcode Applications directory (by default,

/Developer/Applications). Launching Instruments provides templates for common sce-

narios, such as the File Activity template shown here:

Select the template and click Choose to display an empty trace window. From the Default

Target menu in the toolbar, choose to trace a specific running application, launch an

application, or follow all currently running processes. Then click Record to begin tracing;

click it again to stop tracing. Here’s an example of a short trace on Mail.app:

Using Tools and Utilities 205

Due to the architecture of Instruments, unlike many other utilities, it hardly impacts the

system that it’s tracing. The dtrace utility—without which Instruments.app would not

exist—can perform all of this instrumentation from a command-line shell, which presents

its results textually. The dtrace utility uses its own command language called d to build

probes. Instruments.app can build a d script based on the trace document currently set

up, saving you from learning each aspect of the language. The dtrace utility can perform

as a top replacement in one respect: finding which process is making the most system calls

(and therefore being the “top” process). The following example, from a relatively short

sample measured in seconds, asks dtrace to instrument syscall:::entry and aggregate on

count per executable; dtrace will run until it receives the break signal (Control-C):

dtrace -n syscall:::entry’{@[execname] = count()}’

dtrace: description ‘syscall:::entry’ matched 427 probes

^C

 openinfo 2

 IPSecuritasDaem 4

 socketfilterfw 4

 syslogd 4

 configd 6

 openexec 6

 pvsnatd 11

 httpd 12

 DirectoryServic 13

 mdworker 13

 fseventsd 18

 llipd 30

 screen 32

 Finder 36

 snmpd 39

 ntpd 42

 Terminal 48

 dtrace 48

 openmonitor 51

206 Monitoring Systems

 SystemUIServer 80

 launchd 104

 mds 105

 WindowServer 176

 Mail 194

Leopard also includes dtruss, a shell script that is part of the dtrace toolkit by Brendan

Gregg. dtruss leverages dtrace, but specifically prints details on system calls. Consider it

the Leopard replacement for the now missing ktrace. As an example, to watch system call

activity for an already running Mail process, run dtruss using the -n switch:

dtruss -n Mail

To run an application and monitor it, simply pass in the executable name:

dtruss uptime

The dtrace and dtruss man pages should be consulted for more information.

Documentation for Instruments can be found in PDF form on disk at /Developer/

Documentation/DocSets/com.apple.ADC_Reference_Library.DeveloperTools.docset/

Contents/Resources/Documents/documentation/DeveloperTools/Conceptual/

InstrumentsUserGuide/InstrumentsUserGuide.pdf.

Xserve Tools
While Mac OS X Server will run—and run well—across different Macintosh hardware,

one unit in particular stands out: the Xserve. In addition to high-availability features such

as hot-swappable disk drives and redundant power supplies, an Xserve running Leopard

brings a few more management methods to the mix.

Server Monitor.app (referenced here as Server Monitor) is exclusive to Mac OS X running

on an Xserve, and allows you to monitor Xserve hardware status. When configured, with

the addresses of one or more Xserves, colored status indicators appear in the main win-

dow, allowing a quick visual inspection, as shown here:

Using Tools and Utilities 207

Server Monitor also allows access to the hardware’s Lights Out Management (LOM) com-

ponent. Essentially, LOM allows power management even when the server is powered off

and no OS is running. This is accomplished over Ethernet and standard TCP/IP, using the

XServe built-in network interface cards (NICs). NIC configuration for LOM is offered at

initial OS install time, and can also be accessed using Server Admin. Choose Manage >

Configure Local Machine to use the setup screen shown here:

Lights Out Management can also be configured using the ipmitool command-line utility.

Intelligent Platform Management Interface (IPMI) is a solution developed by Intel. The

hardware responsible for implementing LOM is called a baseboard management control-

ler (BMC). You can retrieve basic information about the BMC using ipmitool:

ipmitool -U admin -a bmc info

Password:

208 Monitoring Systems

Device ID : 32

Device Revision : 1

Firmware Revision : 1.2.7

IPMI Version : 2.0

Manufacturer ID : 63

Manufacturer Name : Apple Computer, Inc.

Product ID : 1 (0x0001)

Device Available : yes

Provides Device SDRs : no

Additional Device Support :

 Sensor Device

 SDR Repository Device

 SEL Device

 FRU Inventory Device

 IPMB Event Receiver

 Chassis Device

Aux Firmware Rev Info :

 0x01

 0x00

 0x27

 0x01

You can also gather the power-on hours (POH) of the chassis that the BMC is running on:

ipmitool -U admin -a chassis poh

Password:

POH Counter : 5633 hours total (234 days, 17 hours)

View more detailed information by requesting chassis status:

ipmitool -U admin -a chassis status

Password:

System Power : on

Power Overload : false

Power Interlock : inactive

Main Power Fault : false

Using Tools and Utilities 209

Power Control Fault : false

Power Restore Policy : always-on

Last Power Event :

Chassis Intrusion : inactive

Front-Panel Lockout : inactive

Drive Fault : false

Cooling/Fan Fault : false

Administrators have been known to not pay perfect attention to the LOM interface setup

during initial Xserve install. As shown earlier, these values can be retrieved with Server

Admin.app, but they can also be retrieved with ipmitool. The two interfaces on an Xserve

are channels 1 and 2:

ipmitool -U admin -a lan print 1

Password:

Set in Progress : Set Complete

Auth Type Support : NONE MD5 PASSWORD

Auth Type Enable : Callback : MD5

 : User : MD5

 : Operator : MD5

 : Admin : MD5

 : OEM :

IP Address Source : Static Address

IP Address : 192.168.70.12

Subnet Mask : 255.255.255.0

MAC Address : 00:19:E3:E7:70:E8

SNMP Community String : public

IP Header : TTL=0x40 Flags=0x40 Precedence=0x00 TOS=0x10

BMC ARP Control : ARP Responses Enabled, Gratuitous ARP Enabled

Gratuitous ARP Interval : 127.0 seconds

Default Gateway IP : 192.168.70.1

Default Gateway MAC : 00:00:00:00:00:00

Backup Gateway IP : 0.0.0.0

Backup Gateway MAC : 00:00:00:00:00:00

RMCP+ Cipher Suites : None

210 Monitoring Systems

Cipher Suite Priv Max : XXXXXXXXXXXXXXX

 : X=Cipher Suite Unused

 : c=CALLBACK

 : u=USER

 : o=OPERATOR

 : a=ADMIN

 : O=OEM

See the ipmitool man page (type man ipmitool) for more information.

Other Monitoring Options
Other methods of monitoring are beyond the scope of this book, but you should be aware

of them as options. Mac OS X v10.5 has a full, working SNMP implementation.

There are also third-party monitoring tools, from open source apps that you compile

yourself through off-the-shelf commercial applications. Open source monitoring applica-

tions include Nagios, Swatch, Logwatch, and Tripwire. Commercial applications include

Lithium, Intermapper, and Splunk. (There’s a free version of Splunk, which, even with its

limitations, may serve your site just fine.)

The easy lesson here is that monitoring Mac OS X can be done in many ways. You can choose

the tools to use and can fit your monitoring strategy into just about any form necessary.

Setting Notifications
Systems must be able to detect problems and provide notification appropriately. There are

two ways to accomplish this task: off-the-shelf applications and monitoring agents that

are custom-written for the task.

As noted in the “Using Tools and Utilities” section, there are as many monitoring tools

available as things to monitor. Often, problems with the system or subsystem that you are

trying to monitor are well-known problems with ready solutions. Pure “system up” and

“system down” monitoring and notification has been solved for some time now. Server

Monitor and Server Admin even provide this functionality.

Server Admin has the more basic functionality of the two. The Settings pane for a server

has a Notifications tab, shown in the following illustration. From here, you can configure

Setting Notifications 211

two types of notifications: disk space monitoring and available software updates. When

activated, and one or more valid email addresses supplied, the configured server will send

an email when certain conditions are met. When configured, the configuration and rules

for emond (the event monitoring daemon in Leopard) are put into place on the Xserve. A

configuration file resides at /etc/emond.d/emond.conf, which informs emond how to use the

rules it reads in at start, which are found in /etc/emond.d/rules/. Activating these notifica-

tions will in turn require Simple Mail Transfer Protocol (SMTP), so be aware and update

firewall rules accordingly.

Server Monitor also can configure notifications, but will work only with an Xserve. Of

course, this also allows for more detailed notifications. The notification configuration

window of Server Monitor looks like this:

212 Monitoring Systems

Unlike Server Admin, Server Monitor allows a custom subject and message to be config-

ured. You can enable notifications for all hardware and sensors of an Xserve. You can con-

figure Server Monitor in these two different ways to actually send the notification email:

P The option “This application sends notification email on server’s behalf” enables

Server Monitor itself to send the email message. This requires Server Monitor to be

running to send the email; however, it also allows a centralized place to monitor sev-

eral Xserves.

P The option “Remote server sends notification email directly” places the burden on the

individual Xserve being configured. Specifically, this burden is on the hwmond daemon.

Server Admin notifications are really just a nice front end to the hwmond configuration

file. hwmond is launched at boot time by launchd, and controlled by the hwmond.plist

file found at /System/Library/LaunchDaemons/com.apple.hwmond.plist. The hwmond

file reads in /etc/hwmond.conf and /etc/hwmond.conf.SMART.

While the built-in tools are useful in smaller environments, their limitations come to light

in larger environments. The Server Monitor “This application sends” option is generally a

bad security practice because it leaves an administrative application open at all times, and

relies on it to be running to send out notifications. Also, neither Server Admin nor Server

Monitor have the ability to specify recipients of notifications; all users configured will

receive all notifications.

Custom-Scripted Notifications
To provide notifications for situations that Server Admin and Server Monitor do not

account for, you may consider an off-the-shelf product. No tool can anticipate every

need and every situation. Off-the-shelf products may require custom-written scripts in

order to take action. As an example, see “Creating Action Scripts” for the Lithium moni-

toring platform (http://docs.lithiumcorp.com/content/view/192/122/). Additionally, there

are many opportunities to write scripts that monitor a system that do not require third-

party applications.

These scripts can typically take the form of any scripting language, as long as the language

can pass back a return code denoting success or failure. Another built-in method of moni-

toring is launchd. In Mac OS X v10.5, launchd contains a new key that automatically moni-

tors a service: KeepAlive.

http://docs.lithiumcorp.com/content/view/192/122/

Creating Reports 213

When launchd runs a plist with the KeepAlive key set to true, launchd will automatically

restart the executable if it exits. Further enhancing this functionality are subkeys to

KeepAlive that can determine if the program should actually be restarted under current

conditions. See “launchd and launchctl” in Chapter 9 for more information and examples

of launchd using the KeepAlive key.

Creating reports
In many ways, reporting and documenting are just other forms of monitoring. This sec-

tion covers two Mac OS X–specific methods of creating reports.

System Profiler.app, found in the Utilities directory, provides practically every detail about

a system that you would need for a report. Of course, it would be impractical to visit every

machine in an organization, run System Profiler.app, record the information, and move on.

Therefore, Apple includes a command-line version of System Profiler.app: system_profiler.

system_profiler can retrieve any data about the system that it runs on that the GUI-

based System Profiler.app can. Being text-based, it lends itself to easily moving that data

to other sources, possibly as part of a script that can make other decisions. It can cre-

ate plain, human-readable output, or XML output (which, of course, is also technically

“human readable”).

For a standard report, simply type:

system_profiler

To get the same data but create XML output, use the -xml switch.

system_profiler breaks its areas of reporting into separate data types, or groups. Not all

data types or groups are reported on by default. To get an entire list of data types, use the

-listdatatypes switch (output is truncated for space considerations):

system_profiler -listdatatypes

Available Datatypes:

SPHardwareDataType

SPNetworkDataType

SPSoftwareDataType

SPParallelATADataType

214 Monitoring Systems

SPAudioDataType

SPBluetoothDataType

SPDiagnosticsDataType

…

SPApplicationsDataType

SPExtensionsDataType

SPFontsDataType

SPFrameworksDataType

SPLogsDataType

SPManagedClientDataType

SPPrefPaneDataType

SPStartupItemDataType

SPUniversalAccessDataType

Individual data types can be reported on simply by specifying them on the command line:

system_profiler SPHardwareDataType SPDiagnosticsDataType –xml

This reporting is much faster than forcing system_profiler to dump everything and then

use grep to pick out an individual result. Combine the methods if needed:

system_profiler SPBluetoothDataType -detaillevel mini | grep Address

As the preceding example also shows, you can specify the level of detail with the -detail-

level switch. Acceptable levels are mini, basic, and full.

With all of its options, system_profiler is an ideal tool to sporadically run on systems, or to

use a login hook to extract system information and feed it to a central database. Thanks

to the broad support for scripting languages in Mac OS X, this is easily achievable. Perl,

Python, Ruby, and PHP all support calling external executable programs, and all have

modules that talk to popular database engines. Finally, they all make ideal environments

in which to make decisions in a login hook.

Another Apple creation suited for the task of reporting is Apple Remote Desktop (ARD).

Unlike system_profiler, Apple Remote Desktop is not built into the system and must be

purchased. Its capabilities extend beyond just reporting. This section, however, will only

focus on its reporting capabilities.

Creating Reports 215

If your credentials are authorized for a given machine or set of machines, you will be able

to run a system_profiler-like report against one or all of the machines. Clicking the Report

button in the ARD toolbar brings up a dialog box like this:

Once the report data has been collected, ARD displays a summary window with the data

from all machines listed in a table, as shown here:

216 Monitoring Systems

You can export this data as a tab-delimited or comma-delimited file by clicking the Export

button in the toolbar of the report data window. The Save As dialog box then appears:

The tab-delimited or comma-delimited file can then be imported into other databases,

such as MySQL or FileMaker Pro. This is useful for documentation, further analysis, and

general reporting.

Troubleshooting
A section on troubleshooting may seem repetitive, because this entire chapter has in some

way been about troubleshooting. Logs and other monitoring history are what you reach

for in the event of a problem. However, even those tools can themselves have problems.

One problem that crops up is that no new entries are being written to the system log. The

first troubleshooting step here is simple, but often overlooked. Is syslogd running? Use the

ps (process status) command to find out. If it is not, use launchctl to relaunch syslogd:

launchctl load /System/Library/LaunchDaemons/com.apple.syslog.plist

If syslogd fails to stay alive, check the system log. Often, syslogd will write its failure reason

to the log before exiting. If no message is written to the system log, check the crash log

in /Library/Logs. If there is no indication of a syslogd crash, a disk scan may be in order.

If notifications are configured in any of the various ways discussed in this chapter, but you

believe they are not being sent out, there may be a few points of failure. However, they

mostly relate to email troubleshooting, because all of the methods discussed rely on stan-

dard SMTP. Issues to look for would include checking the server-side mail logs, ensuring

that proper email addresses are being specified, checking whether any firewall or network

issue is blocking SMTP traffic, and checking client-side issues such as notifications being

trapped by a spam filter.

Review Quiz 217

What You’ve Learned
The information in this chapter should remove all doubt about routine monitoring. Log

files are the harbinger of upcoming system problems. Log files and information are gener-

ated 24 hours a day, every day, so it should also be clear that you need some type of auto-

mated monitoring solution. Thankfully, monitoring and notification solutions are built

into the system, and custom methods of monitoring are relatively easy to create using

built-in scripting languages and utilities.

P Logs are a critical part of monitoring and understanding a system.

P Apple has rewritten the traditional UNIX system logging daemon, syslogd, to include

writing log entries to the asl.log database.

P Log messages are categorized by level and facility.

P There are many tools built into Mac OS X to read and monitor log files, such as

Console.app, syslog, tail, and less.

P A monitoring policy helps a business determine what to monitor, who has access, how

long to keep log files, and what the response to issues will be.

P Apple provides many tools along with Mac OS X to monitor the state of the system and its

utilization. Some of these tools are specific to, and only work with, the Xserve hardware.

P There are many options for creating reports on systems running Mac OS X, including

Apple Remote Desktop, system_profiler, third-party applications, and custom scripts.

review Quiz
1. What is the name of the logging daemon used in Mac OS X?

2. How does the Apple System Logger (ASL) differ from traditional UNIX logging daemons?

3. What is the purpose of log levels and facilities?

4. Do all programs need syslogd to create logs?

5. Name two statistics to help determine CPU usage.

6. What is the graphical application that allows an administrator of an Xserve to send

notifications when problems are detected with its hardware?

218 Monitoring Systems

Answers

1. syslogd is the logging daemon used in Mac OS X.

2. ASL immediately writes all entries to a database at /var/log/asl.log. It is a binary file

that can only be inspected using the syslog command-line tool or various interfaces.

3. Log levels and facilities help classify a log entry. The level determines the severity of the

message, and the facility helps determine which subsystem sent the message. The Apple

system logger can also route messages based on their level and facility designation.

4. Since a log file is simply text, a program is free to create its own method of logging

and determine where to put that method on disk.

5. CPU percentage and load average are two statistics that help determine CPU usage.

6. Server Monitor.app is the graphical application that allows an Xserve administrator to

send notifications when problems are detected with the hardware.

This page intentionally left blank

9
 Time This lesson takes approximately 90 minutes to complete.

 Goals Learn how automation through scripting benefits administrators

 Learn about different automation technologies included with Mac OS X

 Learn about launchd and its importance to Mac OS X

 Learn how to convert legacy job control systems into launchd jobs

221

Chapter 9

Automating Systems

The graphical user interface of Mac OS X is highly regarded by many.

You can accomplish almost everything by dragging a mouse pointer

around the screen. Crucial for administrators, Mac OS X also contains

scripting frameworks that allow for powerful automation: the auto-

matic actions of systems, reducing or eliminating the need for human

intervention.

Automation benefits many of the tasks involved in system administra-

tion. Automating your system spares an administrator from manually

performing time-consuming tasks and raises quality as consistency is

ensured. From manipulating user accounts to installing packages on

thousands of machines, it’s in an administrator’s best interest to learn

ways to automate these tasks.

222 Automating Systems

Understanding Mac OS X Automation
Mac OS X is truly an automator’s dream system. While many administrators know one

or two technologies that Mac OS X offers for scripting and automation, few realize all of

the possibilities.

The original Apple-created scripting language, AppleScript, is alive and well in Mac OS X,

along with Automator, a new AppleScript-inspired tool. Automator allows you to auto-

mate tasks even if you are relatively inexperienced with scripting or programming.

Mac OS X features many technologies that are well-known on other platforms: shell

scripting; Perl and Python (discussed in this chapter); and PHP, Tcl, and Ruby. Any of

these languages can call and be called by AppleScript.

Specifically, the following shells are included with the system:

P bash—The “Bourne-again” shell (the default shell)

P sh—A copy of the bash shell, which behaves like the original sh shell when called as sh

P csh—The C shell

P tcsh—The Tenex C Shell (enhanced csh)

P ksh—The Korn shell

P zsh—Similar to ksh (includes features from csh, tcsh)

P tclsh—Shell-like tool for the Tool Command Language (Tcl)

All shells are stored in the /bin directory except tclsh, which is in the/usr/bin directory.

All of these technologies differ in their specific approach, but share some overall similari-

ties: Each scripting technology can interact with the user to some extent, use variables

to store values, make decisions (called flow control), and perform an action one or more

times (called looping).

A major addition to Mac OS X starting with v10.4 is launchd, a daemon responsible for

starting up the system, starting jobs on a schedule or on demand, and handling shut-

down. Leopard delivers the second revision of launchd, adding more capabilities. Unlike

the scripting technologies just discussed, launchd is not a language and does not share the

same capabilities; it is used to start scripts written in a scripting language. This chapter

covers launchd separately from the other technologies.

Comparing Automation Technologies 223

Comparing Automation Technologies
You do not need to master every automation technology, but it helps to know the

strengths and weaknesses of each when tackling certain problems. Because of the variety

of capabilities, it’s to your advantage to be familiar with several languages. For example,

bash can quickly loop over shell commands to touch many directories, but is poor at tak-

ing advantage of Mac OS X application programming interfaces (APIs), which are native

methods of the operating system to support requests from programs. While an exhaustive

look at each scripting environment is beyond the scope of this book, this section intro-

duces the most popular languages: bash, Python, and AppleScript.

Using bash
Unlike other scripting environments, bash is a scripting language and an interactive shell. By

default, bash is what is running “inside” Terminal.app. Mac OS X has other shells, but bash

is the default when creating a new account. The bash shell also will often be your interface

when running executables written in any language, compiled or interpreted. For this reason

alone, it is important to become familiar with working in bash. The bash shell excels at batch-

ing shell commands and at general automation. It is poor at database access, fast math, and

lengthy programs. It is typically used to automate system maintenance.

When running Terminal.app, bash awaits your command at the prompt. By default, the

prompt is a dollar sign ($) and a cursor that marks the point of insertion for typing. When

you type a command and press Return, bash goes to work. First, bash locates the command,

creates a subshell (this action is also called forking) in which to run the command, runs the

command, and waits for completion. Administrators who repeatedly type the same com-

mands to achieve a task now can put those commands into a file and make them executable.

This file is called a script. When a script is run, it will execute all of the commands in the

file. For example, if, as an administrator, you check disk capacity every morning by logging

in and typing df -h, you could replace this action with a script. You can run the following

sample script on a server to gather the disk capacity data and mail it to an email address:

#!/usr/bin/env bash

MAIL_ADDRESS=”admin@pretendco.com”

df -t hfs -h > /tmp/diskcap.txt

mail -s “Disk Report” ${MAIL_ADDRESS} < /tmp/diskcap.txt

rm /tmp/diskcap.txt

224 Automating Systems

This script nicely illustrates several features of the bash shell. When a script is run, it is

evaluated line-by-line, in order, top to bottom.

The first line is the shebang line that informs the shell which interpreter to use when run-

ning this script. In this case, it’s a bash script, so bash will find out that the commands

should be run through bash itself.

Next, the script sets a variable. A variable is a name that stands for a value. In this case,

MAIL_ADDRESS is assigned the value admin@pretendco.com. When a variable is created, just the

name of the variable is used, and an equals sign (=) with no spaces on either side is used

to assign a value. When the variable is referenced, a dollar sign is used to show that it’s

not to be taken literally.

The next line demonstrates output redirection. The df command is run (see “Determining

Disk Utilization” in Chapter 4 for more information on df), and the greater-than sym-

bol (>) captures any output destined for stdout and redirects it into the file listed:

/tmp/diskcap.txt. The following line demonstrates input redirection. The mail command

receives the contents of the file after the input redirection symbol, the less-than sign (<),

and uses it as the body of the email.

The same line references the MAIL_ADDRESS variable. The bash shell basically replaces the

name ${MAIL_ADDRESS} with its value before running the mail command. In a larger

script, variables are critical to program maintenance and readability.

Finally, the script uses an rm command to remove the file that you created.

The script is typed into a regular text editor: TextWrangler, TextMate, and vi are all good

choices. It is important that you save the file as plain text, and not in a word processing for-

mat like Microsoft Word. (Although Word can save in plain text, it’s not the default format.)

Once you’ve saved the script in a file, you must make the script executable. This is accom-

plished using the chmod command:

chmod 770 name_of_script

You can then run the script by specifying a full or relative path to the new executable.

If you’re working in the same directory as the script, you must still provide the current

directory. So, for a script named diskcap.sh, you would run it from the current directory

with this command:

./diskcap.sh

Comparing Automation Technologies 225

Alternatively, you can specify the fully qualified or absolute path. If this file was saved in

your home directory, and your user name is “bill”, this command would be:

/Users/bill/diskcap.sh

Paths play an important role in the shell. A path generally refers to the on-disk hierarchy

to find a particular folder or file. For example, the path to the Apache web server’s con-

figuration file, http.conf, is /etc/apache2.

The shell, when asked to run a program, will search a default set of locations. For this

reason, you don’t have to type the full path for certain commands. Consider the df com-

mand (see “Determining Disk Utilization” in Chapter 4). The command resides in the

/bin directory. You don’t need to type the absolute path, /bin/df, because the /bin direc-

tory is specified in the shell’s search path. The bash shell looks at the directories specified

in the $PATH shell variable, and searches each in turn, looking for the specified command.

The first executable file found that is matched by name is run. That is, if two executable

files with the same filename reside in different directories, both of which are in the search

path, the first found is executed. If the shell does not find a match, it prints a “command

not found” error:

$ commence_plan.sh

-bash: commence_plan.sh: command not found

You can find all current shell variables using the set command. The $PATH variable stores

the current search path, which is easier to find when filtered out with grep:

$ set | grep ^PATH

PATH=/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

Another method of displaying an environment variable is to use echo:

$ echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

A colon (:) separates each individual absolute path in the overall search path. When bash

is asked to run an unqualified executable, each path listed in the $PATH variable will be

searched by bash in order. For example, using the list shown in the preceding echo state-

ment, bash would first search /usr/bin, and then /bin, then /usr/sbin, and so on. Each

path in the example above ends in “bin” (but doesn’t have to). In this case, bin is short

226 Automating Systems

for binary, and the directory where UNIX systems have traditionally stored binary (or

compiled) executables. Nowadays, not every executable in a bin directory is actually a

binary—often the executable will be interpreted scripts written in bash, Perl, or Python—

but the spirit is the same.

The $PATH variable is an environment variable. An environment variable is a shell vari-

able exported with the export keyword. A standard shell variable and an environment

variable differ in subtle but important ways. When the shell runs a command, it forks off

a subshell in which the command is run. Only environment variables are passed into, or

inherited by, subshells. You can display current environment variables using the env com-

mand. Create a shell variable with a simple assignment:

$ color=blue

Use the export command to create an environment variable:

$ export city=NY

Combining bash and User Attributes

Closing the current shell, which happens after rebooting or exiting a shell intentionally, dis-

cards the shell and environment variables mentioned in the previous section. How are all of

the variables set in the first place, and how can you set your own to affect your session?

The bash shell looks for certain files as it starts up. First, it looks for and executes

/etc/profile, if the file exists. This affects all users logging in. After processing /etc/profile,

bash processes the user-specific files in the current user’s home directory, in the order

~/.bash_profile, ~/.bash_login, and ~/.profile. The bash shell reads and executes commands

from the first file that exists and is readable. These files create the startup environment.

You should put systemwide variables and startup scripts into /etc/profile. But do not store

password information in this file (for example, to run a program that needs a password

passed to it on the command line); login shells need access to /etc/profile, so it’s open for

anyone to read.

You should place options specific to a user in one of the personal files in a user’s home

directory—typically ~/.bash_profile. The contents of these files are run at shell login, and

can be used to set variables or run utilities. A common use of a ~/.bash_profile startup is

to alter the default $PATH variable and set the shell prompt.

Comparing Automation Technologies 227

As an administrator, you’ll need a root-level shell to view the profile scripts of other users.

For example, if you need to look at the profile for the user “tim,” use cat or less with sudo:

$ sudo less /Users/tim/.bash_profile

Getting Help

While there are many books, articles, and web tutorials about the bash shell, often you

need help on-the-spot. The bash shell offers built-in help in the form of man pages. “man”

is short for manual, and the “pages” in man contain information on individual commands

and their options, including ways to influence the behavior of the bash shell itself. They

even contain help on the man command (man man!).

Using man is as simple as typing the man command followed by the command for which

you want help. For example, if you can’t recall the multitude of switches that the ls com-

mand uses to format its output in a particular fashion, type the following and then press

Return to fill your terminal with the man page:

man ls

You can use these navigation and search techniques:

P Navigate the page with the Up and Down arrow keys to move one line at a time.

P Press the Space bar to move forward one page at a time.

P Press Control-F and Control-B to move forward and backward one page at a time,

respectively.

P Search for words by pressing the forward slash (/) and typing a pattern to search for.

The pattern is actually a regular expression. When searching literally for any of the

following characters, you must type a backslash (\) before the character (called escap-

ing the character):

P Square bracket: [

P Backslash: \

P Caret: ^

P Dollar sign: $

P Dot: .

228 Automating Systems

P Pipe: |

P Question mark: ?

P Asterisk: *

P Plus sign: +

P Parenthesis: ()

P Curly braces: {}

For example, to find “3.1”, you would type 3\.1 to escape the dot.

To have man search for keywords across multiple man pages, use the -k switch:

$ man -k sort

radixsort(3), sradixsort(3) - radix sort

scandir(3), alphasort(3) - scan a directory

slapo-valsort(5) - Value Sorting overlay

sort(1) - sort lines of text files

texindex(1) - sort Texinfo index files

top(1) - display and update sorted information about processes

tsort(1) - topological sort of a directed graph

(some output removed for space considerations)

Many of the options returned may seem similar to other options, or even have the same

name. The number in parenthesis beside each name lists the section or the manual that

it comes from. You can think of the section number as a chapter number, with each chap-

ter being dedicated to one style of command. The sections are organized into the follow-

ing categories:

1. General User Commands

2. System Calls

3. Library Routines

4. Special Files and Sockets

5. File Formats and Conventions

6. Games and Fun Stuff

Comparing Automation Technologies 229

7. Miscellaneous Documentation

8. System Administration

9. Kernel and Programming Style

You can use the section number to open a man page for a specific variant of a command.

For example, when typing man –k open, you’ll find both an open (1) and open (2).”. To

open the specific man page, tell man the section number:

man 2 open

This will display “open” from section 2, “System Calls,” rather than “open” from section 1.

The individual man pages are simply individual files on the system disk. The man program

knows where to find man pages via the $MANPATH shell variable. Much like the shell search

path shown earlier, the $MANPATH variable contains a colon-separated list of file system

paths in which to find man pages. To find the current list of man page locations, use set and

then use grep to filter on MANPATH:

$ set | grep MANPATH

MANPATH=/usr/share/man:/usr/local/share/man:/usr/X11/man

The three paths in the example are the default locations where Mac OS X stores the

man pages.

Finally, many commands will give help directly when called with the --help switch, or

with no parameters:

$ man --help

man, version 1.6c

usage: man [-adfhktwW] [section] [-M path] [-P pager] [-S list]

 [-m system] [-p string] name ...

 a : find all matching entries

 c : do not use cat file

 d : print gobs of debugging information

(output removed for space considerations)

230 Automating Systems

Having local man pages available can enable you to get help on-the-spot, rather than have

to search for the answer in a book or on the web.

Employing Flow Control

Without flow control, a bash script is really a batch processor: It takes a list of commands

and runs them one at a time in order. While that sequential approach can be useful,

flow control allows your script to take different paths based on certain conditions. This

directed approach makes a script much more powerful than a simple batching of com-

mands. The flow control statements in bash allow a script creator to test for the presence

of files, whether a program succeeded or failed, and compare variables. They also allow

repeating sections of a script, called looping.

