

TABLE OF CONTENTS

1.	OVI	ERVIEW	1
2.	CAI	RD EDGE CONTROLS	2
	2.1.	DETERMINING CURRENT IP ADDRESS SETTINGS	2
	2.2.	RESTORING FACTORY DEFAULTS	2
	2.3.	CARD EDGE LEDS	2
3.	CO	NFIGURATION	3
	3.1.	CONFIGURATION STEPS	
	3.2.	DEBUG/MONITOR PORT CONNECTION	
	3.3.	MAIN MENU	
	3.4.	NETWORK CONFIGURATION	
	3.5.	SERIAL PORT SETUP	5
	3.5.	1. Parameters	5
	3.5.	2. Back Plate	6
	3.5.	3. RS-232 Wiring	7
	3.5.	4. RS-422 Wiring	8
	3.6.	SNMP SETUP	9
	3.7.	D-2800 PROTOCOL CONFIGURATION	9
	3.7.	1. Router Level	9
	3.7.		9
	3.7.		
	3.8.	UNDER MONITOR DISPLAY SETUP	10
4.	TRO	OUBLESHOOTING TIPS	11
	4.1.	VLPRO NOTES	11
	4.2.	CHECKING ROUTER COMMUNICATION	11
	4.3.	CHECKING UMD PEER COMMUNICATION	12
	4.4.	ROUTER POLLING	12
5.	PEF	RFORMING A FIRMWARE UPGRADE	13

,	5.1.	FTP1	13
į	5.2.	SERIAL1	13
Fiç	gures	4.4. T	
	Fig	ıre 1-1: Typical 7700PTX-D28 Setup ıre 2-1: PTX Card Edge	1
		ire 3-1: Upgrade Jumper	
		re 3-2: 'Connect To' Window	
	Fig	ıre 3-3: COM1 Properties	4
		ire 3-4: 7700PTX Back Plate	
		ıre 3-5: RS-232 Pins	
		ıre 3-6: RS-422 Pinsure 3-7: UMD Example	
		re 4-1: Communication States	
Та	bles		
		le 3-1: 7700PTX-D28 Main Menu	5
		le 3-2: Serial Port Parameters	
		le 3-3: RS-232 Wiring	
		le 3-4: RS-422 Wiring	

REVISION HISTORY

REVISION		<u>DESCRIPTION</u>	DATE
1.0	Preliminary		July 06
1.1	Corrections throughout		Feb 07
1.2	Standardized Format		Mar 07
1.3	Update card edge drawing		Nov 07

Information contained in this manual is believed to be accurate and reliable. However, Evertz assumes no responsibility for the use thereof nor for the rights of third parties, which may be effected in any way by the use thereof. Any representations in this document concerning performance of Evertz products are for informational use only and are not warranties of future performance, either express or implied. The only warranty offered by Evertz in relation to this product is the Evertz standard limited warranty, stated in the sales contract or order confirmation form.

Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the Evertz sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify Evertz Customer Service department. Evertz reserves the right, without notice or liability, to make changes in equipment design or specifications.

This page left intentionally blank

1. OVERVIEW

The 7700PTX-D28 is designed to communicate with a Datatek D2800 bi-directional router or router system for router control or monitoring. The 7700PTX-D28 can operate in either or both of two modes:

- 1. A control mode; VistaLINK_® Pro performs router cross-point switches.
- 2. A monitor mode; the 7700PTX-D28 retrieves the input label associated with a monitored output and sends that label to a UMD (Under Monitor Display). This permits the dynamic updates of labels associated with feeds on a monitor wall.

The 7700PTX-D28 is a network-controlled protocol translator that translates SNMP (Simple Network Management Protocol) application commands into Datatek D-2800 protocol packets. The translated packets are then transmitted to one of up to four D-2800 protocol-based routers. These routers are connected serially to the 7700PTX-D28.

Figure 1-1 shows a typical 7700PTX-D28 setup.

