TECHNICAL REFERENCE MANUAL

Version 2.00 - August 2021

Disclaimer

This manual and the information contained herein are the sole property of EVS Broadcast Equipment SA and/or its affiliates (EVS) and are provided "as is" without any expressed or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. In particular, EVS makes no warranty regarding the use or the consequences of use of this manual and the information contained herein. Furthermore, EVS may not be held liable for any direct or indirect, incidental, punitive or consequential loss, damage, cost or expense of any kind whatsoever and howsoever resulting from the normal or abnormal use of this manual and the information contained herein, even if advised of the possibility of such loss, damage, cost or expense.

While every effort has been made to ensure that the information contained in this manual is accurate, up-to-date and reliable, EVS cannot be held liable for inaccuracies or errors that may appear in this publication. The information in this manual is furnished for informational purpose and use only and subject to change without notice.

This manual cancels and replaces any previous versions thereof.

Copyright

Copyright © 2003-2021 EVS Broadcast Equipment SA. All rights reserved.

This manual may not be reproduced, transcribed, stored (in a database or an retrieval system), translated into any language, computer language, transmitted in any form or by any means – electronically, mechanically, printed, photocopied, optically, manually or otherwise – in whole or in part without the prior written consent of EVS.

Trademarks

All product and brand names are registered trademarks and trademarks of EVS or of their respective owners.

Improvement Requests

Your comments will help us improve the quality of the user documentation. Please send improvement requests, or report any error or inaccuracy on this user manual by e-mail to doc@evs.com.

Regional Contacts

You will find the full list of addresses and phone numbers on the following webpage: http://www.evs.com/contact.

User Manuals on EVS Website

The latest version of the user manual, if any, and other user manuals on EVS products can be found on the EVS download center, on the following webpage: https://www.evs.com/en/download-area.

Table of Contents

ΤΑΙ	TABLE OF CONTENTS		
WH	WHAT'S NEW?		
1.	INTRODUCTION	. 1	
2.	HARDWARE	. 2	
2.1. 2.2.	Physical Dimensions Environmental Ranges	. 2 . 3	
2.3. 2.4.	Power Front Panel	. 3 . 4	
2.5.	Rear Panel	. 6	
3.	IP AGGREGATOR	. 8	
3.1.	Cabling 3.1.1. Accepted Connectors 3.1.2. Connection to XT-VIA/XS-VIA	. 8 . 8 . 9	
3.2.	3.1.3. Connection to External 100G Switch	.13 .14	
2.2	3.2.1. Network Diagram 3.2.2. VLANs Dart Speed Configuration	.14 15	
3.3. 3.4.	Upgrading the XHub-VIA Software	.16	
4.	XNET-VIA	17	
4.1.	Cabling 4.1.1. Accepted Connectors 4.1.2. Connecting EVS Servers 4.1.3. Connecting XHub-VIAs	.17 .17 .18 .19	
4.2.	Network 4.2.1. Impact on the IP Infrastructure 4.2.2. VI ANs	.25 .25 .25	
4.3.	Upgrading the XHub-VIA Software	.26	
5.	SOFTWARE	28	
5.1. 5.2.	Command Line Interface	28 .28	

6. CONFIGURATION	29
6.1. Viewing the Software License Agreement	29
6.2. Viewing the XHub-VIA Version	29
6.3. Entering Configuration Mode	29
6.4. Configuring the Management IP Address	30
6.5. Configuring the Hostname	30
6.6. Managing VLANs	31
6.6.1. Viewing the VLANs	31
6.6.2. Configuring VLANs	32
6.6.3. Deleting VLANs	33
6.7. Managing Ethernet Interfaces	35
6.7.1. Viewing the Ethernet Interfaces	35
6.7.2. Configuring Ethernet Interfaces	37
6.7.3. Assigning to and Removing Ethernet Interfaces from VLANs	39
6.7.4. Deleting Ethernet Interfaces	41
6.8. Managing Protection Switching Interfaces	44
6.9. Managing Routes	47
6.9.1. Viewing the Routes	47
6.9.2. Configuring Routes	47
6.9.3. Deleting Routes	47
6.10. Managing Configuration Files	49
6.10.1. About Configuration Files	49
6.10.2. Viewing the Configuration Files	50
6.10.3. Saving and Loading Configurations	50
6.10.4. Renaming, Copying and Deleting Configuration Files	51
7. MONITORING	53
7.1. Extracting Logs	53

What's New?

In the Technical Reference Manual the icon **NEW**! has been added on the left margin to highlight information on updated features.

NEW !

The changes linked to new features in version 2.00 are listed below.

XHub-VIA can be used as switch for XNet-VIA.

• See section "XNet-VIA" on page 17.

A command line interface allows to configure the switch.

- See section "Command Line Interface" on page 28.
- See section "Configuration" on page 29.

1. Introduction

About the XHub-VIA Switch

The XHub-VIA is an EVS switch that can be used for 2 use cases:

- as IP aggregator
- as XNet-VIA switch

XHub-VIA IP Aggregator

The XHub-VIA IP Aggregator enables to have a single uplink to the Live IP fabric.

It makes it possible for the XT-VIA/XS-VIA server to support single link UHD-4K streaming in ST2110 and also very dense 1080p SLSM configurations that could surpass the native 10Gbps bandwidth of the ports on the server.

This Aggregator is completely transparent to the Live IP network and all configuration on the Multicast streams is managed by the Multicam running on the EVS server.

In case of 2022-7, a redundant link can be put in place to enable this functionality.

XHub-VIA XNet-VIA Switch

The XHub-VIA XNet-VIA switch allows to interconnect XT-VIA and XS-VIA servers and to exchange data with each other at 10Gbps.

2. Hardware

2.1. Physical Dimensions

Dimensions

Size

481.20 mm (W), 43.60 mm (H), 324 mm (D) 18.9" (W), 1.8" (H), 12.75" (D)

Front View

Top View

Side View

Weight

6 kg / 2.20 lbs

2.2. Environmental Ranges

Temperature	• Operating: 0° to 45°C / 32°F to 113°F	
Humidity	Operating: 85% RH (non-condensing)	
Altitude	Operating: sea level to 5000m	
Noise level	70dB	

2.3. Power

2.4. Front Panel

Overview

#	Element
1.	Error LED (red)
2.	Software Status LED (yellow)
3.	System On/Off LED (blue)
4.	System Recovery/Reset button
5.	Power switch

Error LED

The Error LED behaves as follows:

Led Behavior	Meaning
Off	No hardware or software error occurred.
Flashing fast	 In combination with: a Software Status LED (yellow) that is flashing fast: The software is started in Recovery Mode. a System On/Off LED (blue) that is flashing slowly: A hardware error occurred.