To test conditions, use an if statement. Here is the generic version:

if condition; then

 true branch

else

 false branch

fi

The else section is optional. Unlike many high-level languages that actually include tests

for different variable types, bash only gives the illusion of doing so. All the if statement

can test is a program’s exit code. By convention, when a program exits, it passes a numeri-

cal value back to the program that started it—its exit code. In this case, that program is the

bash shell itself. An exit code of 0 specifies success. Any other number denotes a warning

or failure. The bash shell uses this exit code to determine which branch to take in an if

statement. For example:

if grep -qi fail /var/log/syslog; then

echo “Failure conditions in the log”

fi

When grep runs, it will return an exit code to if. On finding the text in the file, grep is

successful and returns a 0. If grep does not find the text it is looking for, or the file doesn’t

exist, it returns a non-zero result. With this success error code, if allows the echo state-

ment to run and print its message.

Comparing Automation Technologies 231

The bash shell’s test command, or [, can perform many different tests and return the

result as an exit code. In this way, bash flow control allows almost arbitrary testing, beyond

just exit-code testing. See the test man page for the full list of tests that bash can perform.

(For information on using man pages, see “Getting Help” earlier in this chapter.)

Besides a binary yes/no in the if flow control, the for loop provides looping. A loop repeats

the same section of code until a condition is met. Here is the generic for loop:

for variable in (list); do

 [commands to repeat]

done

The best way to describe bash’s for loop is with an example:

for i in a e i o u; do

echo ${i}

done

Each pass through the loop assigns each letter in the list to the variable $i. The loop is

complete when the elements in the list have been exhausted. The list can be generated at

runtime. For example:

for i in `grep -l Edward *`; do

mv ${i} /Shared/ed_files/$1

done

In this example, the grep statement outputs a list of files that contain the string Edward. One

at a time, the body of the loop moves the file specified to the /Shared/ed_files directory.

Using Alternate Shells
The bash shell is the default shell when creating a new user, but it’s not the only option of

the many popular shells bundled with Mac OS X. Users who want to change their shell

probably know how to do so. But users may have reasons for wanting a particular shell.

Someone may want to be set up with a particular shell from the start. Users who have

upgraded to Mac OS X since v10.3, when tcsh was the default shell, and have kept their

home directory intact, will still have the tcsh shell in effect. They may want to change

over to bash.

232 Automating Systems

It is simple to change the default shell in the various graphical user interfaces that alter

user information. Additionally, Mac OS X includes the traditional UNIX chsh (change

shell), which has been updated to change the shell information in the right place.

Users can update their own shell by invoking chsh. This example changes the current

user’s shell to /bin/csh:

chsh /bin/csh

As root, you can alter other users’ shell preference. Use the -u switch to specify the user.

The following example changes the user marczak to use /bin/zsh:

chsh -u marczak /bin/zsh

In Mac OS X, this information is stored in the user record in Directory Services, which

can be read with dscl:

dscl localhost read /Search/Users/username UserShell

Using Mac OS X–Specific Commands
With foundations in traditional UNIX, Mac OS X also includes many Mac OS X–specific com-

mands in the operating system. In many cases, using the Mac OS X–specific command is the

only way you can script a solution. If you’re coming to Mac OS X from another platform, you

need to be aware of these methods. Always search man pages when looking for commands that

alter system settings; see “Getting Help” in this chapter for more information.

defaults

The defaults command allows users to read and write entries from user defaults (prefer-

ences). Mac OS X stores user defaults in plists (property lists). Increasingly, these plist files

are binary rather than plain text, making direct editing difficult. Each preference file is

considered a domain. To read or write a value from a domain, use the read or write verbs,

respectively. For example, to find the current defaults about the desktop background, you

can read the information from the com.apple.desktop domain:

defaults read com.apple.desktop Background

To find a specific value, you can read an entire preference file:

defaults read com.apple.iChat | less

Comparing Automation Technologies 233

When a preference to change has been identified, you can use the write verb to write the

key and value to the user defaults:

defaults write com.apple.iChat UseSingleChatWindow 1

If the specified key exists, it is overwritten. If it does not exist, it is created.

Machine-wide defaults can be altered using sudo and specifying the /Library/Preferences path:

defaults read /Library/Preferences/com.apple.loginwindow

User preferences typically appear in a program’s preferences menu item. However, often

options are not available through this menu—so-called hidden preferences. The defaults

system allows administrators to script these changes, which can, in turn, affect many

machines in an automated way. See the defaults man page for more options; for informa-

tion on using man pages, see “Getting Help” earlier in this chapter.

systemsetup

The systemsetup command allows command-line scripting of most values in System

Preferences. For example, to display the current boot disk, supply the -getStartupDisk switch:

$ systemsetup -getstartupdisk

/System/Library/CoreServices

You can find valid boot disks using the -listStartupDisks switch:

$ systemsetup -liststartupdisks

/System/Library/CoreServices

/Volumes/Server_Backup/System/Library/CoreServices

/Volumes/ServerAlt/System/Library/CoreServices

You can supply any of the values from the -listStartupDisks list to systemsetup and the

-setStartupDisk switch:

systemsetup –setstartupdisk /Volumes/Server_Backup/System/Library/CoreServices

Sometimes systemsetup and other ways of changing system preferences overlap.

However, systemsetup is usually more efficient and may change values in several places

with a single command.

234 Automating Systems

networksetup

While Mac OS X contains the full breadth of traditional UNIX command-line utilities,

some may not work as expected, especially when it comes to setting values. For instance,

the ifconfig command works as expected to read information about a network interface.

However, the Mac OS X automatic configuration system, configd, will override changes

made with ifconfig. The networksetup command can alter all aspects of network inter-

faces and their properties in a way that Mac OS X expects. networksetup uses an interface’s

“friendly name” (the name presented in the Networking Preference pane, not the Berkeley

Software Distribution [BSD] device name) because system labels are ephemeral and may

change between boots.

To list the network services by name, use the -listAllNetworkServices switch:

networksetup -listallnetworkservices

An asterisk (*) denotes that a network service is disabled.

Built-in Ethernet

*Built-in FireWire

*AirPort

*Bluetooth

FireWire

For example, to display current Domain Name System (DNS) servers for the Built-in

Ethernet interface, use the -getDNSServers switch:

networksetup -getdnsservers “Built-in Ethernet”

127.0.0.1

Other Mac OS X–Specific Commands

You should be aware of the following commands. Most of them are covered elsewhere in

this book, but are included here for the sake of completeness.

system_profiler—Reports on system software and hardware configuration

dscl—Directory Services Command Line; reads and writes values relating to bound direc-

tory services

dsimport—Directory Services Import

osascript—Runs AppleScript commands and other OSA language scripts from the com-

mand line

Comparing Automation Technologies 235

automator—Starts Automator workflows from the command line

lpadmin—Along with other lp commands (lp, lpc, lpinfo, lpmove, lpoptions, lppasswd, lpq,

lpr, lprm, and lpstat), allows printer queue querying, manipulation, and maintenance

Using Python
Python is a unique language that blurs the line between a scripting language and a full

programming language. As many companies, including Apple, have adopted Python for

their projects, this section presents the bash examples from this chapter in their corre-

sponding Python code. These examples should help you understand what you’re looking

at if you ever need to investigate a Python script.

Python excels at just about everything. Many libraries are available that allow Python to

access databases, create graphical user interface applications, and interact more closely

with the system. When you first execute a Python file, it is compiled into an intermediary

byte-code file. This format greatly speeds future executions. The only potential downside

to Python is that not all system administrators know it, making code written in Python

more difficult for others to maintain.

Python scripts should start with the following shebang (#!) line to denote the Python

interpreter that should run the program:

#!/usr/bin/env python

Variables are straightforward assignments in Python. Just do it:

b=7

print b

To reference a variable, you need only its name, no dollar sign. Python specifies strings

using single, double, or triple quotes (that is, three single quotes). Triple quotes allow

multiline strings.

Rather than using braces or other keywords to denote the start and end of a block of code,

Python relies on the indent level. Flow control statements use this fact to set the code.

Here is a sample comparison (if) statement:

if name==”mike”:

 print “Hello, Mike”

236 Automating Systems

Python has several types of loops. One is a while loop; code repeats while a condition is true:

b=5

while b>0:

 print b

 b=b-1

Like bash, Python also has a for loop:

for i in range(1, 5):

print i

In Mac OS X, Apple has increased the use of Python in several ways. It is now a first-class

language in Xcode, and can make Objective-C API calls. Python is a deep, object-oriented

language that cannot be summed up in a short space. For more information, you can refer

to many excellent books and sources of information on the subject.

Using AppleScript
AppleScript is the original scripting and automation language for Macintosh. Created by

Apple in 1992, it is an English-like language, designed to be easy for beginners to learn.

It is unique in many respects, not the least of which is that it is a graphical user interface

scripting language. This means that is it designed to query and manipulate objects in the

graphical user interface (remember that before Mac OS X, there was no command line

in the Macintosh). This section will present the examples from the bash section in their

AppleScript form as closely as possible.

AppleScript is tightly integrated with Mac OS X. As a graphical scripting language, it can

interact with graphical user interface elements in ways that are more difficult or impos-

sible for other languages to match. It is the closest thing to a native scripting language that

Mac OS X has, and is easy for nonscripters to pick up. One downside is its comparatively

slow speed of execution. Also, not all applications are AppleScript-friendly and they can be

difficult to script. Finally, AppleScript is implemented as a component of the Open Scripting

Architecture (OSA), which provides a standard and extensible mechanism for interapplica-

tion communication in Mac OS X.

Mac OS X includes the Script Editor application, found in Applications > AppleScript,

designed to edit and execute AppleScript code.

Comparing Automation Technologies 237

Variables in AppleScript are assigned with the set keyword:

set theText to “Hello there!”

display dialog theText

With no shell environment, text output must be displayed in the graphical user interface

in some manner. The display dialog function places a string in a dialog box with an OK

button for dismissal. As with any other scripting language, flow control in AppleScript

plays an important role.

The if conditional statement uses the then and end if keywords to denote the block of

code to execute:

if the percent_free is less than 10 then

 display dialog “The startup disk is low on space!”

end if

Looping is accomplished with a repeat statement:

set wordList to words in “This short list”

repeat with currentWord in wordList

 display dialog currentWord

end repeat

This example displays a dialog box three times, each time with a word from the wordlist

variable.

AppleScript can run shell scripts of any variety with its do shell script command.

AppleScript code can also be called from the command line or a script using the osascript

command. For example, to display a dialog box in the Finder with the text “Alert!,” the

following command could be used:

$ osascript -e ‘tell application “Finder”’ -e “activate” -e “display dialog

\”Alert!\”” -e ‘end tell’

The osascript command can also run commands contained in a file. For example, to run

the script file alert_me.scpt, the following command could be used:

$ osascript /path/to/alert_me.scpt

238 Automating Systems

Finally, note that AppleScript is used extensively throughout the graphical Automator.app.

You can download the Apple AppleScript reference free from http://developer.apple.com/

documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_

intro.html.

Using launchd
To be familiar with Mac OS X, you must become familiar with launchd. An Apple-created

technology, launchd is the master way to launch, monitor, and maintain jobs. It encom-

passes a wide range of system functionality previously handled by many separate subsys-

tems. The launchd man page describes it as the “System-wide and per-user daemon/agent

manager.” Actually, launchd runs everything. As process ID number 1, launchd is responsible

for tasks such as booting the system and running boot-time jobs, through launching

applications run via a double-click in the Finder. It also makes the system more efficient

in various ways.

About launchd
The impetus behind launchd was the combination of separate subsystems that made it dif-

ficult to choose a startup method and, for administrators, to manage jobs once they had

been started.

In its first versions, Mac OS X (and NEXTSTEP before it) took a lot of time-tested UNIX

technology verbatim. If you look on a computer running Solaris or IRIX and a Mac OS X

v10.3 computer, you’ll find many of the same system daemons: init to start the system

(process ID 1), the /etc/rc script for boot-time configuration and launching, at and cron

for scheduling jobs, and inetd to manage access to starting daemons based on network

events. While each of those systems developed variants over the years—anacron for cron,

and xinetd for inetd, to name two—the fact remained the same: There were many ways

to start jobs during and after bootup. Apple also brought methods into the mix with

SystemStarter and mach_init.

The transition to launchd functions began with its introduction in Mac OS X v10.4.

http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html

Using launchd 239

exploring launchd Functions
Think of launchd as a one-stop shop. If you need to perform some action with a job, use

launchd to do any of the following:

P Launch a program initially or on a schedule.

P Ensure that your program gets restarted if it crashes.

P Load new jobs post-boot and unload jobs that are running. (Technically, a user space

program called launchctl handles these actions, but it is a component of launchd.)

The Apple-created launchd system takes over for several other disparate components in

Mac OS X, such as the following:

P init

P SystemStarter

P mach_init

P /etc/rc

P at

P cron

P watchdog

P xinetd

In Leopard, some of these subsystems, such as cron, still exist and function, but all have

either been heavily deprecated or simply dropped. For example, watchdog is gone; to repli-

cate its functions, you need to use launchd. at still exists, but is disabled by default. To use

at, you need to enable it via launchctl using root-level privileges:

#launchctl load -w /System/Library/LaunchDaemons/com.apple.atrun.plist

Using launchd plists
How does launchd function, and how can an administrator interact with it? During boot-

up, once the kernel is loaded and initializes itself, it launches launchd, which becomes

PID 1 and manages the system from that point. Using launchd is as simple as installing a

plist in the right place.

240 Automating Systems

launchd relies entirely on properly formatted plists being in the right place. When launchd

becomes PID 1 and takes over, it scans a series of directories. These directories follow the Apple

schema for other file locations. Table 9-1 summarizes each location and its use for launchd:

Table 9-1 Directory Location of Plists and launchd Use

File Location launchd Use

/Library/LaunchDaemons Per-machine jobs provided by a sysadmin

/System/Library/LaunchDaemons Per-machine jobs supplied by Apple

~/Library/LaunchAgents Programs run in a user’s session

/Network/Library/LaunchAgents Per-user program installed by sysadmin; affects

all systems on a network (bound to the directory

service)

/Library/LaunchAgents Per-user jobs installed by sysadmin; run for each

user on a single machine

/System/Library/LaunchAgents Per-user jobs provided by OS X

A plist is an XML-based file consisting of keys and values. Plists can be plain text or

binary, but launchd uses only plain-text plists.

A launchd plist has only three required keys: Label, ProgramArguments, and KeepAlive.

(KeepAlive is new to v10.5 and replaces the now-deprecated OnDemand.)

The Label key gives the launchd job a unique name. This name is entirely user-supplied, and

can technically be any string. Popular convention, though, is the reverse-DNS naming scheme

popularized by Java. A label is permanent, meaning that you can always refer to the job by this

name (unlike a Process ID [PID], which, if the process restarts, will get a new PID).

ProgramArguments denotes the program to be run and, if applicable, any arguments that the

program should be run with.

While launchd will load a plist without a KeepAlive key, its explicit use is recommended.

The KeepAlive key in many respects replaces watchdog. If set to false, launchd will run the

Using launchd 241

program only when asked to by some condition. If set to true, launchd will see to it that

the program stays alive. If it crashes or exits, launchd will restart it. Here’s a short example

that will keep TextEdit running all the time:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/

PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.radiotope.textedit</string>

 <key>KeepAlive</key>

 <true/>

 <key>ProgramArguments</key>

 <array>

 <string>/Applications/TextEdit.app/Contents/MacOS/TextEdit</string>

 </array>

</dict>

</plist>

Save this file in your home directory in the Library/LaunchAgents directory. Filename

convention is to use the label plus “.plist.”

Note that the plist requires a valid XML and DOCTYPE header. The remainder of the

plist is wrapped in a <dict> tag, as each key is a part of this master dictionary. In this

example, the value for label is the string com.radiotope.textedit.

KeepAlive is set to true, so once launchd runs TextEdit, even if it exits, launchd will restart it.

launchctl is the user-level interface to launchd. The load verb is used to load a job into

launchd. Because the specification for this job is not disabled, and is set to be kept alive,

launchd runs the job immediately:

$launchctl load ~/Library/LaunchAgents/com.radiotope.textedit.plist

Press Return to launch TextEdit. (If TextEdit appears behind Terminal.app, hide Terminal.

app, or press the Command-Tab key to bring TextEdit to the foreground.)

242 Automating Systems

Type something if you wish, but, more importantly, quit TextEdit. TextEdit should launch

again immediately. Quitting TextEdit too quickly between restarts delays the next launch

and logs a message in system.log as follows:

Apr 26 17:22:13 jack-kerouac com.apple.launchd[111] (com.radiotope.textedit):

Throttling respawn: Will start in 3 seconds

To verify that launchd still has a particular job loaded, you can use the list verb to display

a context-sensitive list of all jobs. (For example, a user’s list will appear differently than a

separate user’s list or root’s list.) Filtering with grep will help you pick out a specific job:

$ launchctl list | grep textedit

32563 - com.radiotope.textedit

When you want to quit TextEdit for good, switch back to the shell, and use launchctl to

unload the plist:

$ launchctl unload -w ~/Library/LaunchAgents/com.radiotope.textedit.plist

The -w flag marks the job as disabled, so launchd will not start this job again at next login.

You can also delete the plist.

As an administrator, it’s important to understand the layers that launchd uses, as shown in

this figure:

Using launchd 243

Per-session (agents) programs do the following:

P Interact with a user (have an interface)

P Come and go with login and logout

Per-user (background apps) applications do the following:

P As user agents, run as a user in the background

P Affect only one user

P Are designed for automation or personal processes

Per-machine (daemons) programs do the following:

P Arbitrate hardware systemwide (such as plugging in a new disk)

P Require codes to share hardware between user processes

Depending on the layer that you’re targeting and the scope that you want to affect (one

user on a machine, every user on a machine, or potentially every user on a network),

you’re told in which directory to create a plist.

When setting up a launchd plist to manage daemons or agents, it’s important to follow

certain rules that launchd expects of those programs. As specified in the launchd.plist man

page, a daemon or agent launched by launchd must not do the following in the process

directly launched by launchd:

P Call daemon(3)

P Do the moral equivalent of daemon(3) by calling fork(2) and have the parent process

exit(3) or _exit(2)

A daemon or agent launched by launchd should not do the following as a part of its startup

initialization:

P Set up the user ID or group ID

P Set up the working directory

P chroot(2)

244 Automating Systems

P setsid(2)

P Close “stray” file descriptors

P Change stdio(3) to /dev/null

P Set up resource limits with setrusage(2)

P Set up priority with setpriority(2)

P Ignore the SIGTERM signal

Besides keeping a program running full-time, launchd can also start programs based on the

following conditions:

P Activity on a network port

P Change in a file

P Change to a directory’s contents

P File system mounting

P Set interval (for example, every 5 minutes)

P Specific date and time

For example, to have a program launch every time a volume is mounted, set the KeepAlive

key to false, and the StartOnMount key to true:

<key>StartOnMount</key>

<true/>

To run a script or program every 5 minutes, use the StartInterval key:

<key>StartInterval</key>

<integer>300</integer>

The integer value is measured in seconds. To cause a job to start at a specific time, use the

StartCalendarInterval key. This key uses a dictionary that uses the integer keys of minute,

hour, day, weekday, and month to describe the time to run this job. Any missing values are

considered wildcard values. For example, to run a job every day at 0300 hours (3 a.m.),

specify the dictionary of keys like this:

<key>StartCalendarInterval</key>

 <dict>

Using launchd 245

 <key>Hour</key>

 <integer>3</integer>

 <key>Minute</key>

 <integer>00</integer>

 </dict>

The hour key looks for integers in a 24-hour range (0 to 23). The weekday key ranges

from 0 to 6, with 0 being Sunday.

The Sockets key allows launchd to listen on a network socket on behalf of a program. The

Sockets key expects a dictionary of Listeners—another key. To bind to a specific port,

use the SockServiceName listener key. Its value is a string that represents the port to bind to,

either as a service name or port number. The following example causes launchd to listen

to port 8090, and start the program on activity on that port:

<key>Sockets</key>

 <dict>

 <key>Listeners</key>

 <dict>

 <key>SockServiceName</key>

 <string>8090</string>

 </dict>

 </dict>

Two keys, WatchPaths and QueueDirectories, trigger a program run on file system changes.

WatchPaths watches individual files, while QueueDirectories watches directories and runs

the specified program as long as the directory is not empty. Both keys expect an array of

strings containing full paths to their target. In this example, if the file /Users/Shared/

trigger.txt is created or modified, the program specified in the plist will be run:

<key>WatchPaths</key>

 <array>

 <string>/Users/Shared/trigger.txt</string>

 </array>

There are many more keys to fine-tune a program and how it runs. See the launchd.plist

man page for more information. For more information on using man pages, see “Getting

Help” earlier in this chapter.

246 Automating Systems

Using launchd for Other System efficiencies
launchd does more for a system and administrator than simply remove and consolidate

legacy subsystems. It also makes the system more efficient in ways that the subsystems

could not.

One way that launchd makes resource use of the system more efficient is by not running a

program until it’s actually needed. For example, when a plist specifies the KeepAlive key

with a value of false, the program is not loaded until actually needed. This contingency

prevents a program that may never be run from consuming any resources. The practice

applies to plists using WatchPaths, QueueDirectories, and even Sockets. For plists that use

Sockets to specify a network port on which to listen, launchd simply reserves the port, but

does not run the program until activity occurs on the port.

Another way launchd optimizes systems is by booting them asynchronously. launchd can

run any job, in any order; this speeds boot time dramatically. Long-time Mac OS X users

may have noticed boot times getting faster. This speed-up is certainly due to the evolution

of faster hardware, but launchd also plays a major role.

launchd also makes the job of administrators easier by consolidating job maintenance into

a single interface. One interface makes it easier to understand which jobs are loaded and

ready to run. Job maintenance becomes clearer because each job must be described in a

plist, stored in a well-known location. Because each launchd plist can describe all attributes

needed by a job, it’s easier to change attributes across jobs.

Finally, launchd has been released as open source software under the Apache license. At

http://launchd.macosforge.org you can find the source to the entire program. This is the

most valuable way to become familiar with launchd.

Using Other Automation Technologies
On the Mac OS X timeline, launchd is a fairly new system, and the version that ships with

Leopard is even more powerful than the introductory version that appeared in Tiger. Prior

to the introduction of launchd, several subsystems existed to help boot the system, run

jobs at startup, and periodically schedule jobs. Some of those subsystems, now considered

deprecated, still exist. Others are a current part of the system and work in concert with

http://launchd.macosforge.org

Using Other Automation Technologies 247

launchd. Following are descriptions of subsystems that existed before launchd that you may

need to convert into launchd jobs.

cron
A job scheduler, cron is deeply rooted in UNIX. launchd now has the capability to sched-

ule a job as well as cron, and Apple has converted all system cron jobs to use launchd. But

because many third-party utilities are still not launchd savvy, you can expect cron to hang

around for a bit.

If you’ve worked with cron on another system, you can apply that knowledge to Mac OS X,

and have cron behave as expected. If you don’t have experience with cron, you’re better off

mastering launchd at this stage. However, you may run into cron jobs on older systems that

you’d like to convert to a launchd plist. This section shows you how.

cron runs jobs based on a schedule set down by crontab files. Crontabs are plain-text files,

in one of two types: the system crontab files and user crontab files. The two differ only

slightly in format. The system crontab is stored in /etc/crontab, although this isn’t present

on v10.5 by default. User crontabs are stored in /usr/lib/cron/tabs. You should edit user

crontabs using the cron command, with the -u switch to denote the user, and the -e switch

to specify an edit.

In either type of crontab file to be converted to a launchd plist, there is one line per scheduled

job. Each line contains a scheduling designation, and the program to execute. For example:

35 5 * * * /private/var/root/bin/backup.sh

The first five fields specify when to run the job. In order, they are:

P Minutes: The minutes after the hour, 0 to 59

P Hours: The hours of the day, 0 to 23

P Day: The day within a month, 1 to 31

P Month: The month of the year, 1 to 12

P Weekday: The day of the week, 0 to 6 (0 = Sunday)

248 Automating Systems

The StartCalendarInterval array keys in launchd correspond directly to these fields from

cron, and use the same integer ranges. A crontab requires that each field have a value. An

asterisk (*) denotes a wildcard or “always” value, meaning that if the day field contains

an asterisk, the job runs every day. In launchd, the lack of an entry makes it a wildcard.

A launchd plist for the cron line above would look like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” “http://www.apple.com/

DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Disabled</key>

 <false/>

 <key>Label</key>

 <string>org.example.backup</string>

 <key>ProgramArguments</key>

 <array>

 <string>/private/var/root/bin/backup.sh</string>

 </array>

 <key>KeepAlive</key>

 <false/>

 <key>StartCalendarInterval</key>

 <dict>

 <key>Hour</key>

 <integer>5</integer>

 <key>Minute</key>

 <integer>35</integer>

 </dict>

</plist>

Because this particular job runs as root, it needs to be stored in the /Library/

LaunchDaemons folder.

Using Other Automation Technologies 249

SystemStarter
SystemStarter is an Apple-created system to start daemons at boot time, taking dependen-

cies into account. The advent of launchd caused the deprecation of SystemStarter. However,

you may run into some legacy SystemStarter items that you want to convert to launchd.

SystemStarter scans the /Library/StartupItems directory for subfolders. (It also scans

/System/Library/StartupItems; however, items in the System domain are not to be

altered or used by administrators. This domain is under the Apple purview and may

change with any given system update.) This folder contains two files that describe what

to run and that program’s dependencies: a plist and a shell script. The plist is always

named StartupParameters.plist. The name of the shell script is based on the startup

item and will have the same name as the enclosing folder. The following example is a

StartupParameters.plist for the Apache web server under v10.3:

{

 Description = “Apache web server”;

 Provides = (“Web Server”);

 Requires = (“DirectoryServices”);

 Uses = (“Disks”, “NFS”, “Network Time”);

 OrderPreference = “None”;

}

Description is a user-supplied description of the service. It does not influence the

startup process.

Provides specifies the services that this startup item provides. In this example, the plist

specifies that Apache provides a Web Server service.

Requires denotes dependencies for the service. Dependency tracking only works for other

startup items. SystemStarter accomplishes this by scanning the Provides field of other

startup items. Here, you can see that Apache requires DirectoryServices to be loaded

before it can launch. If it cannot find this dependency, or the dependency fails to launch

properly, Apache will not run.

Uses is similar to the Requires attribute; however, it does not stop the service from load-

ing if the other services cannot be found. SystemStarter tries to load all the services in Uses

prior to launching the item that this startup item specifies.

250 Automating Systems

OrderPreference specifies the general time period in which a startup item will be executed.

It is evaluated after the Requires and Uses attributes. Possible values for this attribute are

First, Early, None (default), Late, and Last. None simply denotes no preference.

The shell script associated with this StartupItem is as follows:

#!/bin/sh

. /etc/rc.common

StartService ()

{

 if [“${WEBSERVER:=-NO-}” = “-YES-”]; then

 ConsoleMessage “Starting Apache web server”

 apachectl start

 fi

}

StopService ()

{

 ConsoleMessage “Stopping Apache web server”

 apachectl stop

}

RestartService ()

{

 if [“${WEBSERVER:=-NO-}” = “-YES-”]; then

 ConsoleMessage “Restarting Apache web server”

 apachectl restart

 else

 StopService

 fi

}

RunService “$1”

Using Other Automation Technologies 251

It is not necessary to describe this script line-by-line, because there is only one thing

needed from it to create a launchd item: the actual daemon to execute, with its parameters,

contained in the StartService() function. In this case, it’s apachectl start. This command

would be converted to ProgramArguments keys in a launchd plist. To see how Apple chose to

approach this conversion, here’s the launchd plist—/System/Library/LaunchDaemons/org.

apache.httpd.plist—that exists in Leopard to control Apache:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” “http://www.apple.com/

DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Disabled</key>

 <false/>

 <key>Label</key>

 <string>org.apache.httpd</string>

 <key>ProgramArguments</key>

 <array>

 <string>/usr/sbin/httpd</string>

 <string>-D</string>

 <string>FOREGROUND</string>

 </array>

 <key>OnDemand</key>

 <false/>

 <key>SHAuthorizationRight</key>

 <string>system.preferences</string>

</dict>

</plist>

If you’ve read “Using launchd” earlier in this chapter, this code should be entirely clear.

What’s worth noting is that even to launch a service like Apache, the launchd plist is

straightforward and simple, with no oddball tricks. In the ProgramArguments array, Apple

launches httpd directly. This direct approach is a better way to manage launchd, because

launchd requires that the program to be run doesn’t fork or background itself. In contrast,

the apachectl script launches httpd and forks it off. Because this approach is unacceptable to

launchd, the plist specifies the httpd daemon directly, with the -D and FOREGROUND parameters.

252 Automating Systems

To cause a system daemon to run as root, store the launchd plist in /Library/LaunchDaemons.

A final note: Rather than SystemStarter’s “fire-and-forget” method of launching, launchd

can monitor any job and restart it if needed. To have launchd monitor and restart a job,

set the OnDemand key to false—or, if you use the up-to-date KeepAlive key, set it to true.

periodic
Much of Mac OS X system maintenance is automated. Behind the scenes, log files are

cleaned and rotated to stop them from filling up the system disk, databases are rebuilt,

and more.

The periodic program scans folders for jobs to run periodically based on its configura-

tion file, /etc/defaults/periodic.conf. Mac OS X comes with the presets of daily, weekly,

and monthly. These simple directories are stored in /etc/periodic. Any scripts stored in

daily are run daily at 3:15 a.m. The weekly scripts are run at 3:15 a.m. on Sunday, and the

monthly scripts are run at 5:30 a.m. on the first day of every month. Not surprisingly,

periodic is under the control of launchd. Three plists, located in the /System/Library/

LauchDaemons directory, control the running of the periodic binary:

com.apple.periodic-daily.plist

com.apple.periodic-monthly.plist

com.apple.periodic-weekly.plist

You don’t need to make any special arrangement to run a maintenance routine alongside

the jobs supplied by the system. Each directory is a collection of loose scripts. Placing an

executable in the appropriate directory will run it along with the others, which are run

in alphabetic order. For example, following is the contents of the weekly directory on

Mac OS X Server:

310.locate

320.whatis

500.weekly.applesaved

600.weekly.server

999.local

The numeric prefixes keep the jobs in order.