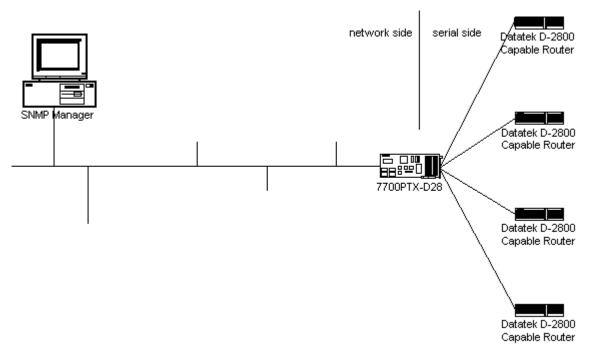


Figure 1-1: Typical 7700PTX-D28 Setup

When one Datatek router is designated as the control point for a multiple router system, the 7700PTX-D28 need only be connected to the controlling router.

2. CARD EDGE CONTROLS

2.1. DETERMINING CURRENT IP ADDRESS SETTINGS

To read the current IP address during normal operation, press the toggle switch DOWN. The IP address can be read on the four-character alphanumeric display.

2.2. RESTORING FACTORY DEFAULTS

To restore all settings to factory defaults, apply power to the card while holding the toggle switch UP until the green LED is illuminated.

2.3. CARD EDGE LEDS

LED 22 is illuminated when Ethernet activity is detected.

All other card edge LEDs are for factory use only.

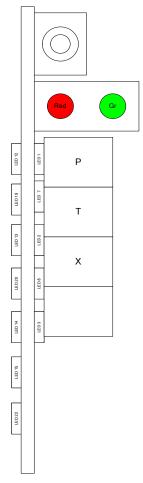


Figure 2-1: PTX Card Edge

3. CONFIGURATION

3.1. CONFIGURATION STEPS

Perform the following steps to configure the 7700PTX-D28:

- 1. Connect a PC running a console application to the PTX debug/monitor port via the adapter cable.
- 2. Configure the 7700PTX-D28's network parameters.
- 3. Configure the parameters of each serial port to match those of the router(s).
- 4. Configure which router levels the 7700PTX-D28 will control/monitor.
- 5. Configure UMD peers if required.
- 6. Power off the 7700PTX-D28.
- 7. Physically wire the serial port(s) of the 7700PTX-D28 to the router(s).
- 8. Power on the 7700PTX-D28.

3.2. DEBUG/MONITOR PORT CONNECTION

The 7700PTX-D28 is configured via the debug/monitor port, the header of which is labelled J1. A special Evertz adapter cable allows this port to connect to the COM port of a personal computer. The following steps describe this procedure.

- 1. Locate the small, keyed, four-pin end of the upgrade cable provided by Evertz.
- 2. Connect it to the four-pin interface (J1) near the front of the 7700PTX, directly above the card unlock latch.

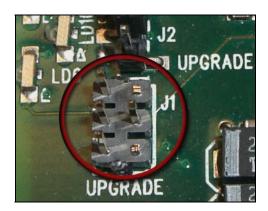


Figure 3-1: Upgrade Jumper

- 3. Connect the other end of the upgrade cable to a straight-through serial cable. Connect the serial cable to the serial or COM port of the computer.
- Initiate HyperTerminal on your computer by selecting: "Start\Programs\Accessories\Communications\HyperTerminal".
- 5. Enter a name for your connection, for example: PTX.
- 6. Press the <Enter> key. A new "Connect To" window opens.

Figure 3-2: 'Connect To' Window

- 7. Select COM1 for the "Connect using" setting. If COM1 is in use, choose an alternate COM port.
- 8. Press the <Enter> key or select OK. This opens the "COM Properties" window.

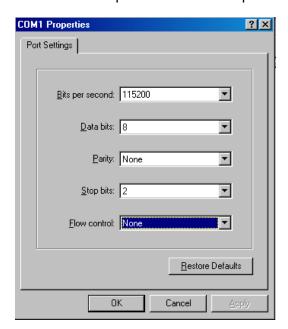


Figure 3-3: COM1 Properties

- 9. Enter the information as listed in the screen above.
- 10. Press the <Enter> key or select OK. The "COM Properties" window closes, leaving the HyperTerminal window open.
- 11. Apply power if the 7700PTX-D28 does not have power. The boot sequence and Main Menu are displayed in the HyperTerminal window.
- 12. If the 7700PTX-D28 has power, press the <Enter> key to view the 7700PTX-D28's menu system.
- 13. Various 7700PTX-D28 parameters are configurable via the 7700PTX-D28's menu system, the root of which is called *Main Menu*.

3.3. MAIN MENU

Table 3-1 lists the entries available in the 7700PTX-D28's Main Menu.