Software Status LED

The Software Status LED I	behaves as follows:
---------------------------	---------------------

LED Behavior	Meaning	
Off	In combination with: • and Error LED (red) that if <u>off</u> : The software is off.	
Flashing fast	 In combination with: an Error LED (red) that is off: The software is starting. an Error LED (red) that is flashing fast: The software is started in Recovery Mode. a System On/Off LED (blue) that is flashing slowly: The software was not properly started or stopped. 	
Flashing fast (short period) Steady yellow (long period)	In combination with: • and Error LED (red) that if <u>off</u> : The software is running.	

System On/Off LED

The System On/Off LED behaves as follows:

LED Behavior	Meaning
Flashing fast	XHub-VIA is starting or stopping.
Flashing moderately (every 1s)	The XHub-VIA firmware update is in progress.
Flashing slowly (every 4s)	In combination with: • a Software Status LED (yellow) that is <u>flashing fast</u> : The software was not properly started or stopped. • an Error LED (red) that is <u>flashing fast</u> : A hardware error occurred.
Flashing slowly (every 4s)	In combination with: • a Software Status LED (yellow) and an Error LED (red) that are off: XHub-VIA is off.
Steady blue	XHub-VIA is on.

Recovery/Reset Button

This button is used to start XHub-VIA in Recovery mode. In this mode, you will be able to configure certain aspects of the switch and upgrade the software.

If you push this button, the default configuration file (XNet-VIA or Live IP) will be loaded by default at startup. See section "About Configuration Files" on page 49.

2.5. Rear Panel

#	Element
1.	Power supply 1
2.	Power supply 2
3.	Console connector
4.	1GbE (management) (RJ45)
5.	USB port (2.0)
6.	14x 25/12.5Gbps ports (SFP28)
7.	2x 100Gbps ports (QSFP28)

Power Supply

The XHub-VIA is fitted with two auto switching and hot-swappable external power supplies (2x 300W). The secondary hot-swappable power supply should be connected to the main to share the load and to allow automatic power switching to one power supply in case one of the two should fail.

Management Port Status LEDS

The management port has two status LEDs that behave as follows:

LED	Color	LED Behavior	Meaning
Left	Green	Steady green	Speed is 1Gbps.
	Orange	Steady orange	Speed is 100 Mbps.
Right	Yellow	Flashing	Data is being sent or received.
		Off	The port is down.
		Steady yellow	The port is up.

SFP/QSFP Port Status LED

Each SFP and QSFP port has a status LED that behaves as follows:

LED Behavior	Meaning
Off	The port is down. The port has not been configured or there is no link.
Steady green	The port is up.
Flashing green	The port is up and there is activity.

3. **IP Aggregator**

3.1. Cabling

3.1.1. Accepted Connectors

To create the connections between the XT servers and the XHub-VIA switch, and to create the link between the XHub-VIA and the LiveIP network, the following connectors can be used:

Type of Connection	Type of Connector				
between XT servers and XHub-VIA	• 7x or 14x (in case of ST 2022-7) CAB- 10GESS-1M				
between XHub-VIA and the LiveIP network	• 1x or 2x (in case of ST 20222-7) QSFP-100G-SR4				

3.1.2. Connection to XT-VIA/XS-VIA

Limitation

You can connect only 1 server to the XHub-VIA IP Aggregator.

Management Connection

To establish a management connection between XHub-VIA and the server, the XHUB-VIA management port has to be connected to the server's **EVS LNK** connector.

SFP Port Connections

Accepted Connectors

Type of Connection	Type of Connector				
between XT servers and XHub-VIA	CAB-10GESS-1M				
between XHub-VIA and LiveIP fabric	QSFP-100G-SR4				

Without ST 2022-7

In a setup without redundancy (ST 2022-7), the server's SFP+ ports should be connected with the XHub-VIA SFP28 ports as follows:

XHub-VIA Port	XT-VIA Port
1	1-C
2	2-C
3	3-C
4	4-C
5	5-C
6	6-C
8	8-C

With ST 2022-7

In a setup with redundancy (ST 2022-7), the server's SFP+ ports should be connected with the XHub-VIA SFP28 ports as follows:

XHub-VIA Port	XT-VIA Port	XHub-VIA Port	XT-VIA Port		
1	1-C	9	1-D		
2	2-C	10	2-D		
3	3-C	11	3-D		
4	4-C	12	4-D		
5	5-C	13	5-D		
6	6-C	14	6-D		
8	8-C	16	8-D		

The ports 17-24 on the XHub-VIA switch are not active.

FEC (Forward Error Connection)

Forward Error Connection is not activated on the XHub-VIA SFP ports.

3.1.3. Connection to External 100G Switch

Without ST2022-7

The XHub-VIA should be connected to an external 100G switch as follows:

XHub-VIA	External Switch
Port	Port
29	any

With ST2022-7

The XHub-VIA should be connected to an external 100G switch as follows:

XHub-VIA Port	External Switch Port
29	any
30	any

The ports 25-28 are not active.

FEC (Forward Error Connection)

Forward Error Connection activated on the QSFP ports is RS-FEC (Reed Solomon).

3.2. Network

3.2.1. Network Diagram

Without ST2022-7

With ST2022-7

3.2.2. VLANs

There are two VLANs on the XHUB-VIA.

The table below shows the XHub-VIA and XT-VIA/XS-VIA ports that belong to each VLAN.

VLAN #	XHUB-VIA Ports	XT-/XS-VIA Ports
10	SFP 1-8 + QSFP 29	all SFP-C ports
20	SFP 9-16 + QSFP 30	all SFP-D ports

3.3. Port Speed Configuration

The port speed on the XHub-VIA is configured accordingly to the port speed on the XT-VIA or XS-VIA server.

If a V4X module is set to 12.5Gbps, the appropriate port on the XHub-VIA (i.e. the port connected to this V4X module) is also set to 12.5Gbps.

The port speed configuration on the XHub-VIA is managed by the EVS server.

3.4. Upgrading the XHub-VIA Software

Requirements

• When working in Live IP over 100G, the XHub-VIA is fully managed by Multicam. The XHub-VIA is connected to the EVS server via the **EVS LNK** connector.

Automatic Procedure

The XHub-VIA software forms part of the Multicam installation package.

The upgrade of the XHub-VIA software is managed automatically during the boot sequence of the EVS server.

The current version of the software on the XHub-VIA is detected.

If the version is not as expected, the software is upgraded to the new version.

4. XNet-VIA

4.1. Cabling

4.1.1. Accepted Connectors

NEW!