Using Other Automation Technologies 253

mach_init
Consider the machd_init process as a stepping stone from traditional UNIX init to today’s

launchd service. Processes to be run with mach_init are specified by plists placed in the

/etc/mach_init.d or /etc/mach_init_per_login_session.d directories. The plist format is

relatively close to those used in launchd. However, some key names differ, and launchd has

many more options. The following is a sample plist stored in the Mac OS X Server v10.4

/etc/mach_init.d directory that launches memberd:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN” “http://www.apple.com/

DTDs/PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>ServiceName</key>

 <string>com.apple.memberd</string>

 <key>Command</key>

 <string>/usr/sbin/memberd -x</string>

 <key>OnDemand</key>

 <false/>

</dict>

</plist>

The ServiceName key would become a launchd Label key. The Command key becomes the

launchd ProgramArguments key with one exception. ProgramArguments requires that each argu-

ment be separated. You can bring over the OnDemand key as-is, but it’s best to convert it to

the more modern KeepAlive. Here is this job as a launchd plist:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/

PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.apple.memberd</string>

 <key>ProgramArguments</key>

 <array>

254 Automating Systems

	 	 <string>/usr/sbin/memberd</string>

	 	 <string>-x</string>

	 </array>

	 <key>KeepAlive</key>

	 <string>true</string>

</dict>

</plist>

The conversion of this plist was a simple copy and paste with very small edits. You

wouldn’t need to convert this plist, as memberd is gone under v10.5, but it shows a good

example of how to convert a mach_init item to launchd.

at
If you’re coming from another platform and expect to use at, you can feel at home because

the at system works on Mac OS X.	It is disabled by default, but easy to enable. If you have

no experience with at, use launchd. As stated in the section “Exploring launchd Functions”

earlier in this chapter, launchd controls at. You can load the subsystem as follows:

#launchctl	load	-w	/System/Library/LaunchDaemons/com.apple.atrun.plist

launchd calls the atrun subsystem every 30 seconds when the atrun plist is loaded. This means

that the fine granularity that you would typically expect from at may not be as expected.

Because at is command-line driven, you can substitute the corresponding launchctl com-

mands listed here.	Rather than using the at command to schedule a job, you will need to

create a launchd plist (see “Using launchd” and “Examples” in this chapter). You can use

launchctl	list	to emulate	atq . launchctl is context-sensitive based on the user running it.	

To get a list of machine-wide jobs, use sudo to invoke launchctl.

You can simulate atrm with launchctl	unload	-w	(plist).	launchd also allows stopping a

currently running job using launchctl	stop	(label	name).

Before making this conversion, reevaluate if the program being converted would be better

off in an on-demand model.

Examples 255

rc
The /etc/rc boot-time script is completely gone as of Mac OS X v10.5. Prior to Leopard, the

script in /etc/rc was run at boot time. In v10.4, launchd was made responsible for running rc.

If you need to run a script once at boot time, launchd can handle this for you. Create

a basic plist, which should be saved in the /Library/LaunchDaemons directory. Set the

KeepAlive key to false, and the RunAtLoad key to true. The latter key causes a job to run

after launchd loads the plist.

init.d
Mac OS X has never used System V runlevels as some other flavors of UNIX do. Like

StartupItems, these scripts have hooks for multiple functions, such as stopping or restart-

ing a service. Much of this functionality is unnecessary with launchd. Because launchd

maintains direct control over the jobs it launches, you don’t need to write special code for

the most common case, where the shutdown procedure is to look up a PID in a PID file

and send it a SIGTERM.

init.d items are essentially equivalent to lines in /etc/rc that start a program at boot.

Create a basic plist, save it in /Library/LaunchDaemons, and use the RunAtLoad key to

start the job. As with /etc/rc, conversion time provides a time to evaluate if it is better to

change to an on-demand model.

examples
This section contains raw “cookie-cutter” examples of bash scripts and launchd plists that

you can modify for your purposes.

Copy a file into each user’s home directory (with home directories located in /Users).

You will need to run this script with root privileges, because a standard user will not (or

should not) have access to other users’ top-level home:

#!/usr/bin/env bash

FILE_TO_COPY=”/files/new_policy.txt”

for i in /Users/*; do

 cp ${FILE_TO_COPY} ${i}/

done

256 Automating Systems

Perform an action on each user in Open Directory, except system users (assuming that

standard users have a User Identifier [UID] greater than 499):

#!/usr/bin/env bash

for name in `dscl localhost -list /Search/Users`

do

 USER_ID=`dscl localhost -read /Search/Users/${name} UniqueID | awk ‘{print $2}’`

 if [$USER_ID -gt 499]; then

 printf “${name}\n”

 fi

done

Change the printf line to perform the action in question.

Use rsync to back up critical system files; then move all backup data to a remote machine

(preferably offsite):

#!/usr/bin/env bash

Get config in /etc

rsync -a -q --delete /etc/ /backup/etc/

Get /var/backups

rsync -a -q --delete /var/backups/ /backup/var/backups/

Get Mail

rsync -a -q --delete /var/spool/imap/ /backup/var/spool/imap/

rsync -a -q --delete /var/imap/ /backup/var/imap/

ship all backups to a remote computer

rsync -a -v --delete -e ssh /backup/ remote.example.com:/Volumes/Data/backup/remote/

Script the creation of a new user. Important variables are set at the beginning of the script.

#!/usr/bin/env bash

$USERNAME=”backup_admin”

$HOMEDIR=”/Users/backup_admin”

Examples 257

$PASSWORD=”y7e3jsSRN”

$UID=”505”

dscl localhost create /Local/Default/Users/${USERNAME}

dscl localhost create /Local/Default/Users/${USERNAME} PrimaryGroupID 0

dscl localhost create /Local/Default/Users/${USERNAME} UniqueID ${UID}

dscl localhost create /Local/Default/Users/${USERNAME} UserShell /bin/bash

dscl localhost create /Local/Default/Users/${USERNAME} NFSHomeDirectory ${HOMEDIR}

dscl localhost -passwd /Local/Default/Users/${USERNAME} ${PASSWORD}

sudo dscl localhost append /Local/Default/Groups/admin GroupMembership ${USERNAME}

mkdir -p ${HOMEDIR}

ditto -rsrc -V /System/Library/User Template/English.lproj/ ${HOMEDIR}

chown -Rf ${USERNAME}:admin ${HOMEDIR}

Back up a directory every time its contents change. This is a bash script and launchd com-

bination. Because launchd does not perform these actions itself, you need a script to run

the required actions. And because a script does not spontaneously run on its own, you

need something to invoke it.

The script is a single line and uses rsync to copy a directory:

#!/usr/bin/env bash

rsync --delete -a /Users/Shared/source/ /Users/Shared/destination/

The folders listed in the bash script should be updated appropriately for your needs. The

launchd plist to run this script takes advantage of the QueueDirectories key to watch the

folder in question:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/

PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.radiotope.backup_on_change</string>

 <key>ProgramArguments</key>

 <array>

258 Automating Systems

 <string>/Users/marczak/bin/backup_on_change.sh</string>

 </array>

 <key>QueueDirectories</key>

 <array>

 <string>/Users/Shared/important</string>

 </array>

</dict>

</plist>

The program arguments must match the name and location of the script as saved on your

system. Also, the QueueDirectories key must correspond with the source directory specified

in the bash script.

Troubleshooting
Troubleshooting can be described as an art as much as a science, and this is often the case

when trying to track down problems with scripts. Without explicit error messages, you

may have hit a bug, or you may have a logic error that you introduced yourself.

All of the scripting languages and commands presented in this chapter have a specific syn-

tax. If this syntax is violated, an explicit error message will be displayed. If a violation of

syntax occurs in a running script, the line number of the offending statement is reported.

These are the easy cases.

For times when a script runs but doesn’t do what you expect, debugging-by-printing is

a common technique to help understand the flow. Every scripting language has some

method of quickly displaying output, from the bash printf to the AppleScript display dia-

log. Adding these methods in various places throughout your code offers an excellent way

to analyze its flow.

For example, if you expect that a certain condition should be true, but the true branch

isn’t running, use a print statement to find out why:

printf “The value variable is ${value}\n”

if [$value -gt 2000]; then

 # run some commands

fi

Troubleshooting 259

For scheduled jobs that run when you’re not around, use the logger command to write

information to /var/log/system.log for later inspection:

#!/usr/bin/env

logger Starting maintenance script

if [-f /var/run/file]; then

 logger state file exists, running commands

 # run some commands

fi

logger Maintenance complete

logger logs the lines into /var/log/system.log, where the logging system timestamps the

entry. This can aid in seeing how long a script took to run.

In the “is it plugged in?” variety of errors, don’t forget to check the basics:

P Does the first line of the script have a valid shebang (such as #!/usr/bin/env bash)?

Without a valid shebang line to let the shell know which interpreter to use, an other-

wise properly written script won’t run.

P Is the script marked as executable? Use ls to verify and chmod to change the file per-

missions if necessary.

P Is the script in the current $PATH? If not, specify the absolute path to a script when

called from launchd, cron, or other scripts.

P Is the script missing a dependency? If a command that the script relies on is missing,

has moved, or has been changed, the main script won’t run as expected.

When creating launchd plists, remember: plists are the only method of job specification.

Without a properly formatted plist, launchd will not know how to run your job. Rather

than hand-create a launchd plist, use the Apple Property List Editor.app—supplied with

developer tools—or a third-party utility like Peter Borg’s Lingon. Both will create proper

XML for the launchd plist files.

Of course, it’s tempting to hand-edit existing plists to make quick changes. Ensure that

markup tags are properly matched, and all angle brackets are closed. After editing a plist,

but before loading it into launchd, use plutil to check the validity of the file:

plutil -lint /Library/LaunchAgents/com.example.fileagent.plist

/Library/LaunchAgents/com.example.fileagent.plist: OK

260 Automating Systems

If the plutil parser detects an error, it will report it:

XML parser error:

 Encountered unexpected character k on line 5

The error cites the line number where the XML parser encountered an error. On occasion,

depending on the exact error, sometimes the error lies on the previous line than reported.

Also, be aware that a parser can only check syntax. It cannot determine if you’ve mis-

spelled a key or value.

The more you work with scripts and launchd plists, the more apparent errors will be to you

without resorting to a lot of these techniques.

What You’ve Learned
This chapter introduces you to the many ways you can automate Mac OS X—that is,

“How to make the computer do your work for you.” You can apply system automation to

most tasks to ease your job. The length of this chapter also underlines the importance of

automation to administrators. Administrators are most effective when not bogged down

with system minutiae. In this chapter, you learned the following:

P Many automation technologies are built into Mac OS X, out of the box.

P Apple-created technology such as AppleScript and Automator are available to auto-

mate many graphical user interface programs and system settings.

P Nearly all programming and scripting environments that you could want are also

available as part of the system: bash, Perl, Python, PHP, Ruby, Tcl, and more.

P Each language available in Mac OS X has its strengths. For example:

P bash is perfect for batching other shell commands and scripts.

P Python can tap into Mac OS X native Cocoa APIs, and is already used extensively

by Apple.

P Help is readily available via man pages, built into the system.

Review Quiz 261

There are many Mac OS X–specific ways of changing user values and system settings:

P Use the defaults command to read and write user preferences.

P Use systemsetup and networksetup to alter nearly every setting in System Preferences.

P Use the Apple-created launchd system for job control. launchd replaces many earlier

technologies. It’s relatively easy to convert a former way of running a job into one

that is compatible with launchd.

P launchd requires plists to know which jobs to run, and determines which layer a job

affects by the directory in which the plist is placed.

review Quiz
1. What are the automation technologies included in Mac OS X?

2. What is the default shell for newly created accounts in Mac OS X v10.5?

3. Which bash variables are inherited by subshells?

4. In which directories does the bash shell search when a command is typed at the prompt?

5. What is the command that runs the help system built into the shell?

6. What is the command that queries and manipulates user and system preferences?

7. What is the system in Mac OS X that boots the system and maintains job control?

8. What file format is used to specify to launchd what program to run and how to run it?

Answers

1. AppleScript, Automator, shell scripting, Perl, Python, PHP, Tcl, and Ruby.

2. The bash shell.

3. Any variables exported with the export keyword.

4. The directories in the $PATH variable, in the order they are listed.

5. The man command searches and looks up manual pages.

6. The defaults command can read and write preferences in property lists (plists).

7. launchd.

8. launchd requires a valid plist to describe a job.

10
 Time This lesson takes approximately 45 minutes to complete.

 Goals Learn to protect data against accidental and mechanical issues

 Learn to create a data protection policy

 Learn to choose an appropriate backup method

 Learn how to automate backup solutions

 Learn the locations of common data stores and their backup needs

263

Chapter 10

Ensuring Data Integrity

As a system administrator, it’s not enough to automate alerts so that

no log entry goes unnoticed, or to analyze current system utilization

and shore up the network’s defenses against unauthorized activity. You

also need to attend carefully to the data that lives on each device. In

Mac OS X, data integrity has been attended to as on other systems, but

the OS also has unique aspects, such as metadata attached to files, that

demand attention.

In Chapter 7 you learned how to protect the integrity of data through

access controls that allow only authorized users to alter data. This chap-

ter addresses the mechanics of data integrity: how to protect data from

the accidental, mechanical, and human issues that arise in a technology-

driven environment.

264 Ensuring Data Integrity

Determining Backup Strategies
Unfortunately, many technologists approach backup from the wrong angle: technology.

All decisions about backup should start with, and be informed by, a backup policy. Most

importantly, a backup policy should be created in conjunction with, and signed off by,

senior management. Without high-level buy-in, backup will not serve the business prop-

erly. A backup policy does not need to be a lengthy document, but it does motivate all

parties involved to think through all of the issues. Table 10.1 that follows shows a ques-

tionnaire listing the various issues that a policy should address.

The goal of backup is to prevent data loss. Once data is backed up, there are typically three

reasons to restore it: A deleted or corrupt file needs to be restored, a crashed or deleted

volume needs to be restored, or the business needs certain files restored from a point in

time for legal reasons.

Backing up costs money. Casually deciding that everything on every system will get

backed up every night will cause costs to soar as new storage for backups must be pur-

chased, and the need for network bandwidth increases. At the same time, backing up too

little on a system will cause problems when files that were excluded need to be restored.

Authors of a backup policy need to determine what data is important to the business and

what the impact is if it is lost, damaged, or otherwise inaccessible. Each repository of data

must be considered: traditional file systems, storage area network (SAN) storage, database

servers, mobile devices, and grid storage. From there, it must be decided how ephemeral

each piece of data is, that is, its life cycle. How often does the data change? Its life cycle will

help determine the backup cycle.

As a technologist, you should also consult with your company’s legal department. It may be

a legal requirement that certain data is backed up and retained for a certain period of time.

It’s valid to find that certain data should be excluded from a backup. Graphics workstations

often contain large scratch files. Depending on company policy, users may have personal

files on their work computers. Determining which data is to be backed up is called the scope.

Determining Backup Strategies 265

Only after creating a policy should you evaluate and specify specific hardware and soft-

ware for backup.

Regardless of the ultimate strategy chosen, the plan must include provisions for routinely

testing backups. Backup destinations cannot be black holes into which data disappears.

Backup logs need to be checked after each backup run. Tests need to be performed to vali-

date existing backups. The worst time to find out that a backup was not successful is when

trying to restore data for real.

The following table lists potential questions to ask when creating a backup policy.

266 Ensuring Data Integrity

Table 10.1 Questions to Determine a Backup Strategy

What gets
backed up?

When does it
get backed up?

How is the pro-
cess handled?

Where? Who backs up
and restores?

In an emergency

Configuration
files?

How frequently
should data be
captured?

How easily does
data need to be
restored?

Will the backup
be stored?

Who can back
up?

How is data
restored from a
server crash that
destroys the data
on disk?

Which configura-
tion files?

How long does
data need to be
retained?

Can all files be
backed up as flat
files? Or does
data need to be
dumped by run-
ning a process?

Will it be stored
online? Nearline?
Offline or offsite,
or both?

Who can restore? How is data
restored if the OS
is destroyed?

Which data files? How quickly does
data need to be
restored?

Are there regu-
latory require-
ments?

Does different
data require dif-
ferent policies on
who can back up
or restore it?

Is replacement
hardware avail-
able?

Is it necessary to
back up log files?
All user files?

When is a good
time to run the
backup? Does it
interrupt service?

What type of
media retention
should be pro-
vided?

In case of a large,
geographical
region problem,
how is data
restored?

Which databases
get backed up?

How long will
backup media
last (the media
lifetime)?

(Note: Human
wellness and
communication
during an emer-
gency should
be covered in a
larger disaster
recovery plan or
business continu-
ity plan.)

Can all files be
backed up as flat
files? Or does
data need to be
dumped by run-
ning a process?

How does running
the backup or
restoring it impact
system perfor-
mance?

What type of
logical security
(including encryp-
tion) is needed?

What physi-
cal security is
needed?

Determining Backup Strategies 267

About Information Lifecycle Management
An important concept in the context of storage networking is Information Lifecycle

Management (ILM). The idea is to ensure a match between data and an appropriate stor-

age product. As information ages, it passes through a continuum in importance, from cur-

rent work to archived projects that you never expect to work on again. A system’s storage

should reflect the changing nature of data. For example, current projects may be on stor-

age that is both high-performance (so that you lose no time working) and high reliability

(so that you don’t miss a deadline due to equipment failure). Older projects, on the other

hand, may not need the high performance because they are not under active development,

but they may need to be accessed occasionally. As time goes on, you may not even need

the projects to be available immediately; they need to be reliably stored, but it may be

acceptable to have access times of up to a day to bring the material back online.

Managing information’s lifecycle can be handled several ways. Often, a manual process

moves completed projects into a designated target. You can also use an Xsan system,

which can spread folders across different storage types, or affinities.

If you use an Xsan system, ADIC’s StorNext Storage Manager can help you set up policies

for a lifecycle management workflow. You can define service levels for different classes of

data, and automate data placement and protection objectives. Xsan can act as a client to

the StoreNext SAN volume and mount the volume. From a user’s viewpoint, the volume

looks and behaves like a standard Xsan volume.

268 Ensuring Data Integrity

Choosing Backup Methods
There are various accepted methods of performing backups. Nowadays, rarely does one

size fit all. You can combine each of these methods, or apply different methods to different

classes of data, to achieve the best overall solution. Perhaps some data is ideal for offsite

into-the-cloud backup, while other data requires tape as a destination. It’s important to

categorize the data being stored by your company, and match appropriate backup policies

to each type.

Using Traditional Backup to Tape

Storing files on disk and backing up to tape on a nightly basis is a traditional method of

backing up data. Tape is a well-established, time-tested technology, and has the advantage

of being more portable and durable than other technologies. While tape still gives the best

cost-per-megabyte ratio, disk-based backup is approaching that ratio. However, tape is

relatively slow compared to today’s disk and network speeds.

As a mature technology, many backup applications are built with transferring data to tape

in mind. Some currently available backup solutions that work with tape units are:

P Retrospect by EMC

P BRU by Tolis Group

P Time Navigator by A-Tempo

P NetVault by BakBone

As of this writing, BRU, Time Navigator, and NetVault also support the Xsan file sys-

tem, which has special backup and restore needs. See the Apple Knowledge Base

article “Xsan: Best Practices for Data Integrity” at http://docs.info.apple.com/article.

html?artnum=303371.

Backing Up to Removable Media

According to your backup strategy, certain files or groups of files may take longer than

acceptable to complete a backup to tape. In such cases, a good solution may be to back up

to disk or other removable media. This backup can take the form of a centralized backup

to a large Redundant Array of Independent Disks (RAID) bank, or the archiving of files to

DVD or other local devices by individual departments.

http://docs.info.apple.com/article.html?artnum=303371
http://docs.info.apple.com/article.html?artnum=303371

Determining Backup Strategies 269

When speed and minimal impact is essential, tape and disk backup may be combined.

An initial copy is staged to a secondary server’s disk, which is a fast process. A copy of the

data then is picked up by a backup program and written to tape. Many backup applica-

tions perform the data staging phase as an integral part of the backup.

Backing Up “Into the Cloud”

More and more products are taking advantage of relatively fast bandwidth and inexpen-

sive storage by backing up to remote locations over a wide-area network (WAN). The

backup destination may reside at a commercial host’s data center (such as Amazon’s S3

service), or simply over a company virtual private network (VPN) to a remote office.

The term “cloud” came into existence to refer to a service that exists over a network and

grants a single interface to its offerings. Cloud services typically offer high scalability on

the back end without a subscriber needing to understand the details of how the back

end works. With respect to backup, you ship someone your data for storage, which is

then available to you on demand. This cloud may be offered by a service provider or by

a dedicated group within your company.

No matter who offers the service, the result is the same: Data is moved offsite and pro-

tected from any local geographical disaster. Examples of products in this category include

the following:

P CrashPlan for Business: Code 42 Software

P Zettabits Storage System: Zettabyte Storage

Other companies have announced intentions to enter this market, but at the time of this

writing, have no released products. This is a backup category to track closely.

Backing Up LAN-Free

LAN-Free Backup is a relatively new scheme, available only when a Fibre Channel SAN

is in place. As the name suggests, in a LAN-Free backup, no data travels over the LAN. A

backup server on the SAN has access to a directly attached storage unit or Fibre Channel

tape unit in a switch. All data to be backed up is written to a volume or volumes on the

SAN. From there, the backup can be picked up by the SAN-bound backup server.

270 Ensuring Data Integrity

Comparing Backup Methods

All backup methods seek to match the appropriate data with appropriate storage. Not

all data needs to be backed up using the same method. For all backup methods, you also

need to consider restoring and restore speed. You must routinely perform restore testing.

All backup methods also must take into account the unique attributes of the Mac OS X

HFS+ file system. Current versions of HFS+ can store access control lists (ACLs) for file

system objects, along with metadata and general extended attributes, and forked files.

(Forked files, a file type unique to the Mac OS, have a data fork and resource fork.) All of

this metadata needs to be kept intact with its associated files. It’s important that backup

software for Mac OS X systems protects this information on backup and can also put it

back properly on restore.

Without backing up and being able to restore metadata, consequences range from miss-

ing file icons to data not being usable. For more information, see “Other Backup Policy

Considerations” in Mac OS X Server Administration for Version 10.5 Leopard at http://

manuals.info.apple.com/en_US/Server_Administration_v10.5.pdf.

An excellent test suite is Backup Bouncer by Nathanial Grey (http://www.n8gray.org/

blog/2007/04/27/introducing-backup-bouncer/). Backup Bouncer takes a source directory

http://manuals.info.apple.com/en_US/Server_Administration_v10.5.pdf
http://manuals.info.apple.com/en_US/Server_Administration_v10.5.pdf
http://www.n8gray.org/blog/2007/04/27/introducing-backup-bouncer/
http://www.n8gray.org/blog/2007/04/27/introducing-backup-bouncer/

Using Backup Tools 271

that is filled with files that have resource forks, extended attributes (EAs), and ACLs applied.

You back this up with the software you’re testing, and restore it elsewhere. Backup Bouncer

then reports on how well the backup software performed in retaining various categories of

file system attributes.

These file system attributes go beyond pure data; many are unique to the Macintosh

platform and Mac OS X. It’s important that a backup solution account for them. Some

Mac OS X native solutions treat these attributes properly, but not all do. Non-native

Mac OS X solutions, where Mac OS X is one of many client types able to be backed up,

are typically even less capable of handling attributes properly. However, retaining these

categories of attributes is critical for the file system, the proper functioning of services that

rely on this metadata, and the OS itself.

Using Backup Tools
Mac OS X is flexible when it comes to backup. Many backup tools ship as part of the

operating system. However, many times, the backup solution requires custom work to

script and automate it—which may be perfectly appropriate. When the demands are too

great for these built-in tools, third-party alternatives exist that can scale up and scale

out, and are fairly ready out-of-the-box. Mac OS X Leopard also features the new Time

Machine system for backup.

Some data is straightforward to back up: It lives as a plain-text file on a file system and

can be copied elsewhere with any tool. Backing up other data—such as information stored

in a database—falls into this category. While the database is running, its stores are open

and volatile. In this case, it’s best to take a database dump and back up the data dump.

This strategy also gives you the flexibility to import the dump into a different version of

the database software.

The most important strategy, regardless of the tool, is automating the backup pro-

cess. Backup processes should happen automatically, without any human intervention.

Humans are, well, human. It will be the day that an administrator needs to leave the office

early for a personal reason that the administrator will forget to start or schedule that

backup process—the one that’s later needed for a critical restore. An automated process is

also better at monitoring and reporting on each backup job than a person.

272 Ensuring Data Integrity

Using Command-Line Utilities
Mac OS X is rich with applications that can copy data and schedule tasks. Several utili-

ties ship with Mac OS X for copying and scheduling jobs. In most cases, Apple has even

updated traditional UNIX utilities to account for the attributes unique to the HFS+ file

system, such as ACLs and extended attributes (EAs).

rsync

An open source command-line utility that provides fast incremental file transfer, rsync can

compare and transfer files in one direction, copying only differences between two files or

directories. Due to the copy-only-differences algorithm, rsync can be very efficient, even

when synchronizing two large directories over relatively slow links. Many switches alter

rsync’s behavior, but usage is easy. Like most transfer programs, rsync needs to be supplied

with a source and destination. For example, to sync the main /etc directory with a backup

copy, use the following rsync command:

rsync –av --delete /etc/ /backups/etc/

The switches in this example are as follows:

P -a works in archive mode

P -v indicates verbose operation

P --delete to delete file on target if the same file does not exist on source

The source is the contents of the /etc directory, while the destination is /backups/etc/.

Running the rsync command copies files from /etc to /backups/etc. If it is run again

immediately, it is likely that no files actually get copied. This is the power of rsync: In this

case, it realizes that there is no need to perform any work. In addition, rsync has been

patched to also be able to sync metadata such as arbitrary EAs, ACLs, Portable Operating

System Interface (POSIX) permissions, and resource forks. This capability is turned off

by default; the -E (capitalization is important) switch enables it. In Mac OS X with HFS+

file systems, you should always include the -E switch unless you know that the data being

backed up has no EAs. The one downside to this resynching of metadata is that, when

used with the -E switch, rsync will always sync resource forks whether or not they’ve been

modified. However, that data typically is minimal, and using rsync will still save great

amounts of time.

Using Backup Tools 273

To generate a preview of what rsync would do without actually doing it, use the --dryrun

flag. rsync will determine the changes needed and act as if it’s copying data, but won’t

actually do so. This can quickly give you an idea of which files will be copied and how

many bytes will be transferred overall.

rsync can also copy data over a network connection using Secure Shell (SSH). This is

beneficial in that it can move data from one machine to another, potentially offsite, and

encrypt the data while doing so. The -e switch (lowercase!) enables this behavior:

rsync -avEe ssh /etc/ user@host:/backups/etc/

In this example, the source remains the same as the previous example, but the destina-

tion is now prefixed with information for the remote host. The login information is

separated from the remote path by a colon. If this is a new host, ssh will prompt to accept

the remote fingerprint and enter a password. To automate a nightly rsync-over-SSH pro-

cess, generate keys so that SSH can identify this user without requiring a password. See

“Generating a Key Pair” in Chapter 7 for details.

rsync is available on all UNIX platforms and can rsync from one platform to another. Just

be aware that when transferring from Mac OS X to a non–Mac OS X server, metadata

may get lost. It’s safest to transfer Mac OS X data to destinations that understand HFS+.

Transferring plain-text files with no real metadata is acceptable. A good strategy, and one

that’s recommended, is to combine general UNIX using Mac OS X as an rsync destination.

To restore files backed up using rsync, simply copy them back from the destination. This

can be done using means other than rsync; however, if the destination is offsite, rsync may

be the quickest way to restore the data needed. The same command that copied files off-

site can reverse its source and destination parameters to copy back. To restore files from

the command shown above:

rsync -avEe ssh user@host:/backups/etc/ /etc/

See the rsync man page for more options. For instructions on using man pages, see “Getting

Help” in Chapter 9.

ditto

ditto is a Mac OS X–specific tool that was written to copy files while supporting HFS+

metadata. ditto will copy ACLs, resource forks, and arbitrary metadata. Its general form

274 Ensuring Data Integrity

is ditto [source] [destination]. For example, to copy the directory my_files to my_files_

backup, you can use the following command:

$ ditto my_files my_files_backup

This simple command creates a directory for my_files_backup if it doesn’t already exist,

and copies all files and subdirectories from my_files into it. It also copies the metadata for

each file. There is no output on success. To gain more insight while the command is run-

ning, use the -v and -V flags, to list each directory and file copied, respectively.

ditto also can create archive formats from directories. The default is a cpio archive. To

specify this functionality, use the -c switch:

$ ditto -V -v -c my_files my_files.cpgz

You can extract cpio archives using the ditto -x switch, along with the Mac OS X Archive

Utility.app, located in /System/Library/CoreServices. You can also query and manipulate

these archives with pax. (See its man page for more details; see “Getting Help” in Chapter 9

for instructions on using man pages.) To extract the files archived with the previous exam-

ple, you can invoke ditto with the following parameters:

$ ditto -V -v -x tmp.cpgz tmp

The -x switch to ditto extracts the archive specified in the source position, and creates the

destination, if necessary.

Due to its ability to create archives and send its data to stdout, ditto can be combined

with ssh to send data remotely. Unlike rsync, ditto always copies all files—but this is often

desired. For example, to copy the entire folder my_folder to a remote server over SSH, you

can combine ditto with other tools, as follows:

$ ditto -c my_folder -|ssh user@host ditto -x - ./my_folder

The hyphen (-) as a source or destination denotes stdin or stdout. The pipe symbol (|)

connects the output of the first command (ditto) to the input of the second (ssh), which

extracts the data on the remote side. Combining ditto with other tools is a very handy

trick when you need to move Mac data laced with attributes to a remote machine.

To restore data copied with ditto, simply copy it back from the destination. You can

accomplish this restoration with means other than ditto, such as the Finder. The backup

Using Backup Tools 275

and restore commands will be the same, with the source and destination reversed. If

backing up to an archive, change the -c (create archive) in the command to -x to extract

the archive, or use /System/Library/CoreServices/Archive Utility.app. Double-clicking

the .cpgz file in the Finder will launch the Archive utility; or use a .cpgz file with the open

command: open backup.cpgz. See the ditto man page for other options; for instructions on

using man pages, see “Getting Help” in Chapter 9.

asr

An efficient way to clone entire volumes, for backup or distribution, is asr, or Apple

Software Restore. The command-line-driven asr copies entire volumes, either file-by-file,

or disk block–by–disk block, to other volumes (including disk image–based volumes). The

clone of a bootable volume will also be bootable. However, this is not the tool to use to

copy individual files.

Like other copy tools, parameters to asr include a source and destination, which can be

specified as a disk image, /dev entry, or volume mountpoint. To allow for a block copy,

the volume must be able to be unmounted, or mounted read-only. Since the boot volume

cannot be unmounted, it cannot be a source for a block copy.