Entry	Item	Notes	
1	Network Configuration	IP address, subnet mask, gateway, etc.	
2	Serial Port Setup	Baud rate, number of data bits, etc. of serial ports which connect to Datat router(s)	
3	SNMP Setup	IP address of SNMP manager(s) to receive traps	
4	D-2800 Protocol Settings Setup	Settings specific to the D-2800 protocol	
5	Under Monitor Display Setup	IP address and TCP port of PPV to receive the description of the input associated with a particular output	
6 Engineering/Debug Used for troubleshooting		Used for troubleshooting	

Table 3-1: 7700PTX-D28 Main Menu

3.4. NETWORK CONFIGURATION

- 1. From the Main Menu select Network Configuration.
- 2. If DHCP (Dynamic Host Configuration Protocol) is desired, then the *Use DHCP* field is set to *True*. Otherwise, the IP address, subnet mask, and gateway (if any) are set and the *Use DHCP* field is set to *False*.
- 3. Once the network settings are configured, select *Save* and *Exit* before exiting *Network Configuration* to save the settings, otherwise select *Exit*.

The 7700PTX-D28 must be rebooted for any network setting changes to take effect.

3.5. SERIAL PORT SETUP

3.5.1. Parameters

The 7700PTX-D28 has 4 serial ports. The parameters associated with each serial port are listed in Table 3-2. Typically, port 1 of the Datatek router is set to RS-232, 38400 baud, 8 data bits, no parity, 1 stop bit, and port 2 is set to RS-232, 9600 baud, 8 data bits, no parity, 1 stop bit.

Paramete	Special Notes
r	
Baud Rate	
Data Bits	
Parity	
Stop Bits	
Standard	For serial port 4, only RS-232 is valid.

Table 3-2: Serial Port Parameters

The serial port settings of the 7700PTX-D28 must match those of the router(s). The 7700PTX-D28 must be rebooted for any serial parameter changes to take effect.

3.5.2. Back Plate

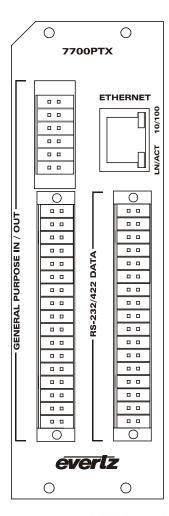


Figure 3-4: 7700PTX Back Plate

3.5.3. RS-232 Wiring

Figure 3-5 shows which pins of the back plate are used for RS-232 serial connections.

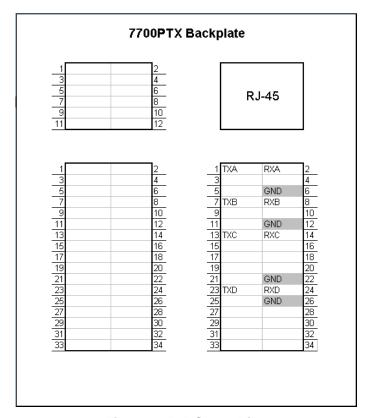


Figure 3-5: RS-232 Pins

Table 3-3 outlines how to connect the 7700PTX-D28 to the router for RS-232 operation.

	7700PTX-D28		Ro	outer
Port	Pin Name	Pin	Pin	Pin Name
1	TXA	1	8	RX
	RXA	2	2	TX
	GND	6	6	GND
2	TXB	7	8	RX
	RXB	8	2	TX
	GND	12	6	GND
3	TXC	13	8	RX
	RXC	14	2	TX
	GND	22	6	GND
4	TXD	23	8	RX
4	RXD	24	2	TX
	GND	26	6	GND

Table 3-3: RS-232 Wiring

3.5.4. RS-422 Wiring

Figure 3-6 shows which pins of the back plate are used for RS-422 serial connections.

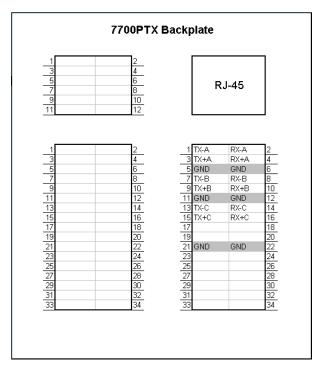


Figure 3-6: RS-422 Pins

Table 3-4 outlines how to connect the 7700PTX-D28 to the router for RS-422 operation.