To create the connections between the XT servers and the XHub-VIA switch, and to create the uplinks between the XHub-VIA switches, the following connectors can be used:

Type of Connection	Type of Connector				
between XT servers and XHub-VIA	 ESSFP-I-10G-SR CAB-10GESS-1M CAB-10GESS-3M CAB-10GESS-5M 				
between XHub-VIAs	QSFP-100G-SR4				

4.1.2. Connecting EVS Servers

You can connect up to 24 servers to a single XHub-VIA switch.

The XNet-VIA SFP+ connector of the server is connected to one of the 24 SFP28 ports of the switch.

4.1.3. Connecting XHub-VIAs

Introduction

In certain situations, it is required to create connections or uplinks between two or more XHUB-VIA switches.

This is the case if:

- there are more than 24 XT servers in the XNet-VIA network;
- the XT servers are located in different physical locations, e.g. two OB vans, and cannot be connected to the same XHub-VIA;
- the XT servers belong to different sub-setups which are temporarily interconnected.

The XHUB-VIA switches can be connected through one of the 100G QSFP ports using a fiber optics cable and QSFP adapters (QSFP-100G-SR4).

In most cases, a single uplink is realized between two XHub-VIA switches. See section "Single Uplink" on page 20.

In case a fail-over mechanism is required, a second uplink will be realized between the two switches. See section "Protection Switching" on page 23.

- Users can freely choose the QSFP ports that will be used to link the XHUB-VIA switches with each other.
- There is no real limitation in the use of a specific type of network topology.
- All XHUB-VIAs should be connected to the management network in order to have monitoring.

Single Uplink

Network Architectures

Limitations/Recommendations

- There should be at least one Allowed/Preferred server in each cluster.
- There should not be more than 10 XT servers at each side of an uplink connection. If this number is exceeded, the risk of packet loss in case of peak load will increase greatly.
- There is no fail-over or redundancy mechanism. In addition to the possibility of losing the connectivity, there is the risk that certain servers will be completely isolated, for example if one XHub-VIA has only servers that are configured as Forbidden. Because there is no XNet server, they will be isolated from each other and be in standalone mode.
- Prevent circle topologies.

2 XHub-VIAs with Single Uplink

Multiple XHub-VIAs with Single Uplink

Use Case 1 - Star Topology Without Bandwidth Limitation

In the schema below, there are 100G uplinks between 2 XHub-VIAs, each with 8 XT-VIAs on one side and 10 on the other side.

The XNet-VIA bandwidth regulation makes sure that the incoming and outgoing traffic between the XT server and the XHub-VIA never exceeds 10Gbps.

As a result, for each uplink the total uplink bandwidth never exceeds the available 100Gbps (in both directions). In other words, the buffer of the incoming packets are not overflowing and we will never have packet drops on the XHub-VIA switch.

Use Case 2 - Star Topology with Bandwidth Limitation

The schema below differs slightly from the schema above. The uplink connection between the XHub-VIA in the center and the XHub-VIA in the red area has 11 XT-VIAs on one side, and 10 XT-VIAs on the other side. This uplink might become the bottleneck in a scenario where each of the 11 XT-VIAs in the red area is receiving a 10G transfer from a different other XT-VIA in the network. The total bandwidth required for the uplink may go up to 110G.

Use Case 3 - Chain Topology with Bandwidth Limitation

The schema below, the number of servers (34) is the same as the two cases above. The distribution of the XTs on the XHub-VIAs is the same as in the first use case. The uplink between the red and green area has 18 XT-VIAs on the one side and 16 on the other side. In a scenario where there are 16 independent transfers of each 10G, the uplink in the middle can become the bottleneck because it has to accommodate a total bandwidth of 160G.

Protection Switching

About Protection Switching

Protection switching (PRS) consist in linking 2 XHub-VIA switches with two 100G uplinks, namely a 'primary' and 'secondary' uplink.

By default, the primary uplink (or 'working path') is the link used to transfer the data. If this link breaks, the secondary uplink (or 'protection path') will be used instead. This is a fail-over mechanism.

The switch from the working path to the protection path is done in approximately 10ms.

It should be noted that the bandwidth remains 100G and only one path is used at a time.

Network Architectures

2 XHub-VIAs with Protection Switching

>2 XHub-VIAs with Protection Switching

Enabling and Configuring Protection Switching

The protection switching mechanism must be enabled and configured on each XHub-VIA.

See section "Managing Protection Switching Interfaces" on page 44.

4.2. Network

4.2.1. Impact on the IP Infrastructure

LIVE IP NETWORK INTERFACES

The 14 SFP interfaces have their own IP addresses. They are configured via the Multicam configuration pages (see XT-VIA configuration manual).

The QSFP interfaces of the XHub-VIA IP Aggregator do not have their own IP Address.

OUTBOUND STREAM

For the outbound stream, the multicast address configured in the Live IP interface will be used, together with the unicast address of the XT's SFP interface (SFP 1-C, 1-D, ...). All streams will leave on the first or second 100Gbps link, depending on whether they are configured on the C or D SFP.

INBOUND STREAM

For the inbound streams, they are received on the 100Gbps, and because of the static routing of the XHub-VIA IP Aggregator, the packets are forwarded only to the ports connected to receivers that have actually requested the streams through IGMP.

NMOS NODE / EMBER+

In the NMOS tree we will find under <IP-address:3000/x-nmos/node/v1.2/self/ the information about the server and its connected interfaces. In the "interfaces" section, we expose only the 2 QSFP interfaces of the XHUB-VIA IP Aggregator.

Each sender and receiver contains a link to one or both of these interfaces through the NMOS "interface_binding".

The SDPs exposed through NMOS and Ember+ are not impacted when using XHub-VIA. In particular, the source IP is the IP address of the sender's SFP interface.

4.2.2. VLANs

The XNet-VIA network is an EVS proprietary network. It consists several EVS video servers or other EVS hardware all connected with each other. 3rd party devices cannot be added to this network.

The XNet-VIA network can be considered as 1 big VLAN with no particular configuration or limitation.

4.3. Upgrading the XHub-VIA Software

Manual Procedure

Installation From an USB Key

To install a new software package on the XHub-Via switch using a USB key, proceed as follows:

1. Plug your USB key into one of the USB ports of the XHub-VIA switch.

The USB key will be automatically mounted.

- 2. Connect your computer directly to the 1GbE management port of the XHub-VIA switch.
- 3. Set up an SSH connection to the XHub-VIA switch.

The command line interface will open.

4. Enter the following command:

```
install fromUSB <package_name>
```

For example, install from USB xh5_update_package.bin

The installation package must be in the root of the USB key.

By default, the software is automatically upgraded and the switch is rebooted.

To prevent the switch from automatically rebooting, add the following option to your command: --no-reboot.

install --no-reboot fromUSB xh5_update_package.bin

You have 30 seconds before the switch reboots.