As an example, to block-copy the mounted volume HD_Master to the destination volume

Backup, you could use the following asr command:

asr restore --source /Volumes/HD_Master --target /Volumes/Backup --erase

The use of the term “restore” in asr can be misleading. In essence, all copies are restores.

In the case of asr, it is restoring one volume to another, whether or not it’s the initial copy.

Available in some form or another since Mac OS 8, asr began as a way to rapidly restore

entire systems. To restore cloned data, simply swap the source and target parameters. For

more information on asr, see the wonderfully detailed man page; for instructions on using

man pages, see “Getting Help” in Chapter 9. For system cloning with asr, see Apple Training

Series: Mac OS X Deployment v10.5 (Peachpit).

Other Command-Line Utilities

An exhaustive list of every data transfer and manipulation command available is beyond

the scope of this book. Following is a short list of other commands that you should inves-

tigate further on your own:

P serveradmin—Mac OS X Server Admin command-line equivalent. Can be used to

dump settings to a file, and for restoration of these settings. (See “Automating Data

Backup” below for examples of serveradmin in use.)

276 Ensuring Data Integrity

P scp—Secure copy. Use SSH to securely copy data to or from a remote machine.

P hdiutil—Manipulate disk images: create, attach, verify, burn, and so on.

P tar—tar archiving utility. Create and extract tar archives.

P pax—Multiple format archive utility. Read and write file archives and copy directory

hierarchies.

P zip—Compress (archive) and extract zip files.

P kdb5_util—Kerberos database maintainance utility. Used to dump the Kerberos database.

Time Machine
Time Machine, or “backups for the rest of us,” is very different from traditional file-to-

tape backups, and a very powerful backup system that can store multiple versions of files.

Unquestionably, Time Machine is an impressive way to back up. Its simple interface masks

a complex system underneath, only some of which is appropriate to go into in depth here.

Time Machine is nontraditional and rather unconventional at times. It makes backup

effortless for the end user and smaller environments, but needs to be evaluated by system

administrators for any scenario involving more than five users or a certain threshold of

data. Administrators need to account for how Time Machine differs from other backup

methods when planning for system backup.

Time Machine works well in home settings, where typically fewer computers than in

office environments back up to any given destination. Time Machine can back up to

locally attached or network storage. Much of Time Machine’s power comes from its use of

Leopard’s fsevents API. fsevents allows Time Machine to be informed of changes on disk

rather than having to scan an entire volume for changes against another list.

As an administrator, you should consider several things before deciding whether to use

Time Machine as a backup mechanism. These include limitations on what administrators

can control, Mac OS X Server, behavior and event handling, rotation of backup media,

and backup of FileVault-protected homes.

Unlike most systems that administrators work with, Time Machine requires little to no con-

figuration or maintenance. However, the downside is that system administrators have little

that they can control. On its own, Time Machine will back up once an hour to the destina-

tion configured in the Time Machine Preference pane. The destination can include network-

mounted storage on an Xserve or other appropriate Apple Filing Protocol (AFP) device.

Using Backup Tools 277

Time Machine may not be a good strategy for Mac OS X Server. On Mac OS X Server,

Time Machine backs up only servers running in standard or workgroup mode.

Time Machine does not allow for rotation of backup media. In other words, you can

choose only one destination in the Time Machine Preference pane:

P If this destination is a locally attached disk, it cannot be removed and taken offsite,

or easily substituted for another.

P If the destination is a server, however, the server’s backup share can then be backed up.

P If the destination specified is a network share, a disk image per client is created on the

share point and used repeatedly. This configuration allows many clients to back up to

the same share point, but may increase network traffic and slow user connections.

 Last but not least is one serious drawback for mobile

users: Time Machine backs up FileVault-protected

home systems only when the associated user is not

logged in. A warning appears if Time Machine, when

enabled, detects any FileVault home system that is

logged in.

It may be undesirable to have a backup system that works only when users are logged off.

Some companies may require encrypted home directories. Plus, Mac OS X is designed to

be able to run long periods of time without logging out or rebooting.

278 Ensuring Data Integrity

Time Machine Details

Several launchd-controlled daemons and property lists for preferences determine Time

Machine’s behavior. The global preference file is /Library/Preferences/com.apple.TimeMachine.

plist. This stores preferences such as the Time Machine currently enabled state and exclusions.

The primary daemon is /System/Library/CoreServices/backupd, which is controlled through

launchd via the /System/Library/LaunchDaemons/com.apple.backupd.plist file.

backupd is the main daemon that handles the actual work; Time Machine also reacts to

several events. One event is time—once an hour, Time Machine gathers the list of

changed files and sends them to the backup disk. The daemon that makes this happen is

/System/Library/LaunchDaemons/com.apple.backupd-helper.plist launchd LaunchDaemon,

by calling /System/Library/CoreServices/backupd.bundle/Contents/Resources/backupd-helper.

You can change the interval in the plist file:

defaults write /System/Library/LaunchDaemons/com.apple.backupd-auto StartInterval

-int (integer in seconds)

The default time is 3600 seconds, or one hour.

Time Machine also reacts to disk mount events, in order to ask the user whether a

given drive should be used as storage for backup. These disk mount events are handled

by /System/Library/LaunchDaemons/com.apple.backupd-attach.plist, which looks for

mount events and runs backupd-helper with an -attach switch. You can turn off this behav-

ior by adding a key to /Library/Preferences/com.apple.TimeMachine.plist:

defaults write com.apple.TimeMachine DoNotOfferNewDisksForBackup -bool YES

If desired, you can push out this setting with managed preferences.

Comparing Backup Tools
You can use multiple backup methods, in sequence, to move and store data. Shell utilities,

commercial applications, and Time Machine each have strengths and weaknesses for the

different classes of data that need to be backed up, as the following table shows.

Automating Data Backup 279

Table 10-2 Comparing Backup Options

 Shell Tools Commercial Apps Time Machine

Makes a bootable asr, ditto, rsync Some1 No

backup

Copies metadata asr, ditto, rsync Some1 Yes

Cost Included with Typically $500 to Included with

 Leopard $6,000 or more, Leopard

 depending on

 application

Restores by file ditto, rsync Yes1 Yes (not for FileVault

 users)

Backs up to tape No2 Yes1 No

Backs up over ditto and rsync Yes1 Yes

the network when combined

 with ssh

Backs up database Need to dump Some1 Not appropriate for

 database tables first, all types of

 and then back up server-based data

 the dump

1 Check with the application vendor for specific information.

2 Use Tolis Tape Tools to write to tape.

Automating Data Backup
Backup should always be automated. (See Chapter 8, “Automating Systems,” for informa-

tion on automation in general.) You can use scripts to automatically schedule a script to

run at a certain time, perform specific backup tasks, and remove data after use (called data

wiping). Automating backups provides consistent operation and the ability for adminis-

trators to build smaller blocks into a larger whole that can tackle more complex jobs.

280 Ensuring Data Integrity

Here’s a short sample script that you can build on.

#!/usr/bin/env bash

logger -p local0.notice -i -t Nightly Starting nightly routine

Backup Open Directory

LOCATION=/var/backups/odbackup-`date “+%Y%m%d”`

echo “dirserv:backupArchiveParams:archivePassword = s3kret” > sacommands.txt

echo “dirserv:backupArchiveParams:archivePath = $LOCATION” >> sacommands.txt

echo “dirserv:command = backupArchive” >> sacommands.txt

chmod 600 sacommands.txt

/usr/sbin/serveradmin command < sacommands.txt

Dump Server Admin Settings in use

/usr/sbin/serveradmin settings afp > /var/backups/afp.sabackup

/usr/sbin/serveradmin settings dhcp > /var/backups/dhcp.sabackup

/usr/sbin/serveradmin settings dirserv > /var/backups/dirserv.sabackup

/usr/sbin/serveradmin settings dns > /var/backups/dns.sabackup

/usr/sbin/serveradmin settings mail > /var/backups/mail.sabackup

/usr/sbin/serveradmin settings network > /var/backups/network.sabackup

/usr/sbin/serveradmin settings smb > /var/backups/smb.sabackup

/usr/sbin/serveradmin settings swupdate > /var/backups/swupdate.sabackup

Dump MySQL Data

/usr/bin/mysqldump -u root --password=s3kret --all-databases > /backup/sqldump.sql

Backup changes in /etc

rsync -a -q --delete /etc/ /backup/etc/

Sync /var/backups to main backup directory

rsync -a -q --delete /var/backups/ /backup/var/backups/

Sync Mail

rsync -a -q --delete /var/spool/imap/ /backup/var/spool/imap/

rsync -a -q --delete /var/imap/ /backup/var/imap/

Clean up old backups

Automating Data Backup 281

find /var/backups/ -mtime +14 -delete

logger -p local0.notice -i -t Nightly Syncing data offsite

rsync -a -v --delete -e ssh /backup/ backup.example.com:/Volumes/Data/backup/

logger -p local0.notice -i -t Nightly Finished

You can schedule a script like this with launchd. Since a backup script needs to run with

root privileges to have permission to read sensitive files, you should store a launchd plist in

/Library/LaunchDaemons. An example launchd plist, named nightly.sh and stored in /usr/

local/sbin, schedules the sample script:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN” “http://www.apple.com/DTDs/

PropertyList-1.0.dtd”>

<plist version=”1.0”>

<dict>

 <key>Label</key>

 <string>com.example.nightly </string>

 <key>LowPriorityIO</key>

 <true/>

 <key>Nice</key>

 <integer>1</integer>

 <key>ProgramArguments</key>

 <array>

 <string>/usr/local/sbin/nightly.sh string>

 </array>

 <key>StartCalendarInterval</key>

 <dict>

 <key>Hour</key>

 <integer>4</integer>

 <key>Minute</key>

 <integer>35</integer>

 </dict>

</dict>

</plist>

282 Ensuring Data Integrity

This example plist schedules the script to run at 4:35 a.m. every day. It is also tasked with

a nice value of 1, and the launchd LowPriorityIO, which ensures less impact on the server.

The example script backs up key data files and dumps the OD database and MySQL data-

base files, to ensure a clean backup.

You can also use scripts for specific backup tasks—for example, a script can back up detailed

client information to a disk image in response to a user problem. You can see a functioning

tool in “The Collector,” a sample troubleshooting tool that creates a disk image, and then

stores relevant client information on it (logs, hardware information, and so on). This is

available from the Peachpit website at http://www.peachpit.com/acsa.adv-sys-admin.

It’s also important to automate data wiping. To stop people from retrieving data that

you believe is deleted, erasure must be performed in a way that makes it very difficult

to recover it. Apple includes two utilities to clean a volume. The first is part of the

diskutility tool: the SecureErase FreeSpace command. This is designed to work on an

entire volume. The command is straightforward and passes in a level and target volume:

diskutil SecureErase FreeSpace 1 /

Started erase on disk disk0s2 MacintoshHD

Creating temporary file

[\ 0%...]

The command essentially writes large temporary files—consuming all free space on the

disk—and securely erases them by overwriting them with multiple passes of other data.

You can specify the level to which data can be overwritten with one of the following

options:

P Single-pass random erase

P US DoD seven-pass secure erase

P Gutmann 35-pass secure erase

The higher the level, the longer the operation takes. If only a specific file needs to be

targeted, the srm (secure remove) command can be substituted for rm. Like rm, srm simply

takes a pattern to target. For example, to securely erase all files in a directory that begin

with “2006,” you can use the following command:

$ srm 2006*

http://www.peachpit.com/acsa.adv-sys-admin

About Common Data Stores 283

When no option is specified, srm uses the Gutmann 35-pass secure erase, equivalent to

option 3 of the diskutil SecureErase command. An option of -m performs a medium erase

of US DoD seven pass, and the -s switch performs a simple one-pass erase. You can use

srm in conjunction with other commands, such as find, to erase data with more specific

attributes. To use srm in the preceding sample script, for example, you would use the find

command rather than find’s simple -delete switch. You could rewrite that line as:

find /var/backups/ -mtime +14 -exec srm {} \;

About Common Data Stores
To help you determine what data to back up and how, the following sections list locations

for Mac OS X configuration files and data stores for Apple services that ship with Leopard.

In general, Mac OS X places initial configuration files in several locations. These files are

also often updated with configuration changes made with graphical user interface tools.

These files need to be backed up, to restore a system that reflects changes made since ini-

tial installation.

One of the most important and active directories is /etc, which contains configuration

files for the mail system, SSH, and SSH server keys, Samba, emond, and more. Particular

care should be taken to back up and version (create a new version of) the files in this

small but critical directory.

P Service states: /System/Library/LaunchDaemons/*

P General configuration files: /etc/

P System keychain: /Library/Keychains/System.keychain

iCal Service

iCal uses extended attributes (EAs) extensively to mark and describe its data. A backup

solution that does not retain EAs cannot properly restore iCal data. You can change the

location of data through Server Admin. Following is the default location:

Configuration files: /etc/caldavd/caldavd.plist

Data: /Library/CalendarServer/Documents/

284 Ensuring Data Integrity

This is the organization of the data store within the default location:

P ./principles/<users | groups>—Contains folders for each user or group that has been

granted calendar access and that has logged in to the service at least once

P ./principles/<resources | locations>—Contains folders for each resource or location

that has been granted calendar access and that has had its calendar accessed at least once

P ./principles/sudoers—Contains folders for each calendar serviceP administrator

P ./principals/__uids__—Contains folders for every user, group, resource, or location,

using its directory-record unique identifier as the name

P ./principles/<users | groups>/<username>—An HTTP resource that represents the

calendar user or group settings in the directory service

P ./principles/<users | groups>/<username>/calendar-proxy-read and

./principles/<users | groups>/<username>/calendar-proxy-write—Identifies the prin-

cipals used to provide calendar delegate rights to other users

P ./calendars/<users | groups>—Contains folders for each user or group that has cre-

ated at least one event, “to do,” or calendar

P ./calendars/<resources | locations>—Contains folders for each resource or location

that has accepted at least one event, “to do,” or calendar

P ./calendars/<users | groups | resources | locations>/<name>/calendar—Contains

iCalendar (.ics) files of each event in the principle’s calendar

P ./calendars/<users | groups | resources | locations>/<name>/inbox—Contains iTIP

file invitations to other users’ pending events

P ./calendars/<users | groups | resources | locations>/<name>/outbox—Contains iTip

file invitations waiting to be distributed to invitees

P ./calendars/<users | groups | resources | locations>/<name>/dropbox—Contains files

attached to events, either from a user’s self-created event or from participant events

iChat Server

iChat Server relies on both plain-text configuration files and a database, running under

MySQL. For a proper backup, data in MySQL needs to be dumped with the mysqldump utility.

P Configuration files: /etc/jabberd/*

P Data: mysqldump jabberd2 > jabberd2.backup.sql

About Common Data Stores 285

Security and FileVault KeyChains

P /Library/Keychains/System.keychain

QuickTime Streaming Server

Configuration files:

P /Library/QuickTimeStreamingServer/Config/

P /Library/QuickTimeStreamingServer/Playlists/

P /Library/Application Support/Apple/QTSS Publisher/

Data (default locations):

P /Library/QuickTimeStreamingServer/Movies/*

P ~user/Sites/Streaming/*

Firewall Service

While the /etc/directory should be backed up in its entirety, it is listed here separately as a

reminder to version this directory before changes are made.

P /etc/ipfilter

NAT Service

P Configuration files: /etc/nat/

Mail

The mail service comprises several subsystems, each with its own configuration files and

data stores. To restore the mail system to the same configuration that it was at any given

point, you must account for each subservice.

Postfix SMTP:

P Configuration files: /etc/postfix/

P Data: (default locations) /var/spool/postfix/

286 Ensuring Data Integrity

Cyrus IMAP and POP:

P Configuration files: /etc/imapd.conf /etc/cyrus.conf

P Data: (mail database default location) /var/imap

P Mail data store: /var/spool/imap

P Mail database location config directory: /var/imap

P Mail data store location partition-default: /var/spool/imap

P Additional data store partitions: (no default value)

P partition-xxx: /var/spool/mail_xxx

(There can be multiple additional data store partitions as configured in Server Admin.)

AMAVIS:

P Configuration files: /etc/amavisd.conf

P Data: (default locations) /var/amavis/

ClamAV:

P Configuration files: /etc/clamav.conf

P /etc/freshclam.conf

P Data: (default locations) /var/clamav/

P /var/virusmails/

Mailman:

P Configuration files: /var/mailman/

P Data: (default locations) /var/mailman/

Spamassassin:

P Configuration files: /etc/mail/spamassassin/local.cf

P Data: (default locations) /etc/mail/spamassassin/

About Common Data Stores 287

MySQL

MySQL may contain configuration information in /etc/ (it’s not required), and in the

database tables.

P Possible configuration file for MySQL: /etc/my.cnf

P Data: (default locations) /var/mysql/

To dump all tables in information (which may require authenticating):

mysqldump --all-databases > all.sql

PHP

PHP has no default configuration file, but the administrator can create one (such as copy-

ing /etc/php.ini.default to /etc/php.ini and modifying it), and should back it up if present:

/etc/php.ini

P Data: (default locations) as designated by administrator

Web Service

P Configuration files: /etc/httpd/* (for Apache 1.3)

P /etc/apache2/* (for Apache 2.2)

P /etc/webperfcache/*

P /Library/Keychains/System.keychain

P Data: (default locations) /Library/WebServer/Documents/

P /Library/Logs/WebServer/*

P /Library/Logs/Migration/webconfigmigrator.log (Apache config migration log)

Wiki and Blog Server

The Wiki and Blog services are sensitive to the metadata associated with their files. Ensure

that any backup solution takes this into account.

P Configuration files: /etc/wikid/*

P /Library/Application Support/Apple/WikiServer

P (wiki themes and template files)

288 Ensuring Data Integrity

P Data: By default, wiki and blog content is stored in the /Library/Collaboration/ folder.

This folder can be changed in the Web Services pane in Server Admin.

The following list shows the default wiki file and folder hierarchy. This includes where all

wiki files are stored and the folder structure for the wiki content. In the list, groupname

is the name of the group, pagename is the name of the wiki page, and page is the name of

the webpage.

P ./Groups/groupname/—Contains all files for one group’s services

P ./Groups/groupname/wiki/pagename.page/—Contains the component files of a wiki page

P ./Groups/groupname/wiki/pagename.page/page.html—Contains the main text of the

wiki (html content)

P ./Groups/groupname/wiki/pagename.page/page.plist—Contains the metadata for the

wiki page

P ./Groups/groupname/wiki/pagename.page/revisions.db—Contains the version history

database for that wiki page

P ./Groups/groupname/pagename.page/images/—Contains the images for that wiki page

P ./Groups/groupname/pagename.page/attachments/—Contains all attachments for that

wiki page

Blog data is maintained for both users and groups.

User blogs are in /Library/Collaboration/Users/username/weblogs. It contains bundles

with a .page extension that represent each blog entry. These bundles in turn house a plist

with page metadata, and a separate HTML file containing the actual content.

Group blogs are in /Library/Collaboration/groupname/weblogs. Like user blogs, this direc-

tory houses bundles that represent each blog posting.

The filenames for blog pages are generated automatically. The bundle contains references

to this (and potentially) other referenced filenames. None of these filenames should be

altered manually.

Each <groupname> directory contains an index.db file that provides an ID to help link

various collaboration components together. It will be re-created if deleted.

Each <groupname> directory contains a discussions subdirectory. This is where comments

left by readers for a particular page are stored. The discussion directory for a given group

Troubleshooting 289

contains a discussion.db file (sqlite) and a welcome.plist file. It also contains plist files for

each page.

P Log files (default location): /Library/Logs/wikid/*

restoring Backed-Up Data
In general, the method that you use to restore backed-up data will depend on the method

that was used to back up the data in the first place. This is particularly true for commer-

cial applications that tend to use proprietary storage formats.

Data backed up to storage that exposes backed-up files directly is one exception to this

rule. ditto, asr, and rsync back up to standard volumes accessible by Mac OS X. If only a

portion of files are needed from the backup, the volume backed up to can be mounted

and the required files simply copied.

The most important rule about restoring data is to test the process. Restore tests need to

occur on a regular basis; this is the only way to ensure that the data being backed up can

be restored without problems. When working with production data, an important test is

to restore critical data to a test server. Services that benefit from restoring to a test server

are Mail, Blog, and Wiki.

In the case of Time Machine, it’s important to test restoring and building a system from

scratch. A system backed up by Time Machine can be entirely restored by booting from

the Mac OS X v10.5 installation media, installing Mac OS X, and following the prompts to

restore Time Machine data.

Server settings backed up with the serveradmin settings command can be restored by

using file redirection with the files created during the backup, as in this example:

sudo serveradmin settings all < mysettings.txt

Troubleshooting
Overall, backup schemes have many points of entry and many moving parts. You’re always

relying on something else besides the backup tool itself. Is the source and destination

disks’ integrity verified? Is there sufficient capacity on the destination disk or tape? Is the

backup software picking up on unique Macintosh file system attributes? Is the network

available when attempting a network transfer?

290 Ensuring Data Integrity

Troubleshooting needs to follow a methodology, much like that covered in Chapter 12,

“Troubleshooting.” However, here are some common errors.

First and foremost: Is the backup policy being followed? This is less of a technical issue,

certainly, but can lead to implementation problems. Is the right tool being used for the

right data? Are users allowed to back up or restore data? If a service level agreement

(SLA)—an agreement between IT and end users regarding how quickly a service is to be

performed—is specified in policy, is the transfer time adequate? Does more bandwidth

need to be put in place to satisfy an SLA?

Once in the technical realm, again, you need to follow a methodology. Be attentive to

error messages logged by a backup program, either directly on the console or in a log.

Even if a program has a log, always check the system log for issues.

Permissions and metadata can also be the source of issues. Since all processes run in a

security context, the backup process needs sufficient privileges to access the files that it’s

backing up. Watch logs and read backup reports for listings that mention “unable to open

file” or “permission denied.”

 If a backup method does not initially back up or later

restore file system attributes, such as resource forks, you

may run into problems, depending on the type of file. A

typical sure sign of missing attributes will appear in the

Finder.applications file, which may display an icon with the

international “No” symbol, signifying that they cannot be

run on this platform.

Data files that are missing their resource forks or other attributes may display a blank or

generic UNIX icon.

If files mistakenly were copied as a backup to a non-HFS+ volume, any files with resource

forks will have them split off as dot-underscore files. So, a file named roses.psd that has

a resource fork will be copied as two files: roses.psd and ._roses.psd. You can rejoin these

two halves with the FixupResourceForks utility, which acts only on an entire directory, not

on individual files. Copy all files from the non-HFS+ volume to a directory on an HFS+

volume. Supply the directory name to FixupResourceForks. To rejoin each file contained

within the top level with its missing piece, use this command:

$ FixupResourceForks FixupFiles

What You’ve Learned 291

If the only backup destination is a non-HFS+ volume, consider creating a disk image

within the non-HFS+ space and copy files to that container. Copying files to this disk

image will allow you to accurately maintain all HFS+ attributes.

What You’ve Learned
Data integrity protects data from inadvertent or malicious alterations, including deletion.

It’s important to take proactive steps to protect the integrity of data by controlling access,

and protecting against mechanical failure and human error. Disk drives fail, memory

chips have error rates, and people make mistakes. When planning backup, it’s important

to understand what to back up, with what frequency, and also what not to back up.

This chapter presented the following points:

P Before anything else, create a backup policy. When created with senior management, a

backup policy is aligned with the business it is protecting. All actual backup purchases

and decisions should flow from the policy.

P Include a plan for backup testing and verification. Incomplete or inaccurate backups

are of little value.

P Match the classification of data to the storage that holds it.

P Choose the appropriate location of the backup storage, for the needs of the class of

the data. There are several destinations for backup storage: disk, tape, or offsite “in

the cloud.”

P It’s absolutely critical to test restores of backups.

P It’s imperative that you take into consideration the unique attributes of the Mac OS X

HFS+ file system—ACLs, resource forks, and arbitrary metadata—when backing up

and restoring files.

P Don’t rely on a single backup method as an all-or-nothing proposition. Use various

methods as required for given situations.

P As needed, use the Mac OS X command-line utilities that focus on transferring files

and that are built into the distribution. Commands such as rsync, cp, and mv have been

updated to handle extended attributes. Commands such as ditto and asr are unique

to Mac OS X and can retain most, if not all, file system object attributes.

292 Ensuring Data Integrity

P Consider the unique, powerful Time Machine backup solution for smaller environ-

ments, but evaluate it for any scenario involving more than five users or a certain

threshold of data. The Time Machine functionality is handled by the backupd daemon.

There are three launchd plists that handle the behavior of Time Machine. There is also

a main preference file.

P Automate backup. The more people that get involved in the process, the more room

there is for human error.

P Manage the automation process entirely with tools built into Mac OS X: script-

ing utilities such as rsync and asr can be combined with launchd for scheduling.

Automated backup of key files can be useful for troubleshooting.

P Use the built-in Mac OS X utilities to securely wipe storage space, which make it dif-

ficult for an attacker to retrieve deleted data.

review Quiz
1. What is the first step in backing up data?

2. What unique properties need to be considered when backing up and restoring

Macintosh data?

3. What is the medium used in a LAN-free backup?

4. Which Mac OS X built-in command-line utility is available to perform a block-based

clone of an entire volume?

5. What is unique about backing up data from databases?

Answers

1. The creation of a backup policy, specifying scope of backup and with senior manage-

ment sign-off.

2. Metadata in the form of extended attributes, file system access control lists, resource

forks, and general file system metadata.

3. LAN-free backups travel over a SAN.

4. asr, the Apple Software Restore utility.

5. Databases should either be shut down before backup, or dumped to separate files that

get backed up.

Optimizing and
Troubleshooting

Part 4

11
 Time This lesson takes approximately 60 minutes to complete.

 Goals Learn to establish metrics against which you can measure performance

 Learn the components of high availability services

 Learn to create software-based redundant disk and network services

 Learn to configure IP failover server pairs

295

Chapter 11

Ensuring Reliability

In previous chapters, you’ve learned about ensuring the integrity of

data against human error or maliciousness. This chapter looks at the

other side of that equation: maintaining the integrity and reliability of

systems against mechanical failure, with a focus on Apple-branded tech-

nology systems. This process requires planning, understanding of busi-

ness needs, and technical skills.

The administrator’s goal is to provide “high availability”—that is, ser-

vice availability—which is a composite of each subsystem on which a

service relies. High availability includes the reliability of the software

itself and the operating system, down to the hardware that it’s running

on. Company policy should determine the necessary availability of ser-

vice, as discussed in Chapter 10, “Ensuring Data Integrity.”

296 Ensuring Reliability

establishing reliability Metrics
With so many systems that are interdependent, the adage “If you can’t measure it, you

can’t manage it,” is possibly more important than ever. Unfortunately, many administra-

tors manage by gut feelings, rather than measured metrics. Often, when you actually mea-

sure, you’ll find that reality is counter to your beliefs.

It is up to administrators and senior management to establish reliability metrics and

thresholds in policy. When a threshold is crossed for a given period of time, a course of

action must be taken to bring metrics back to acceptable levels.

One oft-cited metric is uptime. Uptime measures the time that a computer system or ser-

vice has been “up and running.” It is typically seen as a measure of reliability. When used

carefully, and within a framework of metrics, uptime can be a valuable measurement.

However, like statistics, metrics can be bent to almost any meaning. A system could have

a long continuous uptime, for example, but as a result of poor maintenance, the database

on that system could be giving out bad data.

Most company senior management personnel do not understand the effect that

demanded uptime will have on costs, and ask for “five-nines”—or “99.999%” uptime.

Each “nine” increases the vigilance that an IT department must give to systems. It also

increases a system’s cost, as money must be spent on higher quality components or redun-

dant systems, and possibly both. Analyzing this metric shows that, the higher the metric is,

the more difficult it may be to meet.

For example, the true length of a year on Earth is 365.2422 days, or about 365.25 days. The

following table gives rounded values for each level of “nines” and how much uptime per year

that specifies, and perhaps more to the point, how much downtime per year that allows.

Table 11-1 Level of “Nine” and Corresponding Uptime and
Downtime per Year

 Uptime per year Downtime per year

99.000% 361.598 days 88 hours

99.900% 364.885 days 9 hours

99.990% 365.214 days 53 minutes

99.999% 365.256 days 5 minutes

Maintaining High Availability 297

IT departments must also respond to other metrics, such as providing return on invest-

ment (ROI) and service level agreements (SLAs). These topics are beyond the scope of this

chapter. However, all members in an IT department should familiarize themselves with

these and other metrics.

Maintaining High Availability
One factor that impacts high availability of software and hardware is the age of this soft-

ware and hardware. Software ages only with respect to other software components. For

example, when an OS is upgraded, many software components suddenly become outdated

(“legacy”). Hardware aging often results in physical failures.

To create highly available systems, a system administrator must account for each system, and

their dependencies and possible failure, as shown in the following list of vulnerable systems:

P Power

P Hardware

P Power supply

P Memory

P Logic board

P Disks

P Communication cards (SCSI, Fibre Channel, and so on)

P Network

P Service (software)

(This chapter does not discuss memory, logic boards, or communication cards.)

Each of these systems can protect against failure in a number of ways, with the most com-

mon being redundancy. Redundant systems provide a spare that can take over in the event of

failure, avoiding a single component that could take a service offline in the event of failure.

Remember Murphy’s Law: “Whatever can go wrong, will go wrong”; these components

form a chain of dependencies that is only as strong as its weakest link.

298 Ensuring Reliability

Planning Power redundancy
The Intel-based Xserve has the option to provide power-supply redundancy. While this is

a welcome improvement, not all systems have this capability. Additionally, if power sup-

plies aren’t receiving power, it doesn’t really matter how redundant they are. To combat

this, systems can include Uninterruptible Power Supplies (UPSs). Essentially, a UPS is a

large battery acting as a hot spare (online and ready to take over) to facility power. In

larger setups, generators start when facility power fails. This way, power is restored from

some source before UPS batteries are drained.

Properly implementing a UPS requires some analysis. The following steps you through an

overview of the planning process:

Step 1: Identify devices that require UPS backup

While not all devices require battery backup, more devices than just servers need UPS

batteries for high availability. Be sure to include all devices in the chain of dependencies,

including network switches, modems, external online storage such as Redundant Array of

Independent Disks (RAID) units, and Fibre Channel switches.

Step 2: Calculate power consumption

For instructions on determining the total power consumption of electrical devices and

how to size a UPS, see “Determining Heat Dissipation and Load, Power, and Cooling” in

Chapter 1. A system, however, is a dynamic thing. Don’t forget to periodically revisit the

load placed on the UPS devices supporting upgraded equipment that may draw more

power than the previous piece, or in racks that are being added to.