	7700PTX-D28		R	outer
Port	Pin Name	Pin	Pin	Pin Name
1	TX-A	1	8	RX-
	TX+A	3	3	RX+
	RX-A	2	2	TX-
	RX+A	4	7	TX+
	GND	6	6	GND
2	TX-B	7	8	RX-
	TX+B	9	3	RX+
	RX-B	8	2	TX-
	RX+B	10	7	TX+
	GND	12	6	GND
3	TX-C	13	8	RX-
	TX+C	15	3	RX+
	RX-C	14	2	TX-
	RX+C	16	7	TX+
	GND	22	6	GND

Table 3-4: RS-422 Wiring

The 7700PTX-D28's fourth serial port is not RS-422 capable.

3.6. SNMP SETUP

Table 3-5 lists the parameters associated with the SNMP setup.

Parameter	Notes
Read-only community	Community string used for SNMP gets. The default is <i>public</i> .
Read-write	Community string used for SNMP gets or sets. The default is
community	private.

Table 3-5: SNMP Parameters

These parameters must match those of the SNMP manager. Changes to these parameters do not require a reboot of the 7700PTX-D28.

3.7. D-2800 PROTOCOL CONFIGURATION

Changes to any of these parameters do not require a reboot of the 7700PTX-D28.

3.7.1. Router Level

To set the router levels that the 7700PTX-D28 will control/monitor via serial port 1 follow the steps below:

- 1. From the Main Menu select D-2800 Protocol Settings Setup.
- 2. Select D-2800 Protocol Setup For Serial Port 1.
- 3. Select Set level.
- 4. Select the level. It is strongly recommended to leave the level as the default All levels.

3.7.2. Power On Reset Router Initialization

This parameter should be left as No.

3.7.3. Save & Exit

To save the D-2800 protocol configuration settings select *Save & Exit* prior to returning to the *Main Menu*.

3.8. UNDER MONITOR DISPLAY SETUP

The 7700PTX-D28 has the ability to transmit router source label information to the UMDs of up to 12 PPVs.

As an example, suppose we have the setup of Figure 3-7

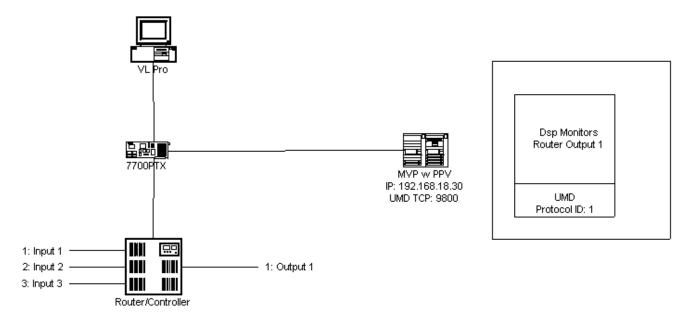


Figure 3-7: UMD Example

Where:

- A router has 3 inputs connected (labelled Input 1, Input 2, and Input 3) and 1 output (labelled Output 1)
- A 7700PTX-D28 monitors the router cross points
- An MVP contains a PPV with IP address 192.168.18.30
- The PPV is set to receive UMD data via the Image Video protocol over a TCP, with TCP port configured at 9800
- Protocol ID (PID) set to 1
- A PC running VistaLINK Pro configures the 7700PTX-D28 so that the UMD PID associated with router Output 1 matches the PID of the UMD (for example, 1)

The *Under Monitor Display Setup* menu allows the configuration of the IP address and TCP port of the PPV to receive router source label information. In keeping with the above example, the 7700PTX-D28 would be configured to have a peer 1 IP address of 192.168.18.30 and a TCP port of 9800. When router input 1 is on output 1, the UMD of the display should display INPUT 1. If the cross point is switched to input 3, the UMD should display INPUT 3.

The 7700PTX-D28 must be rebooted for any UMD peer changes to take effect.

4. TROUBLESHOOTING TIPS

4.1. VLPRO NOTES

- 1. The 7700PTX-D28 must be able to communicate with any connected routers in order for VLPro to operate properly.
- 2. The 7700PTX-D28 must be able to communicate with its configured UMD peers before UMD information can be transmitted.
- 3. VLPro must associate a UMD protocol ID with a router output in order for UMD information to be transmitted.