5. Enter the following command to safely remove your USB key:

unmountUSB

6. Unplug your USB key.

Installation from SFTP

To install a new software package on the XHub-VIA switch using SFTP, proceed as follows:

- 1. Set up an SFTP connection with the XHUB-VIA switch.
- 2. Open the $/\,{\tt tmp}$ folder and create an <code>install</code> folder.
- Transfer the installation package (xh5_update_package.bin) to the newly created /tmp/install folder.
- 4. Set up an SSH connection to the XHub-VIA switch.

The command line interface will open.

5. Enter the following command:

install fromFileSystem xh5_update_package.bin

By default, the software is automatically upgraded and the switch is rebooted.

To prevent the switch from automatically rebooting, add the following option to your command: --no-reboot.

install --no-reboot fromFileSystem xh5_update_package.bin

5. Software

5.1. Command Line Interface

NEW ! The XHub-VIA CLI (command line interface) allows you to manually configure and monitor the switch and to perform software upgrades.

5.2. Accessing the Command Line Interface in Standalone Mode (XNet-VIA)

Requirements

Make sure you know the management IP address of the XHUB-VIA switch and that your PC has network access to the management port. If not, please contact EVS support.

Basic Access

- 1. Open the SSH client on your PC.
- 2. Enter the following command:

```
ssh evs@192.168.1.1
```

 ${\tt evs}$ is the username of the default user.

192.168.1.1 is the default management IP address of the switch for the XNet-VIA use case. In case the default IP address was already modified, make sure to use the new address instead.

3. Press ENTER.

You will be prompted to enter your password.

4. Enter the following password:

xHub-Vla!

5. Press ENTER.

The command-line interface will open.

NOTE

Basic access means that you cannot exit the command-line interface and access the Linux operating system.

6. Configuration

6.1. Viewing the Software License Agreement

To view the XHub-VIA software license agreement, type the following command and then press **ENTER**:

show license

6.2. Viewing the XHub-VIA Version

To check the version of your XHub-VIA switch, proceed as follows:

- 1. Access the CLI of the switch.
- 2. Enter the following command:

show version

The following information is returned:

```
XHub Via Package - x.x.x.xx - dd/mm/yy
```

6.3. Entering Configuration Mode

1. From the root menu (<user>xhub#), start typing the following command:

configure

An autocomplete suggestion menu will appear. The menu item **Configure** is automatically selected.

2. Press ENTER to continue.

In Configuration Mode, the prompt will appear as follows:

```
<user>xhub (config)#
```

6.4. Configuring the Management IP Address

To manually configure the management IP address of the XHub-VIA switch, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and then press ENTER:

management

3. Enter the following command and then press ENTER:

address <IP_address>

You are informed that the management IP address is being changed.

```
Ip address change to <IP_address>|<subnet_mask>|<default_
gateway>
```

4. To check the newly configured management IP address, enter the following command:

show management

6.5. Configuring the Hostname

To manually configure the hostname of the XHub-VIA switch, proceed as follows:

- Enter Configuration Mode.
 See section "Entering Configuration Mode" on page 29.
- 2. Type the following command and then press ENTER: management
- 3. Enter the following command and then press ENTER:

hostname <hostname>

For example, hostname evsxhub

You are informed that the hostname is being changed.

Configuring hostname to <hostname>

4. To check the newly configured hostname, enter the following command: show management

6.6. Managing VLANs

6.6.1. Viewing the VLANs

Viewing the List of Configured VLANs

To view the list of configured VLANs, type the following command and then press **ENTER**:

show vlan

The VLANs appear with ID and assigned ethernet interfaces.

In the example below, 3 VLANs have been configured: 1, 10 and 20. Each VLAN has a number of ethernet interfaces assigned.

Vlan	Interfaces
1	eth17/1, eth18/1, eth19/1, eth20/1, eth21/1, eth22/1, eth23/1, eth24/1, eth25/1, eth26/1, eth27/1, eth28/1
10	eth1/1, eth2/1, eth29/1, eth3/1, eth4/1, eth5/1, eth6/1, eth7/1, eth8/1
20	eth10/1, eth11/1, eth12/1, eth13/1, eth14/1, eth15/1, eth16/1, eth30/1, eth9/1

Viewing the VLAN Properties

To view more detailed information about the VLANs, type one of the following command and then press **ENTER**:

show vlan -por show vlan --properties

The following more detailed information is displayed:

Vlan	UnknownUcCmd	UnregedIpv6McCmd	UnregedIpv4McCmd	Unr	egedNoIpMcCmd	Un	regedNoIpv4BcC	md Ur	regedIpv4BcCmd	UnknownMacSaCmd
1	Forward	Forward	Forward		Forward		Forward		Forward	Forward
10	Forward	Forward	DropSoft		Forward		Forward		Forward	Forward
20	Forward	Forward	DropSoft		Forward		Forward		Forward	Forward

6.6.2. Configuring VLANs

Adding a New VLAN

To add a new VLAN, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and then press ENTER:

```
config vlan <vlan id>
```


NOTE

The <vlan_id> has to be an integer between 1 and 4094.

The following can happen:

- If a VLAN already exists with that ID, no new VLAN will be created.
- If no VLAN exists yet with that ID, it will be automatically created. You will be informed that the creation was successful:

```
Configuring Vlan <vlan id>
```

Vlan <vlan id> created

You will enter the Configuration Mode of the existing or new VLAN. The command prompt will appear as follows:

```
<user>xhub (config-vlan<vlan id>)#
```

Assigning Ethernet Interfaces

See section "Assigning to and Removing Ethernet Interfaces from VLANs" on page 39.

Removing Ethernet Interfaces

See section "Assigning to and Removing Ethernet Interfaces from VLANs" on page 39.

6.6.3. Deleting VLANs

Deleting a Single VLAN

To delete a specific VLAN, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and press ENTER:

no vlan <vlan_id>

The following can happen:

If no VLAN exists with that ID, the following message will appear:

The vlan <vlan_id> does not exist.

• If a VLAN exists with that ID, you will be asked to confirm your action:

```
Are you sure you want to delete vlan <vlan_id>? [y/N]
```

3. Type Y and press ENTER.

You will be informed that the VLAN has been successfully deleted.

```
Vlan <vlan_id> deleted
```

Deleting Multiple VLANs

To delete multiple VLANs, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

- 2. Type one of the following commands and then press **ENTER**. To delete:
 - a range of VLANs, type no vlan <vlan_id>-<vlan_id>.

For example, no vlan 1-5 will delete the VLANs with IDs 1 to 5.

a selection of VLANs, type no vlan <vlan_id>, <vlan_id>.

For example, no vian 7,20,40 will delete the VLANs with IDs 7, 20 and 40.

o both a range and selection of VLANs, type no vlan <vlan_id>-<vlan_ id>, <vlan_id>, <vlan_id>.