Step 3: Determine the required run time

Estimate or measure the time you need a UPS to support all of its equipment after power

fails. This includes the time to send notifications and start generators, or the time to

gracefully shut down your servers and other devices.

Step 4: Identify the required battery capacity

Unless someone in the group has prior experience in determining the right battery capacity,

you will need outside help. Most vendors will be happy to aid in the process. Alternatively,

most vendor websites have run-time calculators to help size a UPS for your needs. For

example, APC’s UPS selector can be found at http://apc.com/tools/ups_selector/. An alter-

nate vendor, Liebert, tends toward larger installations, and will have a representative assist

when necessary (http://www.liebert.com).

http://www.liebert.com
http://apc.com/tools/ups_selector/

Maintaining High Availability 299

Step 5: Research and select UPS vendors and models

While you may already have a good idea of a preferred brand of UPS, manufacturers

change products and capabilities all the time. Ensure that a particular brand supports

Macintosh environments. (This shouldn’t make a difference, but nevertheless, some

manufacturers still throw up their hands upon hearing “Macintosh.”) Also, check with any

value-added resellers (VARs) that your company works with; they may have bundles and

real-world experience with various models and interaction with Mac OS X.

Step 6: Verify electrical ratings and wiring in your facility

Larger UPS devices typically call for 30-amp circuits, and place their own load on an elec-

trical system as they charge batteries and run tests. Have a licensed electrician evaluate the

electrical plant where any UPS will be installed. Let UPS systems save you from problems

rather than create them.

Step 7: Determine the UPS communication method

You must also determine how UPS communicates over the system, whether through

Mac OS X or other systems such as Linux and Windows. Most UPS models contain the

ability to signal status over an IP-based network or serial ports. The appropriate software

is required to interpret these signals and shut down as appropriate.

Mac OS X has built-in support for communicating with a UPS over a USB cable. If

Mac OS X detects a supported UPS, you can use the Energy Saver Preference pane to

determine shutdown aspects of the OS.

300 Ensuring Reliability

Mac OS X–compatible software is available from some UPS manufacturers. Additionally, open

source software has sprung up to enable network-based shutdown of systems. For example,

apcupsd, the APC UPS monitoring daemon, supports Mac OS X systems as well as Linux and

Windows, allowing a common interface across multiple platforms (http://www.apcupsd.org/).

Step 8: Test the UPS

Testing the solution is always critical—as Chapter 10, “Ensuring Data Integrity,” covers—

and a UPS setup is no exception. Have a test plan that simulates power outages. Most

UPS devices can also perform self-tests and report on battery statistics. Be sure to include

power systems in a test plan.

Implementing OS Power-Supply Controls
When a server is presented with the condition of running on battery power from a UPS,

you need to decide what actions to take, before and after power is lost and restored. These

decisions include when to shut down the system and switch to battery power, and when

and how to reboot the system.

You can perform the bulk of the setup in the UPS tab in the Energy Saver Preference pane.

Alternatively, you can issue equivalent commands at the command line or in scripts via

the pmset utility. For example, to set the UPS battery percentage level where Mac OS X will

begin a shutdown, use this command:

pmset -u haltlevel 15

This command instructs Mac OS X to halt the system when the attached UPS reaches

15 percent of battery capacity. See the pmset man page for more options; for instructions on

using man pages, see “Getting Help” in Chapter 9.

When a UPS-signaled condition causes Mac OS X to shut down, it calls a special shut-

down file. The /usr/libexec/upsshutdown script handles shutdown for low-power situations.

This example added an extra parameter to the shutdown command: the -u switch, which

instructs shutdown to leave the system in a faux-dirty state (unclean shutdown—typically

on sudden loss of power when files are not properly closed), so that the system will restart

automatically when power returns, because the system has no reason to restart automati-

cally on a clean shutdown. You need to configure automatic reboot for the system to be

left in a dirty state.

http://www.apcupsd.org/

Maintaining High Availability 301

To adjust the configuration of automatic reboot, you can use the Energy Saver Preference

pane, or the systemsetup command-line utility. To see if the system is set to restart after a

power failure:

$ systemsetup -getrestartpowerfailure

To set the system to restart after a power failure, you can also use systemsetup. For example,

to enable restart after power failure supply, use on to the -setrestartpowerfailure switch:

systemsetup -setrestartpowerfailure on

You also need to deal with external devices that may not have these controls. It may be

appropriate to delay the startup of a server until external devices have the chance to start

up. This is especially important when using large external RAID arrays. To determine the

delay of how long the system waits to restart after a power failure, use systemsetup:

$ systemsetup -getWaitForStartupAfterPowerFailure

You can also set this delay using systemsetup. Supply a value, measured in seconds, to the

-setWaitForStartupAfterPowerFailure switch:

sudo systemsetup -setWaitForStartupAfterPowerFailure 360

This example delays a server startup for 6 minutes after power is restored following a dirty

shutdown.

Automatic restarting of a server on OS freeze is available only to server-supported hard-

ware (Xserve and Mac Pro). This restart is taken care of by a daemon that “tickles” a hard-

ware timer (the “doomsday clock”). The hardware timer counts down from 5 minutes,

and, unless reset, will forcibly reboot the system. The watchdogtimerd daemon, controlled

by the launchd /System/Library/LaunchDaemons/com.apple.watchdogtimerd.plist file,

resets the timer every 4 minutes. If the timer doesn’t hear from watchdogtimerd, it assumes

that the OS is unresponsive and forcibly restarts the system.

Creating Disk redundancy
Disk drives, based on several moving parts, ultimately will fail. Sometimes defects in the

manufacturing process cause failures. This section describes one way to protect systems

from any single disk failing, by using RAID, or a redundant array of inexpensive disks.

302 Ensuring Reliability

Mac OS X has built-in software RAID options, including the capability to build mirrored

RAID sets. The Disk Utility.app can handle most RAID tasks; the command-line-based

diskutil is more powerful in many ways, including scriptability.

To create a mirrored RAID set, first you need to know the disk device IDs. You can use

diskutil to provide this information with its list verb:

$ /usr/sbin/diskutil list

/dev/disk0

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme *149.1 Gi disk0

 1: EFI 200.0 Mi disk0s1

 2: Apple_HFS Macintosh HD 148.7 Gi disk0s2

/dev/disk1

 #: TYPE NAME SIZE IDENTIFIER

 0: Apple_partition_scheme *100.0 Mi disk1

 1: Apple_partition_map 31.5 Ki disk1s1

 2: Apple_HFS Data 100.0 Mi disk1s2

/dev/disk2

 #: TYPE NAME SIZE IDENTIFIER

 0: Apple_partition_scheme *100.0 Mi disk2

 1: Apple_partition_map 31.5 Ki disk2s1

 2: Apple_HFS Disk Image 100.0 Mi disk2s2

If both disks are new, or have no data on them, the diskutil createraid verb can be used to

create a mirrored RAID set. Taking disks from the previous example list, you would issue

the following command to mirror disk1s2 and disk2s2:

diskutil createraid mirror Data HFS+ disk1s2 disk2s2

This command creates a mirror RAID set named Data from the two disks disk1s2 and disk2s2.

When creating new RAID sets or adding disks, if possible, it is better to specify the entire

disk instead of a partition on that disk. This allows the software to reformat the entire

disk using the most current partition layouts. When using whole disks, the type of parti-

tioning used is selected based on the platform type (APMFormat for the PowerPC [PPC]

platform, GPTFormat for Intel). GPT and APM partition formats cannot be mixed in the

same RAID set.

Maintaining High Availability 303

AppleRAID has the capability to create a mirrored RAID from an existing disk with

another disk the same or greater size (although space beyond the size of the original disk

will be wasted). The diskutil enableraid command can RAID-enable an existing disk,

which allows adding a new disk. For example, if the example disk disk1s2 is a single disk

that you want to turn into a mirror, you could issue the following command:

diskutil enableRAID mirror disk1s2

Changing filesystem size on disk ‘disk1s2’...

Attempting to change filesystem size from 104857600 to 104824832 bytes

Waiting for new RAID to come online “CA9B6A1C-58B9-48C5-9437-CC4911DCB3E5”

Found new RAID set

[\ 0%...] Changing filesystem size

on disk ‘disk9’...

The disk has been converted into a RAID

In the example given, disk9 refers to a new RAID device. This device will contain any

devices that make up the RAID set, including the original disk disk1s2. (Disks that were

originally partitioned on Mac OS X v10.2 or earlier or were partitioned to be Mac OS

9–compatible may not be resizable.) Once this disk has been degraded, it can be repaired

(or given its initial partner disk) using the diskutil repairMirror command. For example,

to add the blank disk2s2 to the newly degraded RAID disk9 created in the previous exam-

ple, you could issue the following command:

diskutil repairMirror disk9 disk2s2

Note: Syncing data between mirror partitions can take a very long time.

Note: The mirror should now be repairing itself You can check it’s status using

‘diskutil listRAID.

Notice the notes—syncing the mirrors really does take a long time. The larger the disks,

the longer the process takes. To display the status of RAID devices, issue the command

diskutil listRAID :

$ diskutil listRAID

RAID SETS

===

Name: Data

Unique ID: CA9B6A1C-58B9-48C5-9437-CC4911DCB3E5

304 Ensuring Reliability

Type: Mirror

Status: Online

Size: 104824832 B

Device Node: disk9

Apple RAID Version: 2

Device Node UUID Status

0 disk1s2 1A20A082-5342-4624-A259-F91CB69CB00A Online

1 disk2s2 0AF106BF-5FD0-403B-86D8-035150E6F872 Online

===

If a RAID set is degraded or rebuilding, its status is listed as such.

One downside to AppleRAID is that a failed disk does not notify administrators of its

failure. However, you, as administrator, can easily script a warning using the diskutil

listraid, grep, and launchd commands (and some inspiration from Chapter 9, “Automating

Systems”). See the diskutil man page for further RAID options.

In addition, some third-party RAID utilities, such as SoftRAID (http://www.softraid.com),

offer monitoring and other capabilities. The Apple Xserve and Mac Pro utilities offer

hardware RAID options that extend RAID capabilities to RAID 5 configurations.

Creating Network redundancy
From two or more similar network interfaces, you can create an aggregate that acts as

one. (Typically, aggregate networks are created to increase bandwidth.) The new, bonded

interface can suffer network outages on all physical interfaces but one and keep run-

ning. The network switch that these interfaces connect to must support the 802.3ad Link

Aggregation Control Protocol and be configured accordingly. The process of switch con-

figuration differs from manufacturer to manufacturer, and is outside the scope of this

book. Once you have configured a switch properly, you can configure Mac OS X.

Follow these steps to create the aggregate network and then configure the interface:

1 Choose System Preferences from the Apple menu. In System Preferences, click the

Network Preferences tab to display the pane.

http://www.softraid.com

Maintaining High Availability 305

2 Click the Preference button at the bottom of the pane, and choose Manage Virtual

Interfaces.

3 Click the Add (+) button and choose New Link Aggregate. Enter a name of your

choice for the new Link Aggregate interface. Select the options for the interfaces that

should belong to this bonded group, using the checkboxes.

4 When you have finished, click the Create button.

The system now recognizes this interface as new, and as such it must be configured. To

configure the interface, use the Network Preference pane or the networksetup command,

which you can also use to create and destroy hardware bonds.

To use the networksetup command to create a bonded interface as you would from the

Network Preference pane, issue the following command:

networksetup -createBond bond0 en0 en1

This command creates a new, aggregate interface named bond0, by combining the en0 and

en1 interfaces. See the networksetup man page for more options.

Once you configure this new bonded interface, it has a single IP address and MAC

address. For all intents and purposes, there is still a single route into the server. If one

cable is physically damaged or unplugged, network traffic continues to pass on the

remaining interface without interruption.

306 Ensuring Reliability

Monitoring High Availability
As systems expand, automated solutions are nearly the only way to keep up. Mac OS X

offers several automated systems that provide high system availability.

The Mac OS X diskspacemonitor can monitor free space on volumes and automatically take

action when defined thresholds are reached. The speed of a disk drops the closer it gets to

capacity. More importantly, when a disk fills completely, writes fail and files are not prop-

erly closed, leading to possible corruption.

The Mac OS X IP failover capability allows a warm standby server to monitor a primary,

and take over in the event of hardware failure on the primary. Like disk RAID, this strat-

egy allows continued availability even in the face of complete hardware failure. In the case

of IP failover, however, the failure can entail an entire server.

Using diskspacemonitor
diskspacemonitor is a relatively simple but important script on Mac OS X Server that auto-

mates disk-space checking and response when thresholds are crossed. An administrator

can fully configure it.

To determine whether diskspacemonitor is enabled, use the status command:

diskspacemonitor status

Not enabled.

To enable diskspacemonitor, use the on command:

diskspacemonitor on

No output is returned from this command. Turning diskspacemonitor on enables the launchd

task at /System/Library/LaunchDaemons/com.apple.diskspacemonitor.plist. Once enabled,

diskspacemonitor is configured in the /etc/diskspacemonitor/diskspacemonitor.conf prefer-

ence file. It is three short lines:

monitor_interval=10

alert_threshold=75

recovery_threshold=85

monitor_interval is the interval in minutes between diskspacemonitor checks.

Monitoring High Availability 307

alert_threshold is the percentage full at which diskspacemonitor will run the alert scripts in

/etc/diskspacemonitor/action.

recovery_threshold is the percentage full at which diskspacemonitor will run the recovery

scripts in /etc/diskspacemonitor/action.

The action directory contains two predefined scripts:

P /etc/diskspacemonitor/action/alert, to alert the administrator that a warning thresh-

old is exceeded

P /etc/diskspacemonitor/action/recover, to recover disk space by compressing, rolling,

and deleting log files.

Administrators may add their own scripts:

P /etc/diskspacemonitor/action/alert.local

P /etc/diskspacemonitor/action/recover.local

The administrator-supplied scripts run at the appropriate threshold, and then the stan-

dard scripts are invoked.

Thanks to the configuration files provided, simply turning on diskspacemonitor causes a

Mac OS X Server system to alert an administrator of impending low disk conditions, and

automatically roll old log files on actual low disk conditions.

Using IP Failover
IP failover allows a backup server to notice when a primary server goes offline and to come

online in its place. Apple has made the initial setup and configuration of IP failover simple,

but the reality is more complex. An administrator must be diligent in selecting appropriate

services for failover and testing the implications, as well as configuring servers appropriately.

For example, failover for a server providing static- or database-driven web services is fairly

straightforward, as web setups can be replicated to the backup server with a database

server running on another machine. In this case, failing from the primary to the second-

ary requires no state. In a more complex web environment, common storage must be

mapped to keep session information and Secure Sockets Layer (SSL) transactions intact.

Apple has enabled a way to easily fail over Apple Filing Protocol (AFP), but doing the

same for Windows services (Samba) is far from built-in.

308 Ensuring Reliability

Additionally, if you plan to fail over a given service, it must be configured properly on

both the primary and secondary server: IP failover goes into effect upon an entire server

going offline, and not simply when service levels drop (like a load balancer).

About the Failover Scheme
A failover scheme has two parts. On the master, the IPFailover startup item (/System/

Library/StartupItems/IPFailover) launches heartbeatd during startup. Upon launch,

heartbeatd checks its argument list, and moves to the background. heartbeatd sends out a

message every second via port 1694. This is the signal to the backup server in the failover

pair that the primary is still alive and well (or can at least get a heartbeat signal out).

These messages are directed at the address specified in the FAILOVER_BCAST_IPS entry

in the /etc/hostconfig file.

On the backup server, the IPFailover startup item starts failoverd, which listens for the

heartbeat message on port 1694. If it stops receiving the heartbeat message, it begins the

failover process.

On detecting a failure, failoverd takes over the master host’s public IP addresses, to main-

tain service availability to incoming clients. failoverd also invokes NotifyFailover to notify

the administrator by email, and ProcessFailover to acquire the monitored IP. (See the fol-

lowing illustration.)

The ProcessFailover script also executes scripts located in the /Library/IPFailover/<IP_

Address> folder, where IP_Address is the address of the primary server. You must cre-

ate this folder; it does not exist by default. This folder can contain four scripts: PreAcq,

PostAcq, PreRel, and PostRel. These scripts perform actions you determine at each stage

of a failure. The names define the context of when the scripts will run (before IP acquisi-

tion, after acquisition, before IP release, or after IP release). The capability of customizing

actions for their specific configuration is where the real power and flexibility of IP failover

comes into play.

Monitoring High Availability 309

Configuring Failovers

A failover setup has a few basic requirements: nearly identical hardware and software

for the master and backup servers, multiple common network interfaces (Ethernet or

FireWire), and the ability to connect to common networks and common storage.

Initial failover configuration requires several steps:

1 Configure the primary Ethernet interface of each server to connect to the primary net-

work. Each server should have its own IP address and be connected to the same subnet.

2 Configure Domain Name System (DNS) for the interfaces. A DNS administrator

should also:

P Map the IP address of the master server to a virtual DNS name (for example,

store.example.com) that users use to connect to your server. This allows you to

change the IP address of the master server transparently to users.

P Map the IP addresses of the master and backup servers to DNS names (for exam-

ple, master.example.com and secondary.example.com) that you can use to refer to the

two computers when setting up IP failover.

310 Ensuring Reliability

3 Directly connect the master and backup computers together using a second Ethernet

interface or IP over FireWire. This is an important step because the two computers

communicate failover events over this connection. In addition, the administrator

should do the following:

P Configure the TCP/IP settings of the secondary Ethernet interface or IP over

FireWire interface on both computers.

P Assign each computer a private network IP address, separate from the primary

interface. For example, use 10.1.0.2 and 10.1.0.3, while the primary interfaces are con-

figured with 192.168.200.2 and 192.168.200.3.

P Make sure the secondary connections are on the same subnet.

4 Configure the master server following these four steps:

P Add or edit the FAILOVER_BCAST_IPS entry in /etc/hostconfig to specify the

addresses to send heartbeat messages to.

P It’s most efficient to send the heartbeat messages to specific addresses, rather than

a broadcast address. For example, if the primary IP address of the master server is

17.1.0.50 and the secondary IP address is 10.1.0.2, add the following line to the /etc/

hostconfig file: FAILOVER_BCAST_IPS=”10.1.0.3 17.1.0.51” This line instructs the master

server to send the heartbeat messages to the primary and secondary IP addresses of

the backup server.

NOTe P To edit the /etc/hostconfig file, you must be root. Use the sudo command

when opening this file using your preferred command-line editor.

P Add or edit the FAILOVER_EMAIL_RECIPIENT entry to specify the mail address to send

notifications to. If you don’t add this entry, mail notifications go to root, which typi-

cally routes to no one.

P Restart the server.

Monitoring High Availability 311

5 Configure the backup failover server following these four steps:

P Add or edit the FAILOVER_PEER_IP_PAIRS entry in the /etc/hostconfig file to specify

the IP address of the primary network interface on the master server. For example, if

the IP address of the primary network interface on the master server is 17.1.0.50, add

the following entry: FAILOVER_PEER_IP_PAIRS=”en0:17.1.0.50”

P Add or edit the FAILOVER_PEER_IP entry in /etc/hostconfig to specify the IP address

of the secondary network interface on the master server. For example, if the IP

address of the FireWire port on the master server is 10.1.0.2, add the following entry:

FAILOVER_PEER_IP=”10.1.0.2”

P Disconnect the direct connection between backup server and master server. If

you’re using IP over FireWire for the secondary interface, disconnect the FireWire

cable connecting the two computers.

P Restart the backup server. When the backup server has started up, reconnect it to

the primary server.

Configuring Failover Services

To have a backup server take over the services of a failed master requires additional

instructions. The instructions in “Configuring Failovers” simply bring a backup server

on-line in place of a failed master; there’s nothing that makes it take over for services con-

figured on the master.

Many services have failover or high-availability capabilities built in, and wouldn’t need

to rely on the Apple IP Failover scheme. For instance, Open Directory has a Master and

Replica configuration that provide a high availability configuration. MySQL has facilities

for replication and may be better served by its native failover capabilities than by trying to

use the Apple IP Failover.

Typically, good candidates for Mac OS X Server in an IP failover pair are services that do

not fail over on their own. The specific service will determine how it should be config-

ured. Generally, the master and backup in the pair will need some common storage to

maintain state. The following example uses AFP. For services other than AFP, you need to

become familiar with the service, determine if server-based failover is appropriate, and

plan a method for the backup server to take over for a failed master.

312 Ensuring Reliability

In the case of network disconnect, AFP can allow initially authenticated clients to recon-

nect to the server using a reconnect token rather then reauthenticating with user creden-

tials. The reconnect token contains information that allows the server to verify session and

user data on the server.

When the client initially logs in (using user credentials), the server sends the client a

reconnect token. This token is encrypted with the server reconnect key located in /etc/

AFP.conf and is only readable by the server.

Following a disconnect of an established session, the client attempts a reconnect by send-

ing the reconnect key to the server. The server decrypts the reconnect token using the server

reconnect key. Then the server verifies that it is a valid, authenticated session token, by veri-

fying data in the reconnect token with data on the server (for example, user data obtained

from the user record). When the information is verified, the server completes the reconnect.

In the case of failover, the server reconnect key used to initially encrypt the reconnect

token handed to the client must be used by the backup server to handle all reconnects.

By default, the server reconnect key is stored in /etc/AFP.conf. This file must be placed on

a shared storage that both servers can access.

The path to the key is specified by the reconnectKeyLocation attribute value, found in the

preference file /Library/Preferences/com.AppleFileServer.plist.

Changing the value of reconnectKeyLocation in the server preferences file ensures that both

servers use the same reconnect server key.

Troubleshooting
Following are suggestions on troubleshooting issues that may arise with AppleRAID and

IPfailover.

When creating a RAID set using AppleRAID, using the command-line tool often gives

more specific error messages than the graphical Disk Utility.app. Additionally, notice

the primary warning for new RAID sets: Do not use disks previously formatted with a

Mac OS 9 wrapper without reformatting.

What You’ve Learned 313

Remember to check RAID sets often with the diskutil listRAID command to determine if

any sets are having problems.

If an existing RAID set continually degrades by itself, check each disk in the set for bad

blocks. You can perform this check with the command-line diskutil and third-party

applications.

If a disk is having a physical problem, system.log typically will display kernel-level mes-

sages to that effect.

Troubleshooting IP failover is a matter of knowing the service. As you learned in this

chapter, IPFailover depends on two daemons: heartbeatd and failoverd. Both are launched

by a StartupItem, and depend on the correct entry existing in /etc/hostconfig.

Furthermore, the heartbeat packets are delivered on port 1694: Make sure that this is not

blocked. If you find that a backup unexpectedly is trying to take over for a master, make

sure that the physical network connecting the backup and master is sound.

Finally, like other services, the logs always contain clues. Check system.log. Also check the

specific IPFailover log— /Library/Logs/failoverd.log—all failover activity is recorded there.

What You’ve Learned
You should understand these points about providing highly available services:

P Before getting too deep into the technology behind providing high availability, deter-

mine exactly which services require this level of reliability.

P Uptime is a measure of the time that a computer or service has been up and running.

It is a metric that must be used carefully.

P Reliability is often measured in “nines.” Each added nine dramatically reduces the

window in which a service can be unavailable.

P High availability is a chain of all components on which a service relies. This includes

power, hardware, network components, and the service itself.

P Power redundancy is handled by redundant power supplies and battery-backed

UPS devices.

314 Ensuring Reliability

P Mac OS X has built-in capability to monitor and react to a UPS connected via a

USB cable.

P The pmset and systemsetup commands can query and manipulate system settings

that determine thresholds at which to react to UPS battery events and power fail-

ure conditions.

P Disk Utility.app and the diskutil command-line tools are capable of creating RAID

sets based on AppleRAID in software.

P diskspacemonitor is a useful script that not only monitors disk-free conditions, but can

also take actions (read: run scripts) based on free space thresholds.

P Server-based IP failover is built into Mac OS X Server. While the basic configuration

is relatively simple, understanding and implementing failover for particular services

may present challenges.

P heartbeatd and failoverd are the two daemons responsible for sending and listening to

the primary server’s heartbeat. If the backup server running failoverd does not receive

a heartbeat, it starts the failover process.

P failoverd uses the NotifyFailover and ProcessFailover scripts to notify admins, and

acquire the targeted IP, respectively.

P Four scripts, PreAcq, PostAcq, PreRel, and PostRel are available to perform custom

actions at each stage of the failover process.

review Quiz
1. What is the difference in downtime per year between a 99.99% available service and a

“five-nines” 99.999% available service?

2. Which command-line tool is used to alter on-battery behavior of a Mac OS X system?

3. Which command-line tool is used to create mirrored disk sets?

4. What are two advantages of creating a bonded network interface?

5. What are the two processes responsible for monitoring an IP failover pair?

6. What are the four scripts run by ProcessFailover to run actions on failover state change?

Review Quiz 315

Answers

1. The 99.99% available per year service can be down for 53 minutes per year. A “five-

nines” 99.999% available service can only be down for 5 minutes per year. That’s a

difference of 48 minutes per year.

2. The pmset (Power Management Settings) command.

3. diskutil

4. A bonded network interface creates redundancy and improves throughput.

5. heartbeatd and failoverd send and receive the heartbeat signal, respectively.

6. The four scripts are PreAcq, PostAcq, PreRel, and PostRel.

12
 Time This lesson takes approximately 60 minutes to complete.

 Goals Learn to follow a troubleshooting methodology

 Learn where to find help

 Learn command-line tools to assist in the troubleshooting process

317

Chapter 12

Troubleshooting

Troubleshooting is as much art as it is science. Each chapter in this

book has included troubleshooting advice specific to the chapter’s sub-

ject, and focused purely on the technical resolution. This chapter takes a

more general look at troubleshooting and teaches you how to develop a

good troubleshooting methodology that you can apply to any situation.

318 Troubleshooting

Following a Methodology
When a new problem surfaces—one that you haven’t seen or resolved before—it’s impor-

tant to follow a troubleshooting methodology. By doing so, you can systematically narrow

down the problem to find the cause of the problem and, hopefully, a resolution.

Troubleshooting has two goals: fix the problem properly, and fix it quickly. To fix a prob-

lem properly, you must do the following:

P Follow systematic troubleshooting procedures.

P Use up-to-date references and tools.

P Create no new problems.

Several actions are keys in troubleshooting: documenting your work, following your

methodology, and backing up.

If you are in a shared support environment, or if you rely on outside contractors, docu-

menting a fix for a particular problem is a very effective way to ensure that you or your

team does not have to start from scratch every time a problem appears.

Bearing in mind the old adage “haste makes waste,” be sure to stick with your methodol-

ogy, rather than thrash or rush and perform sloppy work. It’s too easy to introduce new

problems while trying to fix the current issue.

Always create a backup before modifying files and settings. If you’re going to perform

work that may alter user data, or affect a system in a way that you’re not entirely sure

about, create a backup of any files that may be affected. Additionally, it may be wise to

clone the entire computer before performing a systemwide alteration.

Here are some tips that you should keep in mind throughout the troubleshooting process.

Take Notes
The expected short tasks often end up taking much longer than expected. What starts out

as a simple troubleshooting job can sometimes unravel into a major task.

Start taking notes from the very beginning of the troubleshooting process, even if it seems

like a simple problem. Document each setting that is changed, added, or removed. After

you complete the fix, review your notes to see where you might have been more effective.

Following a Methodology 319

Use Your resources
Consulting with available resources is a great way to find information about the product

and problem that you’re troubleshooting. Even if you’re not sure what you’re looking for,

browsing through references such as the AppleCare Knowledge Base or technical mail-

ing lists, or searching the web can be helpful when you don’t know what to try next. You

might come across an article related to the issue you’re trying to resolve. Don’t hesitate to

ask questions of coworkers or other reputable technical authorities, because they can pro-

vide valuable clues.

Consider the Human Factor
When you’ve been working long and hard on a problem that has you stumped, it can help

just to take a break. Frustration can affect your ability to think logically. Sometimes you

may be too close to a problem to see it—a short break might lead you to consider new

solutions or approaches.

Also consider your user or customer. Some users are anxious, on deadline, or feeling stress

or pressure for other reasons. Do not give half-answers or make comments (“Uh-oh, this

doesn’t look good”) that might be alarming during the troubleshooting process. Don’t

hesitate to suggest that your user take a break while you’re working.

Follow an Order of elimination
Approaching a problem methodically is efficient and cost-effective. Most problems can be

categorized and eliminated with careful troubleshooting.

Check for problems in the following order:

1. User-related problems

Check for user-related problems while gathering information, duplicating the prob-

lem, and trying quick fixes. These include incorrectly set preferences, inadvertent

errors, incompatibilities, and incorrect assumptions.

2. Software-related problems

Software can cause symptoms that look like hardware problems. Always check for

software problems before assuming the problem is hardware-related. Report bugs if

you find them (this is an instance where your notes will be helpful).

320 Troubleshooting

3. Operating system–related problems

Attempt to identify operating system–related problems from general symptoms that

affect all applications, or from specific symptoms, such as problems that prevent the

startup process from completing.

4. Hardware-related problems

When you are convinced that the problem is not caused by user error or software, you

should troubleshoot it as a hardware issue. Hardware problems are beyond the scope

of this book; the AppleCare Knowledge Base at http://www.apple.com/support is a

valuable resource.

Taking general Steps
Often, solving a problem requires you to rethink exactly what the problem is. Sometimes

what appears to be a bug isn’t a bug at all. Remain objective, and be careful not to con-

vince yourself of incorrect truths. Using a consistent methodology will keep you on

the right track.

The illustrated troubleshooting sequence shows the main steps of one troubleshooting meth-

odology. It is used inside Apple to resolve issues and is an expansion on the scientific method.

http://www.apple.com/support

Taking General Steps 321

The first row includes steps that help assess a problem; the second row shows steps where

the cause is identified and troubleshooting steps take place so that complete understand-

ing is gained; and the third row involves fixing the problem and wrapping up the issue.

A formalized process that goes with this methodology is shown in this flowchart:

The process shown here is used by the AppleCare support group to ensure that it handles

all issues properly and tracks them accurately. The flowchart describes a series of loops

322 Troubleshooting

that are performed until the system is returned to normal operation. Imagine you’re a

desktop support technician called to work on a malfunctioning computer. According to

the flowchart, the first step is to gather information. You immediately encounter a deci-

sion point: Was it a simple problem, and did gathering information alone resolve the

problem? If it doesn’t, you then verify the problem, that is, you see if you can reproduce

it, and you try a quick fix. (You can skip the onsite service decision, since you already have

the computer in front of you.)