For example, no vlan 1-4,10,30 will delete the VLANs with IDs 1 to 4 and the VLANs with IDs 10 and 30.

You will be asked to confirm your action:

```
Are you sure you want to delete vlan [<vlan_id>, <vlan_id>,
etc.]? [y/N]
```

3. Type Y and then press **ENTER**.

You will be informed that the VLANs have been successfully deleted.

Vlan [<vlan_id>, <vlan_id>, etc.] deleted

Deleting All VLANs

To delete all VLANs, proceed as follows:

- Enter Configuration Mode.
 See section "Entering Configuration Mode" on page 29.
- 2. Type the following command and then press ENTER:

clear vlan

You will be asked to confirm your action:

Are you sure you want to delete all vlans? $[\rm y/N]$

3. Type Y and then press **ENTER**.

You will be informed that the VLANs have been successfully deleted.

All vlans removed

6.7. Managing Ethernet Interfaces

6.7.1. Viewing the Ethernet Interfaces

Viewing the List of Configured Ethernet Interfaces

To view the properties of one or more ethernet interfaces, proceed as follows:

- Enter Configuration Mode.
 See section "Entering Configuration Mode" on page 29.
- 2. Type one of the following commands and then press **ENTER**.

To view:

- a specific ethernet interface, type show interface ethernet <ethernet_interface_id>.
- a range of ethernet interfaces, type show interface ethernet <ethernet interface id>-<ethernet interface id>.
- a selection of ethernet interfaces, type show interface ethernet <ethernet interface id>, <ethernet interface id>.
- a range and selection of ethernet interfaces, type show interface ethernet <ethernet_interface_id>-<ethernet_interface_ id>, <ethernet_interface_id>

The following information will be displayed of each ethernet interface:

- Interface: Identifier of the ethernet interface.
- Speed: Line speed.
- **Mode:** Interface mode of operation: one lane (KR), two lanes (KR2) or four lanes (KR4) of an electrical backplane.
- FEC: Type of Forward Error Correction: RS (Reed Solomon), FC (Fire Code), Disabled.
- **State:** Indicates the physical state of the ethernet interface: NotConfigured, InReset, LinkDown, InitIntProgress, LinkUp, MacLinkDown, Failure.
- **Failure:** Indicates possible failures at startup: NoFailure, SignalStabilityFailed, TrainingFailed, AligmentTimerExpired, ConfidenceIntervalTimerExpired, CreatePortFailed.
- **Physical used:** Indicates the number of physical ports used to make the logical port: 1, 2 or 4.
- **TxSpeed (B/s):** Transmit speed in bits per second.
- **RxSpeed (B/s):** Receive speed in bits per second.

The example below shows the properties of the ethernet interfaces eth17/1:

Interface	Speed	Mode	FEC	State	Failure	Physical used	TxSpeed (B/s)	RxSpeed (B/s)
eth17/1	S10G	KR	Unknown	LinkUp	NoFailure	1	0	0

Viewing the Ethernet Interface Counters

To view the packet counters of one or more ethernet interfaces, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type one of the following commands and then press **ENTER**.

To view the packet counters of:

- a specific ethernet interface, type show interface ethernet
 <ethernet_interface_id> -c.
- a range of ethernet interfaces, type show interface ethernet <ethernet_interface_id>-<ethernet_interface_id> -c.
- a selection of ethernet interfaces, type show interface ethernet
 <ethernet interface id>,<ethernet interface id> -c.
- a range and selection of ethernet interfaces, type show interface ethernet <ethernet_interface_id>-<ethernet_interface_ id>,<ethernet_interface_id> -c

The following counters will be displayed:

Counter name (Number of)	eth17/1	eth18/1
Good Bytes Received	0	0
Bad Bytes Received	0	0
Frame Not Transmitted	0	0
Good Packets Broadcast	0	0
Good Packets Multicast	0	0
Received Packets of 64 Bytes	0	0
Received Packets of 65 to 127 Bytes	0	0
Received Packets of 128 to 255 Bytes	0	0
Received Packets of 256 to 511 Bytes	0	0
Received Packets of 512 to 1023 Bytes	0	0
Received Packets of 1024 Bytes	0	0
Good Bytes Sent	0	0
Packets Drop Due To Collision	0	0
Good Multicast Packets Sent	0	0
Good Broadcast Packets Sent	0	0
Good Flow Control Frame Sent	0	0
Good Flow Control Frame Received	0	0
Internal Drop Packets BW	0	0
Packets Size Less 64 Bytes Received	0	0
Fragmented Packets Received	0	0
Oversized Packets Received	0	0
Jabber Packets Received	0	0
Received Error From Mac	0	0
Crc Error Events	0	0
Mac Collision	0	0
Late Mac Collision	0	0
Good Unicast Frame Received	0	0
Good Unicast Frame Sent	0	0
Valid Frame Sent Half Dup With Collision	0	0
Valid Frame Sent Half Dup With Out Collision	0	0
Good Packets 1024 to 1518 Bytes	0	0
Good Packets 1519 to MaxBytes	0	0

6.7.2. Configuring Ethernet Interfaces

Configuration Parameters

The following parameters can be configured for an ethernet interface:

- **Speed:** 10G, 12,5G, 20G, 25G, 40G, 50G, 100G
- Mode: KR, KR2, KR4
- Fec: Disabled, RS (Reed-Solomon), FC (Fire Code)

The following Speed-Mode Combinations are supported:

Speed Mode	10G	12,5G	20G	25G	40G	50G	100G
KR	ОК	OK	QSFP*	QSFP*	NOK	NOK	NOK
KR2	NOK	NOK	SFP**	SFP**	QSFP	QSFP	NOK
KR4	NOK	NOK	NOK	NOK	SFP**	SFP**	QSFP*

* Speed-mode combination only supported by the QSFP interfaces (25/1-30/4).

**Speed-mode combination also supported by the SFP interfaces (1-24).

Configuring a Single Ethernet Interface

To configure a specific ethernet interface, proceed as follows:

1. Type one of the following commands and then press **ENTER**.

To configure:

 speed, type configure interface ethernet <ethernet_interface_ id> --speed <value>.

For example, configure interface ethernet 1 --speed 10G will set the speed of ethernet interface 1 to 10G.

 mode, type configure interface ethernet <ethernet_interface_ id> --mode <value>.

For example, configure interface ethernet 1 --mode KR will set the mode of ethernet interface 1 to KR.

NOTE

The mode has to be set together with the speed in case the speed is > 12,5G.

 fec, type configure interface ethernet <ethernet_interface_ id> --fec <value>.