Let’s say you think you have identified the problem, so you skip to repair or replace. (In a

software context, this choice can be stated as “troubleshoot or reinstall.”) After complet-

ing the repair (often a quick fix is a repair), you ask yourself if the problem is resolved.

No? Then you loop back to trying quick fixes. You may try a number of quick fixes before

either resolving the problem or deciding that no more quick fixes apply and you need to

go on to running diagnostics. You may realize that you have exhausted your knowledge

and need to research. You may decide that it is time to escalate the problem to a senior

technician. Or, you may determine the problem is fixed and enter the documentation and

notification stage.

Assessing the Problem
Asking the proper questions is perhaps the most powerful troubleshooting tool in your

arsenal. Getting a clear picture of what is not working is crucial if you want to find the

solution. Try to get as complete and specific a picture as possible about what problems are

occurring, when they occur, and what error messages are displayed. Search the Knowledge

Base if you think this might be a common problem.

Tips for gathering Information
Following are tips on how to ask the right questions to get the answers you need, starting

from a broad view:

1. Start with open-ended questions such as “What is the issue?” or “What is happening

onscreen?” Open-ended questions generally start with words like how, why, when,

who, what, and where. They can’t be answered by “yes” or “no.” You usually gather

more information this way, even if some of it is not exactly pertinent to the prob-

lem at hand.

Assessing the Problem 323

2. Without interruption, let users explain in their own words what they have experi-

enced. The explanation may help you avoid assumptions about the source of the

problem, because you may hear that more things are broken than you expected.

3. As you begin to understand the basics of the problem, start asking closed questions

that require more limited, specific answers. Examples of closed questions are “What

version of the operating system are you using?” and “Is there an icon on your desk-

top?” Users either can tell you the version or that they don’t know (in which case, you

would guide them to the information). Closed questions often can be answered by

“yes,” “no,” or a value such as “10.4.”

4. Verify your understanding of what the user has told you. Restate what you have been

told and get the user’s agreement that you understand the problem. An example of

restatement would be, “Okay, so what’s happening is that when you do X, Y occurs.

Is that correct?”

5. If the user agrees with your understanding, continue to gather information. If the

user does not agree with your understanding, clarify what you misstated and again

verify your understanding. Do not continue with the troubleshooting until the user

agrees that you understand the problem.

Using “The Four Cs”
Another useful methodology is “The Four Cs.” This systematic strategy applies to net-

works, both Ethernet and Fibre Channel–based, and examines the following:

P Connections (networks and cables)

P Components (hardware failures)

P Configurations (software settings)

P Combinations of problems in the first three groups

Examining Connections

There was a time when you could purchase a personal computer and not connect it to

anything else, except perhaps a printer. Those times are long gone. Networks have a place

in connecting home machines to other machines and the Internet up through racks of

machines running in a cluster configuration that coordinates activities via Ethernet.

324 Troubleshooting

Understanding these components and how they fit with others is critical in the trouble-

shooting process. If networking is not your strength, consider consulting with someone

who has the expertise necessary to initially set up or troubleshoot for you.

Examining Components

Troubleshooting down to the component level—server, network card, or disk drive—is an

essential skill. Often, individual components have methods of notification that can alert

administrators before they fail.

Examining Configurations

After verifying that system connections and components are in perfect working order, a

simple error or misconfiguration can result in various levels of performance and reliabil-

ity of the system. Networks rely on intricate combinations of active background processes,

static configuration files, and dynamic transactions. The more familiar you become with

these aspects of a network’s structure, the more quickly you will be able to troubleshoot

problems related to the configuration of the system.

Examining Combinations of Problems

Never underestimate the ability of several components to fail at the same time. Also, there

are times when several components just do not work together despite what “should” be

happening. Challenge your assumptions and look for bad interactions between compo-

nents or multiple failures. If at all possible, bring components from a troubled system into

a known-good test environment. Swap components in series and in multiples.

Using Troubleshooting Tools and resources
This section covers using tools generically for overall troubleshooting use. See the

“Troubleshooting” sections in the individual chapters for information on how to use sys-

tem tools in the chapter-specific situations.

Seeing What the User Sees
On a 1-to-1 scale, nothing is better than being able to actually see the same screen as

the user while troubleshooting. It may be difficult for people outside of the technology

field to describe a problem in the same manner you would. It’s also possible that you’re

troubleshooting an application that you’re not entirely familiar with. Mac OS X gives you

several options for viewing a screen remotely.

Using Troubleshooting Tools and Resources 325

Using Apple Remote Desktop to Troubleshoot

While Apple Remote Desktop (ARD) covers a broad range of tools, the ability to remotely

view the screen of another Mac OS X computer is one of the top reasons for its use. Since

the client portion of ARD is part of the out-of-the-box system since Mac OS X v10.4, it is

a very good choice in Macintosh environments.

ARD leverages the open source Virtual Network Computing (VNC) product. This

means two things. First, generic VNC clients, such as Chicken of the VNC, can be used

to connect to an ARD-configured Mac. Second, the ARD Admin console can connect to

Windows or Linux machines running a VNC client.

See http://www.apple.com/remotedesktop for more details.

Using Screen Sharing to Troubleshoot

New to Leopard is an additional way to view a remote screen: the built-in screen shar-

ing, essentially a stripped-down version of ARD. Screen Sharing has been integrated with

iChat, allowing two network-connected users to view one screen. Participants may request

to view the remote screen, or allow their screens to be shared.

Screen sharing is also integrated into the Finder, which offers a screen sharing button

while browsing network computers. Finally, you can use a vnc:// URL in the “Connect to

Server...” menu item in the Finder to allow connections to arbitrary machines running

the ARD client. For more on screen sharing, see “Installing Remotely Using a Graphical

Interface” in Chapter 2, “Installing and Configuring Systems.”

See http://www.apple.com/macosx/features/ichat.html for more information.

Determining the State of the System
When working on larger problems—issues that affect an entire system, or multiple users

on a machine—it’s always beneficial to be able to gather the system state. Getting the big

picture is crucial in these situations. Here are tools to help you do that.

Using System Profiler

Built into Mac OS X as a graphical user interface and shell-based utility, System Profiler

can report on almost any aspect of the system: hardware characteristics, installed appli-

cations, system software versions, and more. For more on System Profiler, see “Creating

Reports” in Chapter 8, “Monitoring Systems.”

http://www.apple.com/remotedesktop
http://www.apple.com/macosx/features/ichat.html

326 Troubleshooting

Using Logs

Never underestimate the amount of information you can gather from log files. You should

always consult log files when troubleshooting a problem (and often even before then).

Some programs may have their own logging facilities, which should be documented.

Contact the application developer when no logging ability seems to exist.

Most importantly, many subsystems can turn on enhanced logging with greater debugging

information. When the standard depth of logging isn’t delivering enough information for

solving a problem, look for a way to increase the verbosity of logs. Many of the subsystems

accessed via Server Admin.app have a Logging tab that allows administrators to increase

or decrease the amount of logging a given service provides. Unfortunately, outside of the

Logging feature, methods to achieve deeper logging are fragmented. Many times, applica-

tions handle this in different ways. For some specific programs, see this chapter’s “Trying

Examples” section.

For details on reading log files and their typical locations, see “Reading Log Files” in

Chapter 8,“Monitoring Systems.”

Performing Verbose Boot

Sometimes, an issue will arise that takes place before the operating system is ready to

accept logins. Mac OS X can drop the graphical login and present a text-based verbose

boot to aid in the troubleshooting process. This is also a good way to get familiar with the

system in general.

To perform a verbose boot, after you hear the boot chime, hold down the Command and

V keys. During that boot and shutdown sequence, the familiar graphical screens (gray

screen with the Apple logo on boot, and solid blue on shutdown) will be replaced by

scrolling text that describes startup and shutdown events.

To make a system boot permanently in verbose mode, use the nvram command. nvram

allows manipulating nonvolatile RAM, where certain boot parameters are stored. To set

the verbose flag, issue this command with root-level access:

nvram boot-args=”-v”

To reverse this setting, set the nvram boot-args value to an empty string:

nvram boot-args=””

Using Troubleshooting Tools and Resources 327

Sometimes, messages may scroll by too quickly to read fully. There is a period of time

when messages cannot be written to /var/log/system.log; however, immediately after boot,

the message buffer still contains boot-time messages. You can use the dmesg (diagnostic

message) command to print kernel messages. Simply type dmesg with root-level privileges

at a prompt:

dmesg

Because the kernel is the interface between hardware and the operating system, using dmesg

can often help you find issues related to peripherals causing problems.

Using Command-Line Tools
While the graphical user interface makes many tasks much easier, speed and power for

troubleshooting lie under the covers on the command line. Because this book has pre-

sented command-line tools throughout, this section summarizes command-line tools,

options, and recommended use.

ps

The ps utility displays all currently running processes visible to a given user. When ps is

run with root-level privileges, it gives a high-level snapshot view of the number and type

of programs running on a system. For more on ps, see “top, CPU%, and Load Averages” in

Chapter 10, “Monitoring Systems.”

strings

The strings tool searches a file and prints out the human-readable portions. This is pri-

marily useful with binary files and can be very useful in trying to glean what an executable

does or how it does it. strings simply takes a filename as its argument:

$ strings filename

A match is a “string” if four or more alphanumeric characters appear contiguously.

fs_usage

According to its man page, fs_usage “presents an ongoing display of system call usage infor-

mation pertaining to filesystem activity.” fs_usage is useful for determining which files an

application touches while it is running.

For more on fs_usage, see “Other System Monitoring Utilities” in Chapter 8, “Monitoring

Systems.”

328 Troubleshooting

Dtrace and Its Utilities

The Dtrace subsystem is a powerful troubleshooting tool new to Leopard. Exposed in the

graphical user interface as Instruments.app and in the shell as dtrace, it allows an admin-

istrator to instrument just about any aspect of the system. Dtrace does, however, ship with

some utilities that use the dtrace framework to accomplish their specific goal.

For example, the opensnoop script uses dtrace to single out file-system open calls. When

opensnoop is run with root-level privileges and no arguments, all open files are printed to

stdout. This result is very similar to fs_usage, but typically has less impact on a system.

Another example of a utility based on dtrace is syscallbyproc.d. Running this utility with

root-level access with no arguments will sample the system until you stop it with a break

(Control-C). Once stopped, syscallbyproc.d prints a count of all processes that made sys-

tem calls and their frequency during the sample time, sorted by frequency. Using this util-

ity is another way to determine which process is having the largest impact on the system.

For more on dtrace, see “Instruments and Dtrace” in Chapter 8, “Monitoring Systems,” the

dtrace man page, and the developer documentation on DTraceToolKit.

otool

Primarily a developer tool, the otool command displays specified parts of object files or

libraries. It is only installed with the Xcode tools. It can also be useful to administrators

trying to troubleshoot issues involving frameworks and libraries.

otool has many options. The -L switch displays the names and version numbers of the

shared libraries that the object file uses. This can be a great asset when tracking down

library version conflicts.

lsof

lsof lists currently open files. Because the Berkeley Software Distribution (BSD) layer

treats all objects as files, lsof is a very powerful troubleshooting utility. If you run it with

no arguments and root-level access, lsof will display all open files. Its -p switch will limit

output to open files of the given process ID. Used with the -i switch, lsof can list open

network sockets.

For more on lsof, see “Other System Monitoring Utilities” in Chapter 8, “Monitoring

Systems.”

Using Troubleshooting Tools and Resources 329

netstat

When it comes to network statistics, netstat is very handy. It can report on details as var-

ied as ports being listened to by an interface, network interface card (NIC) error statistics,

how much data has been sent and received by an interface, and more. As such, netstat is

good at providing details as well as a long-distance view.

For more on netstat, see “Other System Monitoring Utilities” in Chapter 8, “Monitoring

Systems.”

tcpdump

A network packet-capture utility, tcpdump displays or views the contents of all packets on a

network interface, or just those that match a Boolean expression. It is based on the open

source packet-capture library, libpcap. tcpdump is an ideal troubleshooting tool for anything

network-related, from a simple confirmation that data is reaching a particular interface,

up through decoding protocol peculiarities. To control the interface being monitored,

tcpdump requires root-level or admin-level access.

For more on tcpdump, see “Other System Monitoring Utilities” in Chapter 8, “Monitoring

Systems.”

vm_stat

The vm_stat utility reports on machine virtual memory statistics. It can display aggregate

data since boot, or show update values at a given interval. It is most useful in determining

if a system is short on real RAM and swapping to disk too often.

For more on vm_stat, see “Determining Hardware Utilization” in Chapter 4, “Assessing Systems.”

iostat

iostat displays an impressive amount of data about kernel I/O statistics on terminal,

device, and CPU operations. The first statistics that are printed are averaged over the sys-

tem uptime. To obtain information about the current activity, you can specify a wait time

that causes iostat to display delta information at the specified interval.

For more on iostat, see “Determining Disk Utilization” in Chapter 4, “Assessing Systems.”

330 Troubleshooting

Finding Help
The first thing to remember when troubleshooting a problem is that you’re not alone.

Typically, you’re not even the first to experience a particular issue. The Macintosh com-

munity is tightly-knit, and solutions to problems disseminate quickly. This section talks

about how to find help when you need to solve a problem.

Using man Pages

This book has presented many solutions that involve work in a shell, due to their power

and speed. The command line is an environment that may be new to many administra-

tors. When trying to remember a command or its syntax, use the man pages built into the

system. There’s very little need to struggle—just look it up. The man command allows look-

ups of commands directly, or for keywords in the pages.

For more on the man command, see “Getting Help” in Chapter 9, “Automating Systems.”

Using Documentation

Often, people miss the official documentation produced by Apple for Mac OS X Server.

PDF files containing several hundreds of pages can be found online at http://www.apple.

com/server/resources.

This documentation is well written and often contains information that tends to confuse

people who haven’t read it. Remember: Mac OS X tends to do some unique things under

the hood. While the Apple documentation may not answer every single question you have,

it will give you a solid foundation on which to move forward.

Searching the Web

As stated earlier, the Macintosh community is fairly vocal. There are websites that present

Mac technical topics, archives, forums, and more. This also includes the support section of

the Apple website.

Found at http://www.apple.com/support, the Apple support section contains guides to

downloads, manuals, Knowledge Base articles, and more. The main page is a portal into all

of the support and help resources that Apple offers. While there are subsections that cover

each product, Knowledge Base articles are categorized by keyword. Knowing the keyword for

your product can help streamline results. All keywords begin with the letter k. The keyword

for Mac OS X is kmosx. To target a specific version of Mac OS X, use the point release num-

ber. For example, articles covering Mac OS X v10.5 use the kmosx5 keyword. Apple main-

tains a search help page at http://www.apple.com/it/support/help/search/.

http://www.apple.com/server/resources
http://www.apple.com/server/resources
http://www.apple.com/support
http://www.apple.com/it/support/help/search/

Using Troubleshooting Tools and Resources 331

The Apple presence on the web outside of the Apple website is strong. The Mac Fix It

site specifically deals with early notification of problems users have after applying certain

patches. Found at http://www.macfixit.com, the site features a free front section with

current news and a paid inside section. The fee covers staffing costs: The site is actually

staffed and run as a real business, to answer questions posed by users.

Another popular resource for system administrators is AFP548. Named after the protocol

and port number used in the Apple Filing Protocol, http://afp548.com contains articles

and a forum section where articles are written, questions are asked, and answers are given.

Often, people in this forum are on the cutting edge of Macintosh technology, and find

answers before most others.

Finally, don’t forget searching the web with a tool like Google. You never know what blog

or archive may contain the answers you seek. If you are receiving a specific error mes-

sage, search for it explicitly. This is where good knowledge of logs come into play. Rather

than search for “PPP won’t connect,” search for “L2TP error sending CDN (Can’t assign

requested address)”—a message obtained directly from a log file.

Keep in mind when searching the web that not all information you find may be helpful.

In fact some resources may suggest doing things that may exacerbate the issues that you’re

currently experiencing. It’s important that you analyze a number of sources and opinions

before forming your own.

Being Forewarned Is Forearmed

Many resources exist that continually keep you informed about new technology, tech-

niques, and issues in the Macintosh community. Reading and participating on a regular

basis increases your knowledge and preparedness dramatically.

Mailing lists are one such resource. Apple runs many lists, found at http://lists.apple.com/.

Each list is typically active, and is populated by exceptionally knowledgeable and helpful

individuals. Do remember, though, that these are not typically Apple employees, but sim-

ply volunteers who strive to help the community.

Another important mailing list for Apple system administrators is the Mac Enterprise

list. The Mac Enterprise charter is to disseminate information on best practices for

Mac OS X and Apple products in an enterprise setting. While most action happens

on the mailing list, there are also webcasts and articles found on the main website,

http://www.macenterprise.org/.

http://www.macfixit.com
http://afp548.com
http://www.macenterprise.org/
http://lists.apple.com/

332 Troubleshooting

MacTech is a monthly magazine focusing on in-depth how-to articles, reviews, and cov-

erage of new techniques relating to IT and Mac development. Following a publication

like MacTech keeps you abreast of ways to automate and enhance the systems you sup-

port before you may need to tackle a problem yourself. Subscriptions and archives can be

found at http://www.mactech.com.

Lastly, go now and sign up for a free developer account at http://developer.apple.com. The

Apple developer site contains documentation, source code, and more to help inform and

troubleshoot Macintosh issues. Most importantly, you need a developer account to file bug

reports. The Apple bug-tracking system is named “radar,” and can be accessed at http://

radar.apple.com. You’ll need to sign in with your developer account. Filing bug reports is

an important way to help Apple prioritize issues. Your voice helps make change happen.

Consulting Experts

Due to any number of circumstances, you may need outside help. If you’re implement-

ing a technology for the first time, or even if the project scope is too large for the existing

team, don’t discount hiring a consultant or freelancer. Apple maintains a list of indepen-

dent (not employed by Apple) consultants through the Apple Consultants Network. The

portal page to the network is at http://consultants.apple.com/, and contains case studies

and a search section that helps you find qualified consultants in your area.

Trying examples
Following are some examples of how to use tools presented in this chapter.

Finding running Processes
Use ps to gain information on all currently running processes, including the associated

account:

ps aux

Paired with grep, filter down to processes in question. For example, find all processes

named ssh:

ps aux | grep ssh

http://www.mactech.com
http://developer.apple.com
http://radar.apple.com
http://radar.apple.com
http://consultants.apple.com/

Trying Examples 333

Using Strings
Using strings as a troubleshooting tool is more art than science.

To examine an executable binary, simply include the filename as a parameter to strings. There’s

often a lot of output, and using a pager like less can help stem the flood of information. To

examine the ManagedClient binary and pass it through less, use the following command:

$ strings /System/Library/CoreServices/ManagedClient.app/Contents/MacOS/ManagedClient

| less

Used with grep, this command is an interesting way to find absolute file paths embedded

in binaries. By looking for the forward slash (/) symbol as the first character, you’ll often

find the preference files that the binary uses:

$ strings /System/Library/CoreServices/ManagedClient.app/Contents/MacOS/ManagedClient

| grep “^/” | less

Finding Listening Network Ports
Network services listen to specific ports for connecting clients (called binding to a port).

Only one program at a time can bind to a given port number. If a program tries to bind to an

already reserved port, an error will be generated, typically written to a log, and the operation

will fail. The netstat command can be used to determine what ports are currently bound:

netstat -an

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 192.168.92.38.51125 192.168.181.151.22 ESTABLISHED

tcp4 0 0 192.168.92.38.51106 192.168.171.92.8194 ESTABLISHED

tcp4 0 0 *.88 *.* LISTEN

tcp6 0 0 *.88 *.* LISTEN

tcp4 0 0 *.22 *.* LISTEN

tcp6 0 0 *.22 *.* LISTEN

Active LOCAL (UNIX) domain sockets

Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr

 5713f68 stream 0 0 0 54b03b8 0 0

 54b03b8 stream 0 0 0 5713f68 0 0

 789bcc0 stream 0 0 0 5199a18 0 0

...remainder of output removed for space considerations

334 Troubleshooting

In this case, since you’re only interested in connections that are listening on certain ports,

you can filter with grep:

netstat -an | grep LISTEN

Another option to find bound ports is the lsof command. The -i switch lists open net-

work activity. Again, use grep to filter on listening ports:

lsof -i | grep LISTEN

launchd 1 root 13u IPv6 0x4a59be8 0t0 TCP localhost:ipp (LISTEN)

launchd 1 root 14u IPv4 0x4e02e64 0t0 TCP localhost:ipp (LISTEN)

launchd 1 root 58u IPv6 0x4a59984 0t0 TCP *:ssh (LISTEN)

launchd 1 root 60u IPv4 0x4e02a68 0t0 TCP *:ssh (LISTEN)

krb5kdc 87 root 12u IPv6 0x4a59258 0t0 TCP *:kerberos (LISTEN)

krb5kdc 87 root 13u IPv4 0x4d2266c 0t0 TCP *:kerberos (LISTEN)

AppleVNCS 270 mike 4u IPv6 0x4a58ff4 0t0 TCP *:vnc-server (LISTEN)

Microsoft 12724 mike 43u IPv4 0x814266c 0t0 TCP *:3998 (LISTEN)

lsof is a little more powerful than netstat when determining open ports because it will

also list the program that is bound to a given port.

Using Debug Logs
There are several canonical ways that programs understand to produce more detailed out-

put and logging information. This section gives only a high-level overview, because each

method depends on the program in question.

Setting the Verbose Command-Line Switch

Many programs simply use a -v switch to indicate that you want verbose output. For

example, if ssh is not connecting or not accepting keys, use the -v switch:

$ ssh -v brian@www.example.com

OpenSSH_4.7p1, OpenSSL 0.9.7l 28 Sep 2006

debug1: Reading configuration data /etc/ssh_config

debug1: Applying options for *

debug1: Connecting to www.example.com [192.168.59.78] port 22.

debug1: Connection established.

Trying Examples 335

debug1: identity file /Users/brian/.ssh/identity type 0

debug1: identity file /Users/brian/.ssh/id_rsa type -1

debug1: identity file /Users/brian/.ssh/id_dsa type -1

debug1: Remote protocol version 2.0, remote software version OpenSSH_4.2p1

FreeBSD-20050903

debug1: match: OpenSSH_4.2p1 FreeBSD-20050903 pat OpenSSH*

debug1: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-2.0-OpenSSH_4.7

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug1: kex: server->client aes128-cbc hmac-md5 none

debug1: kex: client->server aes128-cbc hmac-md5 none

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug1: Host ‘www.example.com’ is known and matches the DSA host key.

debug1: Found key in /Users/brian/.ssh/known_hosts:10

debug1: ssh_dss_verify: signature correct

debug1: SSH2_MSG_NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug1: SSH2_MSG_NEWKEYS received

debug1: SSH2_MSG_SERVICE_REQUEST sent

debug1: SSH2_MSG_SERVICE_ACCEPT received

debug1: Authentications that can continue: publickey,password,keyboard-interactive

debug1: Next authentication method: publickey

debug1: Trying private key: /Users/brian/.ssh/id_rsa

debug1: Trying private key: /Users/brian/.ssh/id_dsa

debug1: Next authentication method: keyboard-interactive

You can extract further detail if you specify the verbose switch (-v) more than once:

$ ssh -vvv www.example.com

336 Troubleshooting

Using Configuration File Settings

Many programs look to a configuration file to obtain their runtime settings. For example,

Samba, the SMB server used in Mac OS X Server, uses /etc/smb.conf to store and read its

runtime settings. In its [global] section, one line determines how verbose logging will be:

log level = 2

The log level can range from 1 to 10, with 10 being the most information possible. Change

the value and restart the smbd daemon for the change to take effect immediately.

See the documentation for other programs as needed to determine proper settings.

Presence of Debug File

Some programs look for a file on disk to determine if they should perform extra logging.

A perfect example of this is the Apple DirectoryService subsystem. Since DirectoryService

is active before it’s possible to log in, it provides a way for an administrator to specify

debug logging as soon as it starts. If the file /Library/Preferences/DirectoryService/

.DSLogAtStart is present, DirectoryService will log debugging information to /Library/

Logs/DirectoryService/DirectoryService.debug.log. Simply create an empty file using the

touch command:

touch /Library/Preferences/DirectoryService/.DSLogAtStart

This tactic makes it possible to troubleshoot issues with Directory Service–based accounts

authenticating at the login window. Using ssh, an administrator can access a machine as

a user is logging in at the console. The DirectoryService debug log can give clues as to why

failures are occurring.

Using Environment Variables

Some applications will check for the presence of a particular environment variable to

determine the logging level required. (For more on environment variables, see “Using

Bash” in Chapter 9, “Automating Systems.”) As an example, most Cocoa applications

respect the MallocStackLogging variable. It can be set per running instance. For example, to

generate a stack log for iTunes, you could run it with the variable set:

$ MallocStackLogging=1 /Applications/iTunes.app/Contents/MacOS/iTunes

While this leans slightly more toward the developer side, often, any information available

will help narrow down an issue’s root.

Review Quiz 337

What You’ve Learned
Troubleshooting is part art and part science. When you’re trying to solve problems, it’s

important to employ a consistent troubleshooting methodology as well as patience.

Important points to take away from this chapter are as follows:

P The two goals in troubleshooting are to fix the problem properly and to fix it quickly.

P Always create a backup before modifying files and settings.

P Documenting your work is a critical step in the troubleshooting process.

P To get information on the problem, start by asking broad questions and only then

start to get more specific.

P Always clarify with the user your understanding of the issue.

P “The Four Cs” methodology consists of examining connections, components, con-

figuration, and combinations.

P Several screen-sharing technologies make it easier to see what the user is seeing.

P Reading log files is a critical step in finding problems.

P Many command-line tools can help you determine the state of a system and instru-

ment-specific parts of a running system.

P You’re not alone—there are many resources available to help when a problem arises.

These include built-in documentation and web searches, as well as human help in the

form of colleagues and consultants.

P A free developer account allows you to file bugs in the Apple bug-tracking system at

http://radar.apple.com.

review Quiz
1. Why is it important to follow a methodology when troubleshooting?

2. What are The Four Cs?

3. What is the command used to cause a Macintosh to boot in verbose mode with no

keypress at boot time?

4. What is the Apple bug-tracking system called, and how do you access it?

http://radar.apple.com

338 Troubleshooting

Answers

1. It helps you remain consistent, and follow a systematic plan.

2. Connections, components, configurations, and combinations.

3. The nvram command manipulates the nonvolatile RAM available at boot. Issuing

nvram boot-args=”-v” sets a verbose boot.

4. The Apple bug-tracking system is called “radar.” It is accessible at http://radar.

apple.com, and sign-in requires a valid developer ID.

http://radar.apple.com
http://radar.apple.com

This page intentionally left blank

This page intentionally left blank

341

Appendix

Documenting Systems

Documentation is a process, an ongoing cycle of steps, to keep written

values in sync with reality. Whether you’re documenting the initial con-

figuration, as described in the same-named topic in Chapter 1, or keep-

ing track of system changes, documentation is an important—and often

indispensable—part of the system administrator’s job. This chapter

offers additional ideas and tools for administrators to use in gathering

data and documenting their systems.

342 Documenting Systems

gathering Data
Mac OS X has several ways of gathering data from remote systems, some built-in

and some available for purchase. Off-the-shelf software includes software from Apple

and third parties.

The built-in command-line system_profiler utility, along with Apple Remote Desktop, is

covered in Chapter 8, “Monitoring Systems.” In addition to those tools, this chapter lists

some other options for gathering data.

Capturing graphical Information
Sometimes, a value that needs to be documented exists only in the graphical user inter-

face. Mac OS X has two built-in screen-capture utilities that are perfect for documenting

these values: Grab and screencapture. With what you want to capture visible onscreen,

press Command-Shift-4 and drag the area to be captured; Mac OS X then creates a

Portable Network Graphic (PNG) file on the current user’s desktop. You can also make

screen captures of a remote machine while it’s being viewed, using a one-button-click

function in Apple Remote Desktop.

Finally, you can use the shell-based screencapture utility, either in scripts or for remote

capture. Simply run the utility with the name of the file in which the current screenshot

will be saved:

screencapture prodx_serial.png

If you’re performing screencapture over SSH, due to security domains under Mac OS X, you

must run this utility in the same mach bootstrap instance as the current loginwindow context.

Pass in the PID of the current loginwindow instance to the launchctl bsexec parameter:

sudo launchctl bsexec PID screencapture screen.png

or, to perform this dynamically:

sudo launchctl bsexec $(ps ax | grep [l]oginwindow | awk ‘{print $1}’) screencapture

screen.png

For viewing or storing in a central location, copy the file from that machine using scp.

Gathering Data 343

Collecting Other Mac OS X Information
Mac OS X Server can run in one of four configurations: standard, workgroup, advanced,

and Xsan metadata controller. (The fourth option is available only if, at install time, a

Fibre Channel card is installed in the machine.) To determine a server’s current mode of

configuration, use the built-in serveradmin tool with admin-level credentials.

While serveradmin can return a large amount of information, part of the information

needed resides in the info:serviceConfig:IsStandardConfig key:

serveradmin settings info:serviceConfig:IsStandardConfig

If this command returns yes, the server is running in either standard or workgroup mode.

To determine which mode, use a follow-up query to serveradmin:

serveradmin settings info:serviceConfig:IsWorkgroupServer

A result of yes means that the specified server is running in workgroup mode. A result of

_empty_dictionary combined with a yes from IsStandardConfig means that this is a standard

server. If both keys are lacking, the server is running in advanced mode.

For methods of saving service configurations, see “Exporting Settings and Data” in

Chapter 3, “Upgrading and Migrating Systems.”

reporting with Third-Party and Custom Software
There are several third-party packages for reporting on Mac OS X systems available, but

perhaps none as common as Apple’s own Apple Remote Desktop (ARD). ARD has power-

ful reporting capabilities, especially when combined with the ARD Task Server setup.

Using Apple Remote Desktop for Reporting

Developed by Apple, ARD ties in nicely with Mac OS X systems. Since v10.4, each

Mac OS X install loads the ARD Agent by default, but does not enable or configure it.

However, it’s easy to set up and enable ARD Agent with the kickstart script, located at

/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/.

kickstart is used to configure and control ARD Agent. The utility has a slightly obtuse

syntax, preferring hyphens preceding most parameters—even values of parent parameters.

344 Documenting Systems

The following example configures and enables ARD Agent on a Mac; you can perform

these same tasks over SSH on a remote Mac:

./kickstart -activate -configure -users marczak -access -on -privs -all

-allowAccessFor -specifiedusers -clientopts -setmenuextra -menuextra no -verbose

-restart -agent

Starting...

Activated Remote Management.

Stopped ARD Agent.

Stopped VNC Privilege Proxy

Stopped VNC Server.

Stopped RFB Register MDNS

marczak: Set user remote access.

/usr/bin/dscl -f ‘/var/db/dslocal/nodes/Default’ localonly -create “/Local/Target/

Users/marczak” naprivs ‘-2147483648’

Set the client options.

Setting allow all users to NO.

Setting all users privileges to 1073742079.

Done.

-activate enables the agent; -configure is a parent parameter and requires further options.

This example passes in a user name (-user marczak), enabling access (-access -on) and

granting all privileges (-privs -all).

 A new-to-v10.5 option is -allowAccessFor

-specifiedUsers. This option corresponds with

the new graphical user interface option in the

Sharing preference pane.

You must specify the users to which access will be

granted in the -configure option.

-clientopts is another parent parameter with several suboptions. In the previous example,

the menulet is disabled using -setmenuextra -menuextra no. The -verbose command simply

causes kickstart to print details about what it’s currently doing. Finally, when you have

finished, specify options, use -restart -agent option to restart the agent, which is required

for any new options to take effect.

Gathering Data 345

Once ARD Agent is running on all machines, you can run reports for documentation pur-

poses. For example, you can report how much RAM is installed on each station, or what

version of the operating system is running. With Apple Remote Desktop, you can find out

quickly. With a separate copy of Apple Remote Desktop running as a task server, you can

set machines to automatically generate new report data and upload the data periodically

to the task server. This automatic reporting lets you, as an administrator, fetch the most

recent data about a machine even if it’s not currently powered on.

To run reports, select the machines to report on, and click the Reports button in the tool-

bar. (If this button is dimmed, make sure that the user account under which you’re run-

ning has admin privileges on the local machine.)

Prebuilt reports range from the traditional System Overview and User History reports

to the unique File Search and Network Test reports. Many reports allow you to fine-tune

them to filter down to just the information required. You can create a recurring schedule

for report runs using the Schedule button in the report dialog box.

Customizing Reports

Don’t discount the write-it-yourself approach. Mac OS X is loaded with tools that allow

you to completely customize a reporting solution. In fact, you’d be using many of the tools

presented in this book: system_profiler, scripting, launchctl, and more. A full client-server

346 Documenting Systems

solution is waiting to happen, thanks to the combination of Mac OS X Server as a central

repository, and a pre-loaded install of the open source MySQL database. You can make

the reporting as simple, full-featured, or custom as you want. See Chapter 8, “Monitoring

Systems,” for an introduction to the basics and ideas on setting up your reports.

Trying Other Reporting Applications

Before you reinvent the wheel, know that you’re not the first one in the world trying to

solve a particular issue of reporting. Look for a prebuilt solution. Good off-the-shelf and

open source projects exist for system monitoring, system configuration, deployment, trou-

ble-tracking, and other similar tasks.

Sites like http://freshmeat.net and http://macforge.net can help you track down these

open source projects. If you find one that’s interesting, and it’s not built specifically for

Mac OS X, check MacPorts (http://www.macports.org/) to see if there’s a port available.

Sites with forums and mailing lists such as MacEnterprise (http://www.macenterprise.org)

and http://www.afp548.com typically discuss these products and their uses in various Mac

environments. You’re not alone, and there are many people willing to help. Combining

a little open source and the desire to write your own solution is the true win: finding an

open source project that you contribute to and improve.

Creating Documentation
Documentation comes in many forms. No single answer addresses all situations. The size of

a company and the industry it’s in may dictate regulations that require documenting certain

activities. Check with your legal department about any requirements for compliance.

Following are some general guidelines that should keep you on the right path, including

various electronic strategies.

Use a Template or Checklist
Create a boilerplate documentation sheet for equipment in your environment. A boilerplate

ensures that all values are included when documenting new equipment. Often, equipment

manufacturers will supply templates that can serve as a good base. (For an Apple-specific

example, see http://images.apple.com/server/macosx/docs/Worksheet_v10.5.pdf.)

http://freshmeat.net
http://macforge.net
http://www.macports.org/
http://www.macenterprise.org
http://www.afp548.com
http://images.apple.com/server/macosx/docs/Worksheet_v10.5.pdf

Creating Documentation 347

In general, you should capture the following information:

P Hardware configuration (CPU, RAM, hardware serial number, physical disk informa-

tion, and so on).

P OS information (version, serial number, and so on) and other software information

(manufacturer, title, version, and so on).

P Site-specific information such as asset-tag data, group configuration, administrator pass-

words and setup routines (for example, a section may be “How to create a new user”).

Keep It electronic
Online documentation has begun to replace the traditional method of documentation:

writing documentation in a word processor, printing it out, and putting it on a shelf. Printed

documentation has some disadvantages compared to its online counterpart. Paper gets

lost, fades, is not backed up, can’t easily be restricted in access, and isn’t eco-friendly.

Now the tools and capability exist to create online documentation that can be updated in

a collaborative fashion and that is free of printed documentation’s limitations. Regardless

of its final form, documentation probably will start out in electronic form, such as Pages,

Word, or a plain-text file.

If you’re creating electronic documentation, be sure to store your source files electroni-

cally. Protect them with controls built into Mac OS X, such as file system access control

lists (ACLs), and encrypted disk images. Storing these files electronically also lets you back

them up as part of your routine system backups.

If company policy requires a printed hard copy, store the printout in a binder to protect it

and keep it together. And store this binder in a safe location: the Network Operations Center

in larger organizations, possibly a locked cabinet or closet in a smaller organization.

Use Wikis
Furthering the “keep it electronic” mantra, a time-tested, collaborative tool that works per-

fectly for system documentation is a wiki. A wiki is a collection of web pages that can be

modified or added to by anyone accessing the pages, using a simplified markup language.

Nicely, Mac OS X Server features a built-in, very impressive wiki product. Wikis allow teams

348 Documenting Systems

of people to create and update documentation. This keeps the documentation up-to-date,

accessible, and searchable. Company policy and procedure is also ideal content for a wiki.

Control Access and Provide Audit Trails
Staying on the “keep-it-electronic” path allows proper access controls to be put in place.

Wikis allow for per-user and per-group access control. If your documentation is simply a

word-processing file, it can also be protected with file system access controls (permissions

and access control lists).

Also, keeping documentation in an electronic format allows for an audit trail—a list of

which user accounts have accessed or modified documentation files. This is important for

companies that require it for regulation purposes. Ensure that these controls are in place

and an access log is being kept.

Automate
Automate the process of keeping documentation up-to-date using scripts that collect

system data and bring it into a database, or interpret the results and “humanize” it on the

fly (taking the raw data and outputting something that people can easily read). In a larger

organization, this may take the form of reporting “agents”—programs that run on each

machine and report in to a central location. For consultants servicing new and existing

clients, automating the documentation generation process can save time and create con-

sistent sets of data. Use a custom-built or FileMaker tool that gives a checklist or simple

sheet to enter data to create a nicely formatted report for your client.

Stay Organized
Nothing is worse than needing a piece of information and not being able to locate it eas-

ily. There are many approaches to staying organized.

If your documentation is online or in a Wiki, as suggested in the previous “Wiki” topic,

search functions can help you find information.

If you’ve chosen to use one master document for all systems, break the information down

into logical groupings. Sample section ideas are overview, system specifics, vendor contact

information, and master passwords.

Summary 349

 If you’re following a one-document-per-system approach, you

can use a simple file system structure to serve as a template. For

example, a top level could represent a site, subfolders could repre-

sent servers, Redundant Array of Independent Disks (RAID)

units, clients, and more at the site.

No matter the approach used—Wikis, word processing, or file

system layout—organize yourself so you can find the information

you’ve collected!

Summary
Proper documentation is what lets you take a vacation. It also lets you hand off respon-

sibilities to less experienced administrators, confident that they will be able to refer to an

authoritative source for procedures. This in turn lets you work on the bigger, better, more

interesting projects. If you’re a consultant, handing off proper documentation of a proj-

ect or network setup to company principals is critical, and allows you to work with other

clients, safe in the knowledge that company A has the information it needs while you’re

working with company B.

In this chapter, you have learned that:

P You can use screen_capture to capture a screen shot for documentation purposes.

P If you want to run screen_capture as root, but a different ID is logged in at the console,

then you must use the launchctl bsexec parameter to be able to run in the same machine.

P More than just screen sharing, Apple Remote Desktop is a valuable tool in gathering

reporting data from all Mac OS X machines. Pairing Apple Remote Desktop as a task

server increases this value.

P You can configure the Apple Remote Desktop client (ARDclient) and start it remotely

via SSH using the kickstart command. You can find the command at /System/Library/

CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart.

Remember that the documents that make up your master documentation are fluid, chang-

ing entities. As hardware, software, procedures, and policies change in the physical world,

documentation must be kept in sync. Parts of that can be achieved automatically, but

should always be checked for accuracy. Advanced system administrators document!

This page intentionally left blank

Index

351

AirPort base station
configuring RADIUS from, 129–130
disabling, 143

Alert log level, defined, 187
allow-transfer directive, using in

BIND, 96, 98, 102
AMAVIS, data store for, 286
apachectl start command, using in

SystemStarter, 251
apcupsd monitoring daemon,

availability of, 299
Apple Filing Protocol (AFP), blocking,

123–124
*.apple firewall files, description of, 126
Apple services website, 120
Apple Software Restore (asr) backup

utility, features of, 275
Apple support section, accessing

online, 330
AppleRAID

downside to, 304
features of, 303
troubleshooting, 312–313

AppleScript language, using, 236–238
AppleScript reference, downloading, 238
Application Level Firewall,

configuration of, 127–128
applications. See also programs

starting with launchd daemon, 244
triggering on file system changes, 245

archive formats, creating from
directories, 274

ARD (Apple Remote Desktop)
creating reports with, 214–216
troubleshooting with, 325
using for reporting, 343–345

ASL (Apple System Logger)
logging messages in, 187
in syslogd daemon, 186
using logger with, 189

asl.db, interacting with, 189, 192

account authorization, editing
system rights, 166–168. See also
authorization

account management group, using in
PAM, 147

accounts in Mac OS X, types of, 141
ACEs (access control entries)

checking, 168
considering in order, 171
defining in BIND, 97

ACL permissions
description of, 168
setting, 170–171
viewing, 171

ACLs (access control lists). See also
SACLs (system access control lists)

defining in BIND, 97
troubleshooting, 180

action scripts, resource for, 212
Activity Monitor.app

Disk Activity tab in, 200
Disk Usage tab in, 200
Network tab in, 202

Adaptive Firewall
availability of, 118
configuration files for, 126

address groups, defining for firewall, 119
admin users, permissions granted

to, 141
advanced configuration, advisory

about, 22
AFP (Apple Filing Protocol), blocking,

123–124
AFP throughput, displaying value of,

69–70
AFP users, gathering information

on, 70
AFP548, getting help from, 331
agents, managing with launchd plists,

243

Symbols
#! shebang, using in Python, 235
$ (dollar sign) prompt, using with

Terminal.app, 223
% (percent sign), appearance in

sudoers file, 146
* (asterisk), using with crontabs, 248
._ (dot-underscore) files, occurrence

of, 290
/ (forward slash), using in less, 193
: (colon), using with paths, 225
; (semicolon), using with selectors, 188
@ (at) symbol, using with log entries,

188
~/.bash_profile home directory,

contents of, 226
< (less-than symbol), using with

scripts, 224
> (greater-than symbol), using in

scripts, 224
0 and 1 load averages, explanations

of, 196
-0 switch, using with MacPorts, 29
‘ (single quotes), using with

ManagedClient.app file, 40

A
A choice, using in dsimport, 58
A IPv4 address record, description

of, 94
AAAA record, description of, 94
absolute path, specifying for scripts,

225
account authentication. See also

authentication
with PAM, 147–149
setting password policies, 146–147
with SSH and digital key pairs,

149–152
with sudo tool, 145–146

352 Index

asr (Apple Software Restore) backup
utility, features of, 275

asterisk (*), using with crontabs, 248
at (@) symbol, using with log entries,

188
at

using with launchd daemon, 239
features of, 254

atrm, simulating, 254
audio hardware, disabling, 143–144
authenticate-session-owner-or-admin

right, using, 167
authentication. See also account

authentication
versus authorization, 140–142
Kerberos versus key-pair, 149
process of, 145
with sudo tool, 145–146
troubleshooting, 177–180

authentication management group,
using in PAM, 148

authoritative-only services, using with
DNS servers, 102

authorization. See also account
authorization

and authentication, 140–142
troubleshooting, 177–180

“Auto Server Setup” directory,
creating, 25

automatic reboot, reconfiguring, 301
automation technologies. See also

scripts
AppleScript, 236–238
cron, 247–248
init.d items, 255
mach_init program, 253–254
periodic program, 252
Python language, 235–236
at system, 254
SystemStarter, 249–252
unavailability of rc boot-time script,

255
automator command, description

of, 235

B
backed up data, restoring, 289
Backup Bouncer test suite, features of,

270–271
backup failover server, configuring, 311

backup methods
into the “cloud,” 269
comparing, 270–271
LAN-Free, 269
removable media, 268–269
tape, 268

backup policies
developing, 266
following, 290
importance of, 264
resource for, 270

backup processes, automation of, 271
backup schemes, troubleshooting,

289–291
backup script, example of, 280–281
backup strategies, considering storage

products for, 267
backup tasks, creating scripts for, 282
backup tools, 276

availability of, 271
command-line utilities, 272–276
comparing, 279
Time Machine, 276–278

backups
automating, 279–283
creating for Open Directory, 53–55
of directories, 257
importance of, 135
preparing prior to upgrades, 46
restoring for Open Directory, 58–59

bandwidth, computing, 66–70
bash and user attributes, combining,

226–227
bash scripts

example of, 255–258
using flow control with, 230–231

bash shell
description of, 222
features of, 223
getting help with, 227–230
running executables with, 225–226
storing files for, 226
using alternatives to, 231–232
using exit code with, 230
using for loop with, 231
using test command with, 231

battery capacity, identifying for power,
298

battery power, running on, 300–301
big-endian chips, features of, 52

BIND (Berkeley Internet Name
Domain)

named.conf file in, 94–97
record types in, 94
views in, 94, 98

BIND files, editing and importing,
99–100

blacklist files, editing in Adaptive
Firewall, 126

“blessed” volume, explanation of, 19
Blog and Wiki services, data store for,

287–289
Bluetooth hardware, disabling, 143
BMC (baseboard management

controller)
gathering PHO for, 208
LOM as, 207–208

boilerplate, creating for
documentation, 346–347

BOM (Bill of Materials) file, querying,
32

bonding, defined, 8
boot disks, finding, 233
boot drive, erasing free space on, 175
boot time, storing, 67
bound ports, finding, 333–334
BTU rating

converting to watts, 6
for sample Xserve, 7

C
CA private key, storing, 163
cache, flushing, 40
cached MCX records, refreshing, 41
cached results, troubleshooting, 40
caching-only name servers, using,

92, 101
ca.crt and ca.key certificates, creating,

164
ca.key, generating, 163
canonical BIND files, editing, 99–100
canonical name (CNAME) record,

description of, 94
CAs (certificate authorities)

creating from command line, 163
creating with Certificate Assistant,

161–163
creating with openssl command, 163
requesting certificates from, 156
signing, 164
using, 154

Index 353

Certificate Assistant, creating CAs
with, 161–163

Certificate Manager, features of, 155
Certificate Signing Request (CSR),

generating, 157
certificates. See also digital certificates;

server certificates
configuring services for, 160
configuring via command line, 159
deleting, 158
determining expiration of, 179–180
importing, 157, 179
managing in Server Admin, 135
modifying, 158
obtaining information about,

179–180
public keys in, 154
troubleshooting, 179
using openssl command with, 180

certtool, configuring certificates with,
159

changeip command
using, 47
verifying DNS lookups with, 61–62

characters, escaping in man pages, 227
chassis status, displaying for BMC,

208–209
checkhostname command, using,

47, 61
checklists, creating documentation

with, 346–347
checksums, verifying, 30–31
chflags command, using with POSIX

permissions, 170
chmod command

making files executable with, 224
using with ACLs for files and

folders, 171
using with POSIX permissions, 170

chsh command, changing shells with,
232

client lookups, testing with dig utility,
110–111

clocks
displaying states of, 112
keeping in sync, 104–105

cloning and upgrading, 51–53
cloud services, using for backups, 269
CNAME (canonical name) record,

description of, 94
code, examining, 203–206

“The Collector” tool, using for backup
tasks, 282

colon (:), using with paths, 225
command line

configuring certificates from, 159
creating CAs (certificate authorities)

from, 163
installing remotely from, 16–19

command-line backup utilities
asr, 275
ditto, 273–275
rsync, 272–273

command-line scripting, 233
command-line utilities

dtrace, 328
fs_usage, 327
hdiutil, 276
iostat, 329
kdb5_util, 276
lsof, 328
netstat, 329
otool, 328
pax, 276
ps, 327
scp, 276
serveradmin, 276
strings, 327
tar, 276
tcpdump, 329
vm_stat, 329
zip, 276

commands, getting help with, 229
commands in Mac OS X

automator, 235
defaults, 232–233
disimport, 234
dscl, 234
lpadmin, 235
networksetup, 234
osascript, 234
running, 237
system_profiler, 234
systemsetup, 233

complete.plist files, locations of, 40
components, troubleshooting, 324
computer name, setting for server, 21
computer rooms, restricting access

to, 142
Configuration File option, choosing, 24
configuration file settings, using, 336

configuration files
location of, 135
protecting, 24
using, 25

configuration mode, determining for
servers, 343

configurations, troubleshooting, 324
Confirm Settings screen, displaying, 24
connected users, listing, 70. See also users
connection status, verbose output on,

178–179
connectivity, troubleshooting,

111–112, 323–324
console.app, reading log files with,

190–191
Control field, using in PAM, 149
Control management group, using in

PAM, 149
Control-B shortcut, using in less, 193
Control-C shortcut

break signal in Instruments,
205–206

ending sessions with, 180
stopping capture with, 133
stopping dtrace utility, 328
stopping listings with, 73
stopping output, 202

Control-F shortcut, using in less, 193
cooling supply, determining, 5–7
copying files with rsync, 272–273
cpio archives, extracting with ditto, 274
CPU load, monitoring, 70–71
CPU usage, monitoring, 196–197
CPU utilization, planning, 7–8
credentials, authorizing, 140
crit log level, example of, 188
Critical log level, defined, 187
cron job scheduler, features of,

247–248
csh shell, description of, 222
CSR (Certificate Signing Request),

generating, 157
curl, using with MacPorts disk image, 28

D
d command language, use with dtrace,

205
daemons. See also system daemon

managing with launchd plists, 243
starting at boot time, 249–252

354 Index

data
exporting, 48–55
exporting from source, 59–60
importing, 55–60
moving, 50

data backup. See backups
Data Center and Server Room Design

Guides, APC, 11
data stores

AMAVIS, 286
for firewall service, 285
for iCal service, 284
for iChat Server, 285
for mail service, 285–286
Mailman, 286
for MySQL, 287
for NAT service, 285
for PHP, 287
Postfix SMTP, 286
for QuickTime streaming server, 285
for security and FileVault keychains,

285
Spamassassin, 286
for web service, 287
for Wiki and Blog services, 287–289

data types, listing with system_profiler,
213–214

data wiping, automating, 282
date, retrieving as seconds, 67
dead-man’s switch, using with firewall

service, 134
Debug log level, defined, 187
debug logs, using, 334–336
debug mode, enabling for MCX

compositor, 40
defaults, altering with sudo command,

233
defaults command

using, 232–233
using with Application Level

Firewall, 128
deleting certificates, 158
denial of service (DoS), preventing, 101
Description item in System Starter,

explanation of, 249
developer account, signing up for, 332
df utility

using, 200
using with scripts, 224–225

dig utility
using +short flag with, 111

using with BIND, 98
using with DNS, 110–111

digital certificates. See certificates
directories

accessing with WGM, 36
backing up, 257
creating archive formats from, 274
providing for scripts, 224–225

directory cache, examining for
managed objects, 40

DirectoryService daemon
killing, 40
listing error codes for, 58, 61
sensitivity to DNS results, 61
specifying debug logging with, 336

disimport command, description of, 234
disk capacity statistics

displaying, 200
gathering, 223–224

disk checks, running, 37
disk device IDs, determining, 302
disk errors

checking for, 51
fixing before installations, 37
during upgrading, 61

disk images
decrypting in FileVault, 176
encrypting, 176–177
unmounting, 30
using with backup of Open

Directory, 53–54
disk I/O, displaying statistics for, 200
disk redundancy, creating, 301–304
Disk Utility

accessing, 38
checking disk errors with, 51

diskspacemonitor, monitoring high
availability with, 306–307

diskutil command, using, 17
diskutil repairvolume command,

using, 38
diskutil tool

checking disk errors with, 51
determining disk device IDs with,

302
erasing free space with, 175
SecureErase FreeSpace command

in, 282
using enableraid command with, 303
using listRAID command with,

303–304

display dialog function, using in
AppleScript, 237

dissipation, determining, 7
.dist file, explanation of, 27
distribution files, contents of, 27
ditto backup utility, features of,

273–275
dmesg command, printing kernel

messages with, 327
DNS (Domain Name System)

checking logs and processes for,
108–109

checking syntax of, 109
configuring for failovers, 309
purpose of, 90–91
query path, 92
root server cache in, 109
testing client service in, 109–111
using dig utility with, 98, 110–111
using recursive queries with, 92
verifying, 47

DNS configuration files
and caching-only name servers, 101
checking syntax of, 109
editing, 99–100

DNS lookups
performing, 92
verifying, 61

DNS records, importance to upgrades,
47

DNS servers
authoritative-only services on, 102
configurations for, 92–93
configuring for scale, 104
configuring forward servers, 103
controlling use of, 101
making secure and private, 100–103
placing inside network firewalls,

101–102
restricting zone transfers on,

101–102
secondary, 104
testing, 108
troubleshooting, 61–62

DNS services
configuring with BIND, 93–99
turning on, 91

DNS system, records in, 94
do shell script command, using in

AppleScript, 237

Index 355

documentation
automating updates of, 348
capturing graphical information, 342
creating with checklist, 346–347
creating with templates, 346–347
keeping audit trails for, 348
keeping electronic, 347
organizing, 348–349
reporting with third-party software,

343–346
using, 330
using access controls with, 348
using Wikis, 347–348

documenting requirements, 10–11
dollar sign ($) prompt, using with

Terminal.app, 223
domains, compositing, 39
DoS (denial of service), preventing, 101
dot-underscore (._) files, occurrence

of, 290
download process, automating, 27–28
downtime versus uptime, 296
--dryrun flag, using with rsync, 273
dscl command, description of, 234
dscl utility

using .mcx extensions in, 35–36
using with SACLs (service access

control lists), 172–173
dsenableroot command, using,

141–142
dsexport utility, exporting records

with, 53
dsimport utility, importing records

with, 57–58
dtrace utility

features of, 328
using with Instruments, 203–206

dtruss shell script, features of, 206
dumps, analyzing offline, 133–134
duplicate records, handling in

dsimport, 57–58

e
echo command, displaying

environment variables with, 225
editing

BIND files, 99–100
plist files, 259–260

Effective Permissions Inspector (EPI),
using, 180

EFI (Extensible Firmware Interface),
using, 144–145

electrical ratings, verifying for power
redundancy, 299

else section, using with if statement in
bash, 230

Emergency log level, defined, 187
emond daemon, using, 126–127
encrypting

disk images, 176–177
files, 174–177

end-user data, moving, 50
environment variables

creating with export command, 226
displaying, 225–226
setting, 226–227
using, 336

EPI (Effective Permissions Inspector),
using, 180

error codes, finding for
DirectoryService, 58, 61

Error log level, defined, 187
errors, generating during upgrades, 61
escaping characters in man pages, 227
established traffic, allowing for

firewall, 119
/etc directory, contents of, 283
/etc/authorization file, contents of, 166
/etc/ipfilter file, configuration files

stored in, 125–126
/etc/named.conf file, contents of,

94–95
/etc/pam.d file, contents of, 147
.etc/pam.d/sshd file, contents of, 148
/etc/profile file, contents of, 226
/etc/ssh_host_key.pub key, backing

up, 151
executable binary, examining, 333
executables, running with bash,

225–226
exit code, using with bash shell, 230
export command, creating

environment variables with, 226
exporting

data from source, 59–60
print service settings, 51
records with dsexport utility, 53
settings, 49–50
settings and data, 48–55
users and groups, 52

Extensible Firmware Interface (EFI),
using, 144–145

F
facilities

and log levels, 188
use with ASL (Apple System

Logger), 187
failover schemes, parts of, 308
failover services, configuring, 311–312
failovers, configuring, 309–311
fields, populating in Server Assistant, 23
File Activity template, using in

Instruments, 204
file changes, watching with tail utility,

192
file permissions

altering, 172
setting, 168–172

file system activity, displaying, 201
file system changes, triggering

program on, 245
files

comparing and transferring,
272–273

copying with rsync, 272
denying access to, 171
encrypting, 174–177
searching and printing portions

of, 327
setting ACL permissions for, 171
writing tcpdump output to, 203

FileVault
backing up with Time Machine, 278
encrypting files with, 174–176

filter, negating with not keyword, 133
fingerprints

creating for key pairs, 150–151
updating for SSH key, 151–152

firewall files, configuring, 125–128
firewall log files, using, 124–125
firewall rules, manipulating, 123
firewall service

allowing established traffic for, 119
checking log files for, 135
configuring, 118
data store for, 285
disabling, 123
displaying rule sets for, 120
resetting, 134
setting stealth options for, 121
starting and stopping, 123
using dead-man’s switch with, 134
working with remotely, 134

356 Index

Firewall Settings Services, rules in, 122
firewall setup, accessing, 118
firewalls, placing DNS servers inside

of, 101
FireWire ports, locking, 144
FixupResourceForks FixupFiles

command, using, 290
flags, using with POSIX permissions,

170
flow control

defined, 222
using with bash scripts, 230–231

-flush verb, using with cache, 40
folder permissions, setting, 168–172
folders

denying access to, 171
watching with QueueDirectories key,

257–258
for loop, using with bash shell, 231
forking, defined, 223
forward lookups, testing, 111
forward servers, configuring for DNS,

103–104
forward slash (/), using in less, 193
The Four Cs

examining combinations of
problems, 324

examining components, 324
examining configurations, 324
examining connections, 323–324

free space, erasing on boot drive, 175
FreeRADIUS, versions of, 131
fs_usage tool, features of, 201, 327
fsevents API in Time Machine,

features of, 276
fullstatus verb, using with serveradmin

command, 69
fully qualified path, specifying for

scripts, 225

g
Gbit/s measurement, using, 8
getConnectedUsers command, using, 70
-getGlobalPolicy flag, using, 146
Google, getting help from, 331
graphical information, capturing, 342
graphical interface, installing remotely

with, 19–20
graphs, displaying for CPU utilization,

71

greater-than symbol (>), using in
scripts, 224

grep command
finding search path with, 225
singling out throughput with, 70
using with flow control, 230
using with jobs in launchd, 242
using with netstat, 334
using with ps utility, 332
using with strings, 333

group addresses, adding for firewall,
118–119

group data
exporting with Workgroup Manager,

52
importing, 56

group permissions, setting, 171
group prefix, using with ACLs, 170
GroupMembership attribute, using

with SACLs, 172–173
groups, importing with Workgroup

Manager, 56
gTLD, meaning of, 90–91
GUID (Globally Unique ID),

appending, 173
Gutmann 35-pass secure erase, using,

283

H
hardware

disabling, 143–144
protecting, 142–143

hardware and services utilization,
determining, 70–74

hardware passwords, using and
disabling, 144–145

hardware-related problems, checking
for, 320

hdiutil detach verb, using with
MacPorts, 30

hdiutil utility
description of, 276
encrypting disk images with, 177
using with MacPorts, 29

headroom, defined, 5
heartbeatd, launching for failover, 308
heat dissipation, calculating, 7
heat load, determining, 5
help resources

documentation, 330
experts, 332

MacTech magazine, 332
mailing lists, 331
man pages, 330
web searches, 330–331

--help switch, using in man pages, 228
HFS+ file system, considering for

backup methods, 270, 290–291
high-availability factors

disk redundancy, 301–304
network redundancy, 304–305
OS power-supply controls, 300–301
power redundancy, 298–300

high-availability monitoring. See also
monitoring utilities

with diskspacemonitor, 306–307
failover schemes, 308–312
IP failover, 307–308

HINFO (hardware info) record,
description of, 94

home folder, encrypting, 174–176
host key, verifying, 151
host names

changing, 62
setting for server, 21

hwmond daemon, using with Server
Monitor, 212

I
iCal service, data store for, 284
iChat Server, data store for, 285
iChat service, configuring for SSL

certificate, 160
id command, using with managed

preferences, 40
identities in Certificate Manager,

using, 155
identity certificate, defined, 154
identity key pairs, generating, 150
if statement

in AppleScript, 237
in Python, 235
testing conditions in bash with, 230

ILM (Information Lifecycle
Management), overview of, 267

import command, using with security
tool, 159

importing
BIND files, 99–100
certificates, 157, 179
settings and data, 55–60

Info log level, defined, 187

Index 357

init.d items, alternative to, 255
input redirection, displaying in scripts,

224
installation locations, separating, 28
installation process, automating,

27–28
installations

defined, 16
errors occurring during, 38
third-party, 26–30
troubleshooting, 37–38
verifying, 30–31

installer command
using, 18–19
using volInfo switch with, 29

installer packages, troubleshooting, 38
installing remotely

from command line, 16–19
using graphical interface, 19–20

Instruments utility
break signal in, 205–206
features of, 203
templates in, 204

I/O, displaying statistics for, 200
iostat command, using, 73
iostat utility, features of, 329
IP addresses

creating whitelist of, 102
limiting tcdump captures to, 133
obtaining, 16, 19, 38
obtaining for ipfw firewall, 124

IP failover
monitoring high availability with,

307–308
troubleshooting, 312–313

IP packets, displaying and capturing,
202–203

ipfw firewall
availability of, 118
controlling, 121
manipulating rules for, 123–124
using list verb with, 121

ipmitool
configuring LOM with, 207–208
LOM setup values, 209–210

IPv4 and IPv6 records, descriptions
of, 94

iSight camera hardware, disabling, 144
itops group in rule, examining,

167–168

J
Jaguar, upgrading from, 47–48
job maintenance, consolidating with

launchd, 246
jobs. See also scheduled jobs

managing with launchd daemon, 244
recurring, 55
running processes with, 253–254
running with periodic program, 252
scheduling with cron, 247–248
specification with plists, 259
verifying in launchd daemon, 242