For example, configure interface ethernet 1 --mode FC will set the FEC of ethernet interface 1 to FC (Fire Code).

 all aforementioned parameters, type configure interface ethernet <ethernet_interface_id> --speed <value> --mode <value> -fec <value>.

You will be informed that the configuration was successful.

Setting <parameter> <value> on ethernet interface <ethernet_ interface id> in case you have configured a single parameter.

```
Setting <parameter> <value> on ethernet interface <ethernet_
interface_id> with <parameter> <value> in case you have configured
more parameters.
```

NOTE

If you want to reconfigure a configured ethernet interface, you need to delete it first. See section "Deleting Ethernet Interfaces" on page 41.

Configuring Multiple Ethernet Interfaces

To configure multiple ethernet interfaces, proceed as follows:

1. Type one of the following commands and then press **ENTER**.

To configure all parameters for:

- a range of ethernet interfaces, type configure interface ethernet
 <ethernet_interface_id>-<ethernet_interface_id> --speed
 <value> --mode <value> --fec <value>.
- a selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>,<ethernet_interface_id> --speed
 <value> --mode <value> --fec <value>.
- a range and selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>-<ethernet_interface_ id>,<ethernet_interface_id> --speed <value> --mode <value> --fec <value>.

Valid ranges are:

- 1-30/4: all SFP and QSFP interfaces
- 1-24: all SFP interfaces
- 25/1-30/4: all QSFP interfaces

If you provide an invalid range, the following error message will be displayed: Error: Invalid value for "<interface_id>": 'x' is not an available Ethernet Interface ID [1-24] or [25-30]/[1-4]

The following can happen:

 If you typed an invalid ethernet interface ID, for example 'blabla', the following message will appear:

```
Error: Invalid value for "<interface_id>": 'blabla' is not a valid Ethernet Interface ID.
```


• If you typed a valid ethernet interface ID, but no ethernet interface exists with that ID, the following message will appear:

The interface ethernet <ethernet_interface_id> does not exist.

• If the configuration was successful, the following message is displayed:

Setting <parameter> <value> on ethernet interface <ethernet_interface_id> in case you have configured a single parameter. Setting <parameter> <value> on ethernet interface <ethernet_interface_id> with <parameter> <value> in case you have configured more parameters.

6.7.3. Assigning to and Removing Ethernet Interfaces from VLANs

Assigning Ethernet Interfaces

To assign one or more ethernet interfaces, proceed as follows:

1. Enter the Configuration Mode of the ethernet interface(s).

To enter the Configuration Mode of:

- **a single ethernet interface, type** configure interface ethernet <ethernet_interface_id>.
- **a range of ethernet interfaces, type** configure interface ethernet <ethernet interface id>-<ethernet interface id>.
- a selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>, <ethernet_interface_id>.
- a range and selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>-<ethernet_interface_ id>,<ethernet_interface_id.
- 2. Type one of the following commands and then press ENTER:

To add the ethernet interface(s) to:

• **a single VLAN, type** add_to_vlan <vlan_id>.

For example, $add_to_vlan 10$ will add the ethernet interface(s) to the VLAN with ID 10.

• a range of VLANs, type add_to_vlan <vlan_id>-<vlan_id>.

For example, <code>add_to_vlan 1-4</code> will add the ethernet interface(s) to the VLANs with IDs 1 to 4.

o a range and selection of VLANs, type add_to_vlan <vlan_id>-<vlan_ id>, <vlan_id>.

For example, add_to_vlan 1-4, 10 will add the ethernet interface(s) to the VLANs with IDs 1 to 4 and to the VLAN with ID 10.

You will be informed that the VLANs have been successfully added.

```
Add interface ethernet ['<ethernet_interface_id>', '<ethernet_interface_id>', etc.] to Vlan <vlan_id>
```

Removing Ethernet Interfaces

To remove one or more ethernet interfaces, proceed as follows:

1. Enter the Configuration Mode of the ethernet interface(s).

To enter the Configuration Mode of:

- a single ethernet interface, type configure interface ethernet <ethernet_interface_id>.
- a range of ethernet interfaces, type configure interface ethernet <ethernet interface id>-<ethernet interface id>.
- a selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>, <ethernet_interface_id>.
- a range and selection of ethernet interfaces, type configure interface ethernet <ethernet_interface_id>-<ethernet_interface_ id>,<ethernet_interface_id.
- 2. Type one of the following commands and then press ENTER:

To remove the ethernet interface(s) from:

• **a single VLAN, type** remove_from_vlan <vlan_id>.

For example, remove_from_vlan 10 will remove the ethernet interface(s) from the VLAN with ID 10.

• a range of VLANs, type remove from vlan <vlan id>-<vlan id>.

For example, remove from vlan 1-4 will remove the ethernet interface(s) from the VLANs with IDs 1 to 4.

a range and selection of VLANs, type remove_from_vlan <vlan_id> <vlan id>, <vlan id>.

For example, remove_from_vlan 1-4, 10 will remove the ethernet interface (s) from the VLANs with IDs 1 to 4 and from the VLAN with ID 10.

You will be asked to confirm your action:

```
Are you sure you want to remove interface ethernet
[<ethernet_interface_id>,<ethernet_interface_id>, etc.] from
vlan [<vlan_id>, <vlan_id>,etc.]? [y/N]:
```

3. Type Y and then press ENTER.

You will be informed that the VLANs have been successfully deleted.

```
Interface ethernet [<ethernet_interface_id>,<ethernet_
interface_id>, etc.] removed
```

NOTE

If you try to remove an ethernet interface from a VLAN that does not exist, the following message will be displayed:

The current interface is not part of VLAN <id>

6.7.4. Deleting Ethernet Interfaces

Deleting a Single Ethernet Interface

To delete a specific ethernet interface, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and press ENTER:

no interface ethernet <ethernet interface id>

The following can happen:

 If you typed an invalid ethernet interface ID, for example 'blabla', the following message will appear:

```
Error: Invalid value for "<interface_id>": 'blabla' is not a valid Ethernet Interface ID.
```

 If you typed a valid ethernet interface ID, but no ethernet interface exists with that ID, the following message will appear:

The interface ethernet <ethernet_interface_id> does not exist.

 If you typed a valid ethernet interface ID, and an ethernet interface exists with that ID, you will be asked to confirm your action:

Are you sure you want to delete interface ethernet <ethernet_interface_id>? [y/N]

3. Type Y and press ENTER.

You will be informed that the ethernet interface has been successfully deleted.

Interface ethernet <ethernet interface id> deleted

NOTE

If you remove an existing ethernet interface, and it has been assigned to one or more VLANs, it will be automatically removed from those VLANs.

Deleting Multiple Ethernet Interfaces

To delete multiple ethernet interfaces, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

- 2. Type one of the following commands and then press **ENTER**. To delete:
 - a range of ethernet interfaces, type no interface ethernet <ethernet interface id>-<ethernet interface id>.

For example, no interface ethernet 1-4 will delete the SFP ethernet interfaces 1 to 4.

Valid ranges are:

- 1-30/4: all SFP and QSFP interfaces
- 1-24: all SFP interfaces
- 25/1-30/4: all QSFP interfaces

If you provide an invalid range, the following error message will be displayed: Error: Invalid value for "<interface id>": 'x' is not an available Ethernet Interface ID [1-24] or [25-30]/[1-4]

a selection of ethernet interfaces, type no interface ethernet 0 <ethernet interface id>,<ethernet interface id>.

For example, no interface ethernet 7,9,28/2 will delete the ethernet interfaces 7, 9 and 28/2.

both a range and selection of ethernet interfaces, type no interface ethernet <ethernet interface id>-<ethernet interface id>,<ethernet interface id>,<ethernet interface id>.

For example, no interface ethernet 25/1-30/4,14,18 will delete all the QSFP interfaces and the SFP interfaces 14 and 18.

You will be asked to confirm your action:

```
Are you sure you want to delete interface ethernet
[<ethernet interface id>, <ethernet interface id>, etc.]?
[y/N]
```

3. Type Y and then press ENTER.

You will be informed that the ethernet interfaces have been successfully deleted.

interface ethernet [<ethernet_interface_id>,<ethernet_</pre> interface id>, etc.] deleted

Deleting All Ethernet Interfaces

To delete all ethernet interfaces, proceed as follows:

- 1. Enter Configuration Mode.
- See section "Entering Configuration Mode" on page 29.
- 2. Type the following command and then press **ENTER**:

clear interface ethernet

You will be asked to confirm your action:

```
Are you sure you want to delete all interface ethernet? [y/N]
```

3. Type Y and then press **ENTER**.

You will be informed that the ethernet interfaces have been successfully deleted.

```
All ethernet interface removed
```

NOTE

If there are no ethernet interfaces, the following message will be displayed instead: 'There aren't any ethernet interfaces configured.'

6.8. Managing Protection Switching Interfaces

Viewing the List of Configured Protection Switching Interfaces

To view the list of configured protection switching interfaces, type one of the following command and then press **ENTER**.

To view:

- all protection switching interfaces, type show interface protectionswitching;
- a specific protection switching interface, type show interface protectionswitching <id>

The following information is displayed about each interface:

- Interface: Unique identifier of the interface.
- Status: Status of the primary or secondary uplink.
- Primary: Port number of the QSFP ports forming the primary uplink or working path.
- **Secondary:** Port number of the QSFP ports forming the secondary uplink or protection path.

The example below shows the properties of the protection switching interfaces prs1 and prs2:

Interface	Status	Primary	Secondary
prsl	IsOnWorkingPath	eth25/1	eth26/1
prs2	IsOnProtectionPath	eth29/1	eth30/1

Configuring Protection Switching Interfaces

To configure protection switching between two XHub-VIA switches, proceed as follows:

1. Type the following command and press **ENTER**:

```
configure interface protection_switching <id> <primary>
<secondary>
```

For example, configure interface protection_switching 1 25/1
26/1.

<id>refers to the unique identifier you want to assign to the protection switching. It must be an integer between 1 and 2999.

<primary> refers to the primary uplink or working path. It contains the port number
of the connected QSFP ports.

<secondary> refers to the secondary uplink or protection path. It contains the port number of the connected QSFP ports.

You will get a confirmation that the uplink has been successfully configured:

Configure protection switching prs1 with eth25/1 and eth26/1 Configuring interface protection switching 1

2. Type the following command and press ENTER:

```
add-to-vlan <vlan id>
```

For example, add-to-vlan 10

You will get a confirmation that the uplink has been successfully added to the VLAN.

Adding and Removing a Protection Switching Interface from a VLAN

Adding a Protection Switching Interface to a VLAN

To add an existing protection switching interface to a specific VLAN, proceed as follows:

1. Type the following command and press **ENTER**:

```
configure interface protection_switching <id>
```

2. Type the following command and press ENTER:

add-to-vlan <vlan_id>

You will get a confirmation that the uplink has been successfully added to the VLAN.

Removing a Protection Switching Interface from a VLAN

To remove an existing protection switching interface from a specific VLAN, proceed as follows:

1. Type the following command and press ENTER:

configure interface protection switching <id>

2. Type the following command and press ENTER:

remove-from-vlan <vlan id>

You will be asked to confirm your action:

```
Are you sure you want to delete interface protection
switching <interface_protection_switching_id> from vlan
<vlan id>? [y/N]
```

3. Type Y and press ENTER.

You will be informed that the protection switching interface has been successfully removed from the VLAN.

Deleting Protection Switching Interfaces

Deleting a Specific Interface

To delete a specific protection switching interface, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and press ENTER:

no interface protection switching <id>

The following can happen:

 If no protection switching interface exists with that ID, the following message will appear:

The interface protection_switching <id> does not exist.

 If a protection switching interface exists with that ID, you will be asked to confirm your action:

```
Are you sure you want to delete interface protection_ switching <id>? [y/N]
```

3. Type Y and press ENTER.

You will be informed that the protection switching interface has been successfully deleted.

Deleting all Interfaces

To delete all protection switching interfaces, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and then press ENTER:

clear interface protection switching

You will be asked to confirm your action:

```
Are you sure you want to delete all interface protection_ switching? [y/N]
```

3. Type Y and then press ENTER.

You will be informed that the protection switching interfaces have been successfully deleted.

All interface protection switching removed

6.9. Managing Routes

6.9.1. Viewing the Routes

To view all existing multicast routes, type the following command and press **ENTER**:

show route

The following information will be displayed about each route:

- Source IP address: IP address of the sender of the IP packets. If you do not specify a source IP address, or enter 0.0.0.0, the switch will forward all sources originating from the VLAN you defined.
- Destination IP address: IP multicast group address.
- VLAN: Identifier of the VLAN the IP packets originate from.
- Interfaces: Identifier of the ethernet interfaces that will forward the IP packets to the destination IP address.

Below you can see an example of a

From	То	Vlan	Interfaces
1.1.1.1	239.1.1.1	4	['eth1/1']

6.9.2. Configuring Routes

To configure a new multicast route, type the following command and then press ENTER: configure route <vlan id><source><destination><interfaces>

6.9.3. Deleting Routes

Deleting a Specific Route

To delete a specific multicast route, proceed as follows:

- Enter Configuration Mode.
 See section "Entering Configuration Mode" on page 29.
- 2. Type the following command and then press ENTER.

no route <vlan id> <source> <destination> <interfaces>
For example, no route 10 10.0.0.1 239.1.1.1 eth1.
You will be asked to confirm your action:

Are you sure you want to delete route? $[\,y/N\,]$

3. Type Y and then press **ENTER**.

You will be informed that the route has been successfully deleted.