K
kdb5_util command-line utility,

features of, 276
KeepAlive key, using with launchd,

212–213, 240–241
Kerberos versus key-pair

authentication, 149
kernel extensions (.kext files),

removing, 143
kernel I/O statistics, displaying data

about, 329
kernel messages, printing, 327
kernel variables, getting and setting, 67
kernel_task process, using, 195
key pairs

capabilities of, 149–150
generating, 150–152

key size, specifying for self-signed
certificates, 156–157

keyboard shortcuts
break signal in Instruments,

205–206
ending sessions, 180
for less, 193
matching regular expressions in

less, 193
selecting all users, 52
stop listing, 73
stopping capture, 133
stopping output, 202

keychains, storage of certificates in,
159. See also master keychain

kickstart script, using with ARD,
343–344

ksh shell, description of, 222

L
Label key, using with launchd, 240
LAN-Free Backup, using, 269
launchctl command

relaunching syslogd with, 216
using with launchd, 241
using with syslog messages, 189

launchd daemon
editing for remote syslog messages,

188
features of, 222, 238, 246
KeepAlive key in, 212–213
loading jobs into, 241
managing jobs with, 244
obtaining source for, 246
per-machine programs for, 243
per-session programs for, 242
per-user applications for, 243
starting programs with, 244
using with ntpd service, 106
using with RADIUS, 132
verifying jobs in, 242

launchd functions, using, 239
launchd plists. See also plist files

converting cron jobs, 247–248
creating, 259
for cron line, 248
example of, 255–258
keys required for, 240
locations and uses of, 240
managing daemons and agents

with, 243
scheduling backup with, 281–282

LDAP (Lightweight Directory Access
Protocol), authenticating, 34

ldap_bk volume, contents of, 54
Leopard, upgrading to, 47–48
Leopard DVD, accessing Disk Utility

from, 38
Leopard Server, configurations, 20–21
less utility

loading log files into, 192–193
versus tail, 193

less-than symbol (<), using with
scripts, 224

lighting, heat formula for, 6
list command, using, 17
-listAllNetworkServices switch, using

with networksetup, 234

358 Index

listening network ports, finding,
333–334

-listStartupDisks switch, using with
systemsetup, 233

little-endian chips, features of, 52
load average

displaying and fetching, 73
interpreting, 195–196

load verb, using with launchd
daemon, 241

local facilities, use with ASL (Apple
System Logger), 187

local host name, setting for server, 21
localhost, forward and reverse zones

for, 98–99
log assets, managing, 194
log entries, using @ (at) symbol with,

188
log files

checking for firewall service, 135
checking for RADIUS service, 135
defined, 186
reading, 190–193
searching in less, 193
using less with, 192–193
viewing in Server Admin, 191
viewing with shell tools, 192

log formats, overview of, 190
log levels

crit, 188
and facilities, 188
values for, 187

log messages
breakdown of, 190
logging in, 187

log stores, following with syslog, 192
logger, sending messages with, 189
logger command, using for automatic

jobs, 259
logging information in BIND, location

of, 96
loggingOptions.conf.apple file,

contents of, 96
logs

troubleshooting, 216
troubleshooting with, 326

LOM (Lights Out Management),
accessing, 207

LOM setup values, determining,
209–210

looping
in AppleScript, 237
defined, 222, 230
using in Python, 236

lpadmin command, description of, 235
lsbom utility, using, 32
lsof command

finding bound ports with, 334
listing open files with, 328
using, 201

M
M choice, using in dsimport, 57
Mac Enterprise list, consulting, 331
Mac Fix It site, consulting, 331
Mac OS X Server

configurations for, 343
upgrading from, 47–49
using documentation for, 330

Mac OS X Server Certificate Manager,
features of, 155

Mac OS X Server Installation and
Setup Worksheet, 11

MacEnterprise website, 346
mach_init program, features of,

253–254
MacPorts

downloading and installing, 28
installing on system volume, 30
verifying, 29
website, 346

MacTech magazine, consulting, 332
mail command, using with scripts, 224
Mail Exchanger (MX) record,

description of, 94
mail service, data store for, 285–286
mailing lists, getting help from, 331
Mailman, data store for, 286
man pages

using, 330
using with bash shell, 227–230

man sections, organization of,
228–229

ManagedClient.app file, contents of, 41
$MANPATH shell variable, using with

bash shell, 229
master keychain, setting for FileVault,

175. See also keychains
Mbit/s measurement, using, 8

MCX (Managed Preferences)
troubleshooting, 39–41
using, 33–37

MCX compositor, enabling debug
mode for, 40

.mcx extensions, using in dscl utility,
35–36

MCX records, refreshing, 41
mcxquery tool, using, 39
mcxread command, using with dscl

utility, 35–36
memberd, launching with mach_init,

253
memory utilization, planning, 7–8. See

also PhysMem line in top
MemRegions line in top, explanation

of, 195, 197
menulet, disabling for Time Machine, 37
metadata, syncing with rsync, 272
migrating services, 48–49
migration overview, 59–60
mirrored RAID set, creating, 302–303
mobile devices, securing, 142
module-path, using in PAM, 149
monitoring policies, creating, 193–194.

See also policies
monitoring utilities, alternatives for,

210. See also high-availability
monitoring; system monitoring
utilities

mount command, using with
MacPorts, 30

mount process, automating, 27–28
mount verb, using with MacPorts, 29
MX (Mail Exchanger) record,

description of, 94
MySQL, data store for, 287

N
named

checking running status of, 108
troubleshooting starting of, 108–109
using with BIND, 93–94

named.conf file
contents of, 96–97
updating in BIND, 100

NAT service, data store for, 285
netstat tool

determining bound ports with,
333–334

Index 359

features of, 329
using, 66, 202

network activity, displaying statistics
about, 202

network bandwidth utilization,
computing, 66–70

network firewalls, placing DNS servers
inside of, 101–102

network redundancy, creating,
304–305

network services
listening to ports, 333–334
listing, 234

network status information,
displaying, 66

Network Time Protocol (NTP),
overview of, 104–105

network utilization, planning, 8–9
networks, accessing via RADIUS, 128
networksetup command

using, 234
using for redundancy, 305

newsyslog program, features of,
193–194

NICs (network interface cards), using
with LOM, 207

Non-authoritative answer line,
meaning of, 111

nonrecursive server, defined, 102. See
also servers

not keyword, negating filter with, 133
Notice log level, defined, 187
notifications

custom-scripting, 212–213
setting, 210–213
troubleshooting, 216

NS (name server) record, description
of, 94

NTP (Network Time Protocol),
overview of, 104–105

NTP service
checking, 111–112
overview of, 105–107

ntpd daemon running status,
checking, 112

ntpd service
parameters for, 107
using, 105–106

ntpdate utility, using, 106
ntpq (NTP query) command, using, 112
nvram command, using, 326

O
object files, displaying parts of, 328
offline mode, using, 23–25
online documentation, creating, 347
Open Directory

backing up, 53–55
importing records into, 57–58
managing preferences with, 34–37
migrating to, 52
restoring print settings, 58–59

open files, listing with lsof, 328
openssl command

creating CAs (certificate authorities)
with, 163

using, 31
using with certificates, 180

operating system-related problems,
checking for, 320

options.conf.apple file, contents of, 95
OrderPreference item in System

Starter, explanation of, 250
OS power-supply controls,

implementing, 300–301
OS requirements, considering for

storage, 9–10
osascript command

description of, 234
using, 237

otool command, using, 328
output, stopping in netstat, 202
output redirection, displaying in

scripts, 224

P
-package switch

using in installation, 19
using with MacPorts, 29

packages
advisory about, 32
inspecting prior to installation,

31–32
installing, 25
properties of, 31–32
security resources for, 32

packets
displaying contents of, 329
dumping with tcpdump, 132–134
getting information about, 202

page-fault, occurrence of, 197

pagein and pageout statistics,
interpreting, 195, 197–198

PAM (pluggable authentication
module)

features of, 147
rules in, 148–149

PAM issues, logging, 179
PAM management groups, using,

147–148
Panther, upgrading from, 47–48
partitionDisk command, using, 17
password management group, using in

PAM, 148
password policies, setting, 146–147.

See also policies
PasswordAuthentication, setting, 151
passwords

for hardware, 144–145
for root account, 142
using, 25

$PATH environment variable, using
with scripts, 225–226

paths, use in shells, 225
pax command-line utility, description

of, 276
PDU (power distribution unit), heat

formula for, 6
pe command, using, 112
peers for ntpd, displaying information

about, 112
people, heat formula for, 6
percent sign (%), appearance in

sudoers file, 146
periodic program, features of, 252
permissions

granting for users, 141
versus privileges, 168
setting for files, 168–172
setting for folders, 168–172
troubleshooting, 38, 50–51, 180
viewing in POSIX, 169

PHP, data store for, 287
PHP 4, discontinuation of, 47
PhysMem line in top, explanation

of, 195, 197. See also memory
utilization

.pkg extension, explanation of, 31
PKI (Public Key Infrastructure)

public and private keys in, 153–154
use of, 152

360 Index

planning
cooling, 5–7
CPU utilization, 7–8
heat dissipation and load, 5–7
memory utilization, 7–8
network utilization, 8–9
power, 5–7
service utilization, 7–8
for storage, 9–10
upgrades, 46–47
utilization, 4–5

.plist extension, searching for files
with, 25, 40

plist files. See also launchd plists
editing, 259–260
formatting properly, 259
for mach_int program, 253–254
for periodic program, 252
specifying jobs with, 259
for SystemStarter program, 249
using with launchd, 239–243

plist firewall files, contents of, 126
plutil program, validating plists with,

259–260
pmset utility, using, 300
POH (power-on hours), gathering for

BMC, 208
pointer (PTR) record, description

of, 94
policies. See also monitoring policies;

password policies
changing, 147
defined, 33
listing on separate lines, 146
pushing onto local accounts, 36

policy database, rules in, 166
policy items, compositing, 39
policy settings, viewing, 146
port 8090, listening to, 245
port numbers, determining for

firewall, 120
POSIX permissions

description of, 168
modifying, 170
setting and viewing, 169
using flags with, 170

Postfix SMTP, data store for, 286
power, determining, 5–7
power consumption, calculating, 298

power distribution unit (PDU), heat
formula for, 6

power failures, restarting systems
after, 301

power management, implementing, 207
power redundancy, planning, 298–300
power-on hours (POH), gathering for

BMC, 208
preference manifest, availability of, 36
preferences. See also MCX (managed

preferences)
adjusting for software updates, 27
command-line scripting of, 233
hiding, 233
managing with Open Directory,

34–37
preflighting upgrades, 46
print queues, re-creating, 51
print service settings, exporting, 51
print settings, restoring, 51
print statement, troubleshooting true

branch with, 258
private keys

generating, 150
storing, 163
using, 153–154

privileges versus permissions, 168
problems. See also troubleshooting

approaching methodically, 319–320
assessing, 320–321
fixing, 318
gathering information about,

322–323
identifying, 320–322
resolving, 320, 322

Process Failover script, using, 308
process status (ps) tool, using, 72
processes

displaying, 327
monitoring with top utility, 195–199

ProgramArguments key, using with
launchd, 240

programs. See also applications
running efficiently with launchd, 246
starting with launchd daemon, 244
triggering on file system changes, 245

Provides item in System Starter,
explanation of, 249

ps (process status) tool
features of, 327
finding running processes with, 332

using, 72
using with ntpd daemon, 112
using with syslogd, 216

PTR (pointer) record, description
of, 94

PubkeyAuthentication parameter,
setting, 151

Public Key Infrastructure (PKI)
public and private keys in, 153–154
use of, 152

public keys
generating, 150
using, 153–154

pwpolicy tool, using, 146–147
Python language, using, 235–236

Q
queries, deflecting on DNS servers, 103
QueueDirectories key, using with

launchd, 245, 257–258
QuickTime streaming server, data

store for, 285

r
RADIUS service

checking log files for, 135
configuration and log files for,

131–132
configuring, 129–131
default ports for, 135
using shared secret with, 131, 134

RAID (redundant array of inexpensive
disks) using, 301–304

RAM statistics, interpreting, 197
rc boot-time script, unavailability

of, 255
read verb, using with defaults

command, 233
read-write image, creating, 176–177
rebooting, 19
reconnectKeyLocation attribute value,

location of, 312
records

classification in DNS system, 94
exporting with dsexport, 53
importing into Open Directory,

57–58
importing with Workgroup

Manager, 56–57
recurring jobs, setting up, 55

Index 361

redundancy
defined, 297
of disks, 301–304
of networks, 304–305
of power, 298–300

registrars, using for domain names, 91
regular expressions, matching in less,

193
reliability metrics, establishing,

296–297
remote installation, performing from

command line, 16–19
remote machines, troubleshooting, 38
removable media, backing up files to,

268–269
repeat statement, looping in

AppleScript with, 237
reporting, using ARD (Apple Remote

Desktop) for, 343–345
reporting applications, availability

of, 346
reports

creating with ARD (Apple Remote
Desktop), 214–216

creating with system_profiler,
213–214

customizing, 345–346
requirements, documenting, 10–11
Requires item in System Starter,

explanation of, 249
restarting target machine, 19
restoring

backed up data, 289
Open Directory, 58–59
print settings, 51

retention section, using with
monitoring policies, 193

reverse lookups, testing, 111
rights

editing, 166–168
versus rules for authorization, 166

rm command, using with scripts, 224
rndc utility name daemon, using with

BIND, 93–94
root account, enabling and disabling,

141–142
root server cache, bad entry in, 109
root user, permissions granted to, 141
root zone, defining in BIND, 98
RSA key, generating, 163

rsync utility
backing up system files with, 256
copying directories with, 257
features of, 272–273

rule 3000, appending to ipfw.con file,
126

rule keys, using with rights, 167
rule sets, displaying for firewall, 120
rules versus rights for authorization, 166
running code, examining, 203–206
running processes

finding, 327, 332
monitoring, 70–72

run-time requirements, determining
for power, 298

rv command, using, 112
rwx permissions, granting in POSIX,

169

S
s_client.openssl command, using with

certificates, 180
sa_rspndr, running, 16
sa_srchr command, using, 16, 19, 38
.sabackup extension, explanation

of, 50
SACL groups, removing members

from, 173
SACL names, displaying, 173
SACL privileges, setting, 172–174
SACLs (system access control lists). See

also ACLs (access control lists)
displaying members in, 173
using in Server Admin, 173–174
using with RADIUS, 130

sandbox-exec loader, using with ntpd
service, 107

scheduled jobs, using logger command
with, 259. See also jobs

scp command-line utility, description
of, 276

screen sharing
accessing, 19
connecting through, 20
troubleshooting with, 325

screencapture utility, using, 342
screensavers, unlocking, 166–168
Script Editor, location of, 236

scripts. See also automation
technologies

for automating backups, 280–281
automating documentation with, 348
debugging-by-printing, 258
input redirection in, 224
making executable, 224
output redirection in, 224
providing directories for, 224–225
repeating sections of, 230
running, 224–225
running on regular basis, 244
setting variables in, 224
specifying absolute path for, 225
specifying fully qualified path for, 225
storing search path for, 225
troubleshooting, 259
using df command with, 225
using for backup tasks, 282
using rm command with, 224
using with bash shell, 223

search path, storing for scripts, 225
secure remove (srm) command, using,

283
Secure Shell (SSH), using rsync with,

273
SecureErase FreeSpace command,

using, 282
security and FileVault keychains, data

store for, 285
security methods, 139–140
security model, authorization and

authentication, 140–142
security tool, configuring certificates

with, 159
security updates for Apple, accessing, 32
“security-announce” mailing list,

signing up for, 32
selectors, use with log levels and

facilities, 188
self-signed certificates

creating, 156–157
distributing to clients, 165
modifying fields of, 158
using, 155

semicolon (;), using with selectors, 188
Serial Number screen, saving

information on, 23

362 Index

Server Admin application
accessing RADIUS through, 129–131
Address Groups tab in, 118
displaying CPU utilization graphs

in, 71
EPI (Effective Permissions

Inspector) in, 180
importing settings with, 55
listing services with, 71
managing certificates in, 135
restoring Open Directory with,

58–59
Services tab in, 119–120
setting notifications in, 210–211
using, 50
using SACLs in, 173–174
viewing log files in, 191

Server Assistant application
populating fields in, 23
running, 23–25

Server Assistant Responder, running, 16
server certificates, distributing to

clients, 165. See also certificates
Server Monitor application

features of, 206–207
setting notifications in, 211–212

server settings, restoring, 289
server systems, installing and

configuring, 25
serveradmin list directive, using, 50
serveradmin utility

backing up Open Directory with,
54–55

features of, 276
importing settings with, 55
using, 49
using with fullstatus verb, 69
using with NTP, 105–106
using with SACLs (service access

control lists), 173
servers. See also nonrecursive server;

Strata 0 servers
cloning, 51–52
configuring, 21
configuring offline, 23–25
determining configuration modes

for, 343
providing documentation for, 10
restarting automatically, 301
SSH key for, 151
using IP failover with, 307–308

serversetup command
exporting print service settings

with, 51
using, 25

service (SRV) record, description
of, 94

service utilization, planning, 7–8
services

activating for firewall address
groups, 120

configuring for certificates, 160
exporting settings for, 48–50
listing, 50
monitoring with KeepAlive key,

212–213
services and hardware utilization,

determining, 70–74
session management group, using in

PAM, 148
sessions, ending, 180
set command, finding shell variables

with, 225
set keyword, using with AppleScript

variables, 237
-setGlobalPolicy switch, using, 147
settings

exporting, 49–50
importing, 55–60
making once, 36

settings all directive, using with
serveradmin command, 49

severity, defined, 187
sh shell, description of, 222
SHA-1 checksum, using, 30–31
shared libraries, viewing statistics

about, 195–197
shared secret, using with RADIUS,

131, 134
shebang line

appearance in Python, 235
checking, 259
purpose of, 224

shell scripts
running in AppleScript, 237
for StartupItem, 250

shell tools
using, 27–28
viewing log files with, 192

shell variables
creating, 226
finding, 225

shells
accessing on remote machines,

149–152
availability of, 222
location of, 222
paths in, 225
using alternatives to bash, 231–232

Shift-F shortcut, using in less, 193
Shift-N shortcut, using in less, 193
+short flag, using with dig, 111
shutdown command

using -r switch with, 19
using -u switch with, 300

signed certificates, requesting, 156
single quotes (‘), using with

ManagedClient.app file, 40
smb, throughput for, 70
socketfilterfw program, using with

firewall, 127
Sockets key, using with launchd, 245
SockServiceName listener key, using

with launchd, 245
software driver, removing, 143
Software Update

features of, 27
using, 27

software updates versus upgrades, 46
software-related problems, checking

for, 319
softwareupdate tool, using, 26
spaces, converting to new lines, 146
Spamassassin, data store for, 286
sparse image, creating with hdiutil, 177
split-DNS setup, using, 93
srm (secure remove) command,

using, 283
SRV (service) record, description of, 94
SSH (Secure Shell), using rsync with,

273
SSH client, using -v switch with,

178–179
ssh command

combining ditto with, 274
installing remotely from, 16–19
using with MacPorts, 28

SSH key fingerprints, updating,
151–152

SSH service
authenticating accounts with,

149–152
using with PAM, 148

Index 363

SSH session authorization, failure
of, 177

ssh-keygen command, using, 150
SSL certificates

configuring iChat service for, 160
importing, 157

SSL-encrypted network, setting up,
161–165

StartCalendarInterval key
versus fields in cron, 248
using with launchd, 244–245

startup environment, creating, 226
Startup Manager, accessing, 145
StartupItem, shell script for, 250
“state-on” firewall files, purpose of, 126
stdout, redirecting output for, 224
Stealth Mode option, enabling for

firewall, 122
sticky bit (t), explanation of, 169
storage, determining, 9–10
storage devices

considering in backup strategies, 267
disabling, 144

storage units, protecting, 142
Strata 0 servers, use of, 105. See also

servers
strings, using, 333
strings tool, features of, 327
sudo command

altering machine-wide defaults
with, 233

authenticating accounts with,
145–146

signing CAs with, 164
using with POSIX permissions, 170

sudoers file, editing, 146
sysctl tool

enabling firewall with, 123
using, 67–68
using vm.loadavg variable with, 73

syslog command
sending messages with, 189
using with asl.db, 192

syslog facility, checking, 112
syslog messages, accepting remotely, 188
syslog.conf file, use with ASL (Apple

System Logger), 187
syslogd daemon

ASL (Apple System Logger) in, 186
checking running status of, 216

system
concept of, 4
configuring, 20–22
configuring offline, 23–25
system access control lists (SACLs).

See also ACLs (access control lists)
displaying members in, 173
using in Server Admin, 173–174
using with RADIUS, 130

system account, use of, 141
system clocks, keeping in sync,

104–105
system crontab files, location of, 247
system daemon, running as root, 252.

See also daemons
system files, backing up with rsync, 256
system load, equation for, 8
system monitoring utilities. See also

monitoring utilities
Activity Monitor.app, 199–201
df command-line utility, 200
fs_usage tool, 201
lsof command, 201
tcpdump utility, 202–203
top, 195–199

System Preferences, command-line
scripting of, 233

System Profiler, using, 325
system rights, editing, 166–168
system state, determining for

troubleshooting, 325–327
system volume, installing MacPorts

on, 30
system_profiler command

creating reports with, 213–214
description of, 234

systemkeychain command, using, 159
system.log, errors in, 179
system.login.screensaver right, using,

166–167
systems, booting asynchronously with

launchd, 246
systemsetup command

restarting systems with, 301
using, 233
using with NTP, 105–106

SystemStarter program, features of,
249–252

T
t (sticky bit), explanation of, 169
tail utility

versus less, 193
watching file changes with, 192

tape, backing up files to, 268
tar command-line utility, description

of, 276
-target switch, using with MacPorts, 30
tclsh shell, description of, 222
tcpdump packet sniffer, using,

132–134
tcpdump utility, features of, 202–203,

329
tcsh shell, description of, 222
templates, creating documentation

with, 346–347
Terminal.app, using bash shell with, 223
test command, using with bash shell,

231
text (TXT) record, description of, 94
text editors, using with scripts, 224
TextEdit

keeping running with launchd,
241–242

quitting, 242
“The Collector” tool, using for backup

tasks, 282
throughput, singling out, 70
Tiger, upgrading from, 47–48
Time Machine

disabling menulet for, 37
features of, 276–278
restoring backed up data in, 289

time services, availability of, 105
time source, setting, 106
timestamp, retrieving for boot time, 67
TLS (Transport Layer Security), use

of, 152
/tmp, contents of, 141
tons, converting watts into, 6
top command

finding virtual memory statistics
with, 73

switches for, 199
using, 72–73
viewing columns with, 73

top process area, making dynamic, 199
top -u command, using, 199

364 Index

top utility, monitoring processes with,
195–196

tr, using with policy settings, 146
tracing applications with Instruments,

204
Transport Layer Security (TLS), use

of, 152
Triple-DES key, generating, 163
troubleshooting. See also problems

ACLs (access control lists), 180
AppleRAID, 312–313
authentication and authorization,

177–180
backup schemes, 289–291
digital certificates, 179
DNS system, 107–112
firewall service, 132–135
following methodology for, 318–320
installations, 37–38
IP failover, 312–313
logs, 216
with logs, 326
managed preferences, 39–41
notifications, 216
permissions, 38, 50–51, 180
RADIUS service, 132–135
screen sharing, 325
scripts, 258–259
sequence for, 321
upgrades, 60–62

troubleshooting methodology
considering human factor, 319
following order of elimination,

319–320
The Four Cs, 323–324
taking notes, 318
using resources, 319

troubleshooting resources
ARD (Apple Remote Desktop), 325
command-line tools, 327–329
determining system state, 325–327
dtrace utility, 328
performing verbose boots, 326–327
viewing users’ screens remotely, 324

true branch, troubleshooting, 258
trunking, defined, 8
TXT (text) record, description of, 94
Type management group, using in

PAM, 148

U
uchg flag, using with POSIX

permissions, 170
UDP port 123, use by NTP, 111
umask setting, using with file

permissions, 172
UNIX epoch, explanation of, 67
UNIX icon, error in, 290
updates

adjusting preferences for, 27
availability of, 25
listing for software, 25
restarts required for, 27
versus upgrades, 46

upgrades
and cloning, 51–52
consulting resource for, 52
errors generated during, 61
planning, 46–47
from Tiger, Panther, and Jaguar,

47–48
troubleshooting, 60–62
versus updates, 46

UPS with battery, heat formula for, 6
UPSs (Uninterruptible Power

Supplies)
halting systems for, 300
implementing, 298–300

uptime command, using, 66, 73
uptime versus downtime, 296
USB ports, locking, 144
user and bash attributes, combining,

226–227
user crontab files, location of, 247
user data

exporting with Workgroup Manager,
52

importing, 56
user defaults, reading and writing

entries from, 232–233
user prefix, using with ACLs, 170
user-related problems, checking for, 319
users. See also connected users

displaying information about, 70
importing with Workgroup

Manager, 56
permissions granted to, 141
scripting, 256–257
selecting all, 52

users’ screens, viewing remotely, 324
/Users/Shared, contents of, 141

Uses item in System Starter,
explanation of, 249

utilization
CPU, 7–8
determining, 4–5
memory, 7–8
network, 8–9
of network bandwidth, 66–70
service, 7–8
of service of hardware, 70–74

V
VA (volt-amperes), conversion

between watts and, 6
variables

in AppleScript, 237
referencing in Python, 235
setting in scripts, 224

/var/log/ipfw.log, sending log messages
to, 124–125

verbose boots, performing, 326–327
verbose command-line switch, setting,

334–335
-verbose flag

using in installation, 19
using with MacPorts, 30

verifyvolume verb, using, 38
version upgrades, planning, 46–47
views

in BIND (Berkeley Internet Name
Domain), 94

defining in BIND (Berkeley Internet
Name Domain), 98

virtual memory statistics, finding, 73
visudo program, editing sudoers file

with, 146
VM (virtual memory) statistics

interpreting, 195, 197
reporting on, 329

vm_stat columns, viewing, 73
vm_stat command, using, 198, 329
vm.loadavg variable, using with sysctl

command, 73
volInfo switch, using with installer

command, 29–30
volt-amperes (VA), conversion

between watts and, 6
volume integrity, verifying, 38
volumes

cleaning, 282
cloning with asr, 275

Index 365

W
Warning log level, defined, 187
WatchPaths key, using with launchd, 245
watts

conversion between VA (volt-
amperes) and, 6

converting BTU rating to, 6
converting into tons, 6

web, getting help from, 330–331
web service, data store for, 287
websites

AFP548, 331
Apple services, 120
Apple support section, 330
AppleScript reference, 238
ARD (Apple Remote Desktop), 325
authentication, 140
Backup Bouncer test suite, 270–271
backup policies, 270
“Creating Action Scripts,” 212
Data Center and Server Room

Design Guides, APC, 11
developer accounts, 332
documentation boilerplate, 346
Mac Enterprise list, 331
Mac Fix It, 331
Mac OS X Server Installation and

Setup Worksheet, 11
MacEnterprise, 346

MacPorts, 346
MacTech magazine, 332
monitoring policies, 193
reporting applications, 346
“Resetting the Firewall to Default

Setting,” 134
run-time calculator, 298
services, 120

while loop, using in Python, 236
whitelist files, editing in Adaptive

Firewall, 126
Wiki and Blog services, data store for,

287–289
Wikis, using, 347–348
wiring, verifying for power

redundancy, 299
Workgroup Manager (WGM)

accessing directories with, 36
importing records with, 56–57
launching, 34
opening, 52
using SACLs in, 174
using to clone and upgrade, 52–53
using with managed preferences, 33

worksheets, using in documentation, 11
workstation usage, accessing, 72
write verb, using with defaults

command, 233

X
x switch, using with ps tool, 72
x.509 systems, CAs (certificate

authorities) in, 154
Xcode, installing, 204
Xsan systems, using for storage, 267
Xserve

interfaces on, 209–210
sample BTU for, 7

Xserve tools
ipmitool, 207–210
LOM (Lights Out Management),

207–208
Server Monitor, 206–207

Z
zip command-line utility, description

of, 276
zone “.” definition, using in BIND, 98
zone transfers, restricting, 101–102
zones in BIND, location of, 94
zsh shell, description of, 222

	Apple Training Series: Mac OS X Advanced System Administration v10.5
	Contents
	Getting Started
	Part 1 Implementation
	Chapter 1 Planning Systems
	Planning Before Purchasing
	Documenting the Initial Requirements
	What You’ve Learned
	References
	Review Quiz

	Chapter 2 Installing and Configuring Systems
	Installing Your System
	Configuring Your System
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 3 Upgrading and Migrating Systems
	Upgrading Your System
	Exporting Settings and Data
	Importing Settings and Data
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 4 Assessing Systems
	Determining Current Utilization
	Evaluating the Upgrade History
	Evaluating Workflows
	What You’ve Learned
	Review Quiz

	Part 2 Networking
	Chapter 5 Working with DNS and NTP
	Using DNS: The Big Picture
	Configuring DNS Services
	Using Network Time Protocol
	Troubleshooting
	What You’ve Learned
	References
	Review Quiz

	Chapter 6 Controlling Access to Resources
	Configuring Firewall Service
	Accessing the Firewall Setup
	Configuring RADIUS
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Part 3 Administration
	Chapter 7 Securing Access to Resources
	About Authentication and Authorization
	Protecting Hardware
	Authenticating Accounts
	Using Certificates for Authentication
	Authorizing Accounts
	Encrypting Files
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 8 Monitoring Systems
	Using the System Log and ASL
	Using Tools and Utilities
	Setting Notifications
	Creating Reports
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 9 Automating Systems
	Understanding Mac OS X Automation
	Comparing Automation Technologies
	Using launchd
	Using Other Automation Technologies
	Examples
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 10 Ensuring Data Integrity
	Determining Backup Strategies
	Using Backup Tools
	Automating Data Backup
	About Common Data Stores
	Restoring Backed-Up Data
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Part 4 Optimizing and Troubleshooting
	Chapter 11 Ensuring Reliability
	Establishing Reliability Metrics
	Maintaining High Availability
	Monitoring High Availability
	Troubleshooting
	What You’ve Learned
	Review Quiz

	Chapter 12 Troubleshooting
	Following a Methodology
	Taking General Steps
	Assessing the Problem
	Using Troubleshooting Tools and Resources
	Trying Examples
	What You’ve Learned
	Review Quiz

	Appendix: Documenting Systems
	Gathering Data
	Creating Documentation
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