Deleting Multiple Routes

To delete multiple multicast routes, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

- Type one of the following command and then press ENTER.
 To delete:
 - all routes with a specific source IP address, type no route -source=<source>.
 - all routes with a specific destination IP address, type no route -destination=<destination>.
 - all routes with a specific VLAN, type no route --VLAN=<vlan id>.
 - all routes with specific ethernet interfaces, type no route -interfaces=<interfaces>.

You will be asked to confirm your action:

Are you sure you want to delete route? $[\,y/N\,]$

3. Type Y and then press ENTER.

You will be informed that the routes have been successfully deleted.

Deleting All Routes

To delete all multicast routes, proceed as follows:

1. Enter Configuration Mode.

See section "Entering Configuration Mode" on page 29.

2. Type the following command and then press ENTER:

clear route

You will be asked to confirm your action:

Are you sure you want to delete all route? $[\,y/N\,]$

3. Type Y and then press **ENTER**.

You will be informed that the routes have been successfully deleted.

All route removed

6.10. Managing Configuration Files

6.10.1. About Configuration Files

What is a Configuration File?

A configuration file contains the parameters and values used to customize the functionality of the XHub-VIA switch.

It contains the configuration of the different ports, VLANs, interfaces and routes.

Multiple configuration files can be created and saved on the switch. Configuration files can be renamed, copied and deleted. See section "Renaming, Copying and Deleting Configuration Files" on page 51.

Types of Configuration Files

The **startup configuration file** (startup-config) is used during the system startup to configure the software.

The running configuration file contains the current configuration of the software.

The startup and running configuration file can be different.

The running configuration file can be modified and the changes can be saved to the same or to a different file. It can also be saved as startup configuration file. See section "Saving and Loading Configurations" on page 50.

Location of the Configuration Files

The configuration files are stored as JSON files on the disk of the switch in the /data/config/ folder.

Preconfigured Configuration Files

The XHub-VIA switch comes with 2 preconfigured configuration files:

- LivelP
- XNet-VIA

Depending on the context in which the XHub-VIA switch will be used, one or the other configuration file will be loaded by default at startup.

6.10.2. Viewing the Configuration Files

To view the list of available configuration files, type the following command and then press **ENTER**:

show config

Initially, only two configuration files will be available:

- LivelP
- XNet-VIA

6.10.3. Saving and Loading Configurations

Saving the Current Configuration

How to Save the Current Configuration to a File

To save the current configuration to a file, type the following command and press **ENTER**:

save <filename>

NOTE

- The filename cannot contain more than 248 characters.
- Every configuration with a filename that starts with the string "start" will be considered as startup configuration file.

You will be informed that the configuration has been successfully saved:

Configuration <filename> written to disk

The configuration will be saved as a JSON file in the /data/config folder on the switch.

NOTE

If you save a configuration to a file, and another configuration with the same filename already exists, you will be asked if you want to overwrite that configuration: Are you sure you want to overwrite existing '<filename>'

file with this configuration ? [y/N]

How to Save the Current Configuration as Startup Configuration

To save the current configuration as startup configuration, type one of the following commands and press **ENTER**:

- write
- save startup-config

You will be informed that the running configuration has been successfully saved as startup configuration:

Configuration running save as startup

The next time the switch is started, this configuration will be automatically loaded.

Loading a Configuration

To load a previously saved configuration, type the following command and press **ENTER**:

load <filename>

You will be informed that the configuration has been successfully loaded:

Configuration <filename> red from disk

The current running configuration is replaced with the newly loaded configuration.

6.10.4. Renaming, Copying and Deleting Configuration Files

Deleting Configuration Files

How to Delete a Configuration File

NOTE

You cannot delete the running configuration file.

To delete a previously saved configuration, proceed as follows:

1. Type the following command and press ENTER.

delete <filename>

You will be asked to confirm your action:

Are you sure you want to delete the '<filename>' configuration file? [y/N]:

2. Type Y and press ENTER.

You will be informed that the configuration file ha been successfully deleted. Configuration '<filename>' deleted from disk.

How to Remove the Startup Configuration

To remove the current startup configuration, proceed as follows:

1. Type the following command and press **ENTER**:

write erase

You will be asked to confirm your action:

```
Are you sure you want to erase the startup configuration? \ensuremath{\left[ y/N \right]} :
```

2. Type Y and press ENTER.

You will be informed that the startup-config is being erased and that the currently running configuration file is saved as startup configuration file.

Erasing startup configuration file. Configuration read from disk Configuration running save as startup

Renaming Configuration Files

To change the filename of an existing configuration file, type the following command: rename <old_filename> <new_filename> You will be informated that the configuration file has been successfully renamed.

```
Configuration '<filename2>' renamed on disk
```

Copying Configuration Files

To create a copy of an existing configuration file, type the following command: copy <filename> <filename2> You will be informated that the configuration file has been successfully copied. Configuration '<filename2>' copied on disk.

7. Monitoring

7.1. Extracting Logs

Extracting the Logs to the Local File System of Your Switch

To extract the logs to the local file system of your switch, proceed as follows:

- 1. Access the CLI of the switch.
- 2. Type the following command and then press ENTER.

extractLogs toFileSystem

The logs are extracted and stored in the /data/extractedLogs folder on the switch in the form of a tar.gz file with the following file name format: xhubLogs_cDateTime>.tar.gz.

NOTE

Each time you generate a new log file, the previous file is removed from the /data/extracedLogs folder.

Extracting the Logs to an USB Key

To extract the logs to an USB key, proceed as follows:

- 1. Plug your USB key in the USB port at the rear of the switch.
- 2. Access the CLI of the switch.
- 3. Type the following command and then press ENTER:

extractLogs toUSB

The logs are extracted and stored in the root folder of the USB key in the form of a tar.gz file with the following file name format: xhubLogs ClateTime>.tar.gz.

NOTE

If you forgot to plug in the USB key, the following message will be displayed: Extract logs Failed, No mounted usb stick

Corporate +32 4 361 7000

North & Latin America +1 973 575 7811

Asia & Pacific +852 2914 2501

Other regional offices www.evs.com/contact

EVS Broadcast Equipment is continuously adapting and improving its products in accordance with the ever changing requirements of the Broadcast Industry. The data contained herein is therefore subject to change without prior notice. Companies and product names are trademarks or registered trademarks of their respective companies.

EVS Headquarters Liège Science Park 13, rue Bois St Jean B-4102 Seraing

Belgium