4.2. CHECKING ROUTER COMMUNICATION

- 1. From the Main Menu select Engineering/Debug.
- 2. Select Show task state.
- 3. There are four entries, one for each serial port, listed under the heading *Router protocol PCB state...* If the state associated with the serial port is reported as *ready* then the 7700PTX-D28 is actively communicating with the router on that port. If the state is consistently reported as *down* then the 7700PTX-D28 is unable to communicate with the router in which case the serial port settings or wiring should be checked.
- 4. Figure 4-1 shows the 7700PTX-D28 is able to communicate with a router connected to port 2.

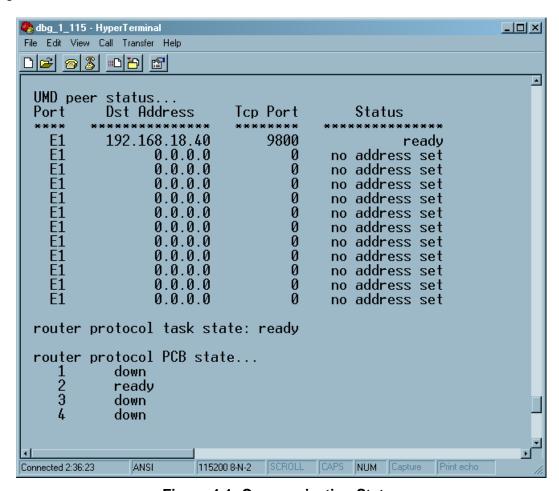


Figure 4-1: Communication States

4.3. CHECKING UMD PEER COMMUNICATION

- 1. From the Main Menu select Engineering/Debug.
- 2. Select Show task state.
- 3. There are up to 12 UMD peer entries listed under the heading UMD peer status... A status reported as ready indicates the 7700PTX-D28 is able to communicate with that UMD peer. A status consistently reported as something other than ready indicates the inability of the 7700PTX-D28 to communicate with that UMD peer. Be sure that the UMD peer has been rebooted after being configured to receive the Image Video over TCP.
- 4. Figure 4-1 shows that the 7700PTX-D28 is able to communicate with the UMD peer whose IP address is 192.168.18.40 and who is listening on TCP port 9800.

4.4. ROUTER POLLING

By default, the 7700PTX-D28 polls each router at two-second intervals. A poll consists of a Datatek D-2800 Change request packet. Polling detects changes in router cross points, and also determines the 7700PTX-D28-to-Datatek router connection status (active/inactive). A change in router status results in an SNMP trap being sent to any configured trap hosts.

This poll duration can be changed via the *Set Router Poll Status* entry of the *Engineering/Debug* menu. The time between polls can be set on a per-serial port basis. If 0 is selected as the time between polls, polling is disabled.

Once set, the router poll status setting takes effect immediately; no reboot is necessary. It is saved to flash and recalled should the 7700PTX-D28 be powered off, and then on.

5. PERFORMING A FIRMWARE UPGRADE

There are two ways to upgrade PTX firmware:

- 1. Using FTP to perform the upgrade via TCP/IP. (recommended procedure)
- 2. Using a terminal application such as *HyperTerminal* to perform the upgrade via a serial connection.

5.1. FTP

- 1. Open a command prompt window (in Windows: Start/Programs/Accessories/Command Prompt)
- 2. Enter the location of the firmware file. For example, type *cd c:\temp*.
- 3. Enter the command *ftp* followed by the PTX IP address. For example, type *ftp –A 192.168.18.22*.
- 4. Enter the FTP command put followed by the firmware file name. For example, put ptx.bin.
- 5. When the transfer is complete enter the FTP command: bye.
- 6. Step 5 begins the process of saving the firmware to the non-volatile flash of the PTX. The save process is displayed as a percentage on the PTX LCD. Once the process is complete, the PTX LCD again displays the product name and firmware version.
- 7. Power off the PTX.
- 8. Power on the PTX.

5.2. SERIAL

- 1. Power off the PTX.
- 2. Connect an adapter cable to a PC running a console or terminal application, such as Windows *HyperTerminal*, to the PTX debug/monitor port.
- 3. Configure the port settings of the terminal program as follows:

Baud	115200
Parity	no
Data bits	8
Stop bits	2
Flow Control	None

- 4. Set the PTX run/upgrade jumper to the upgrade position.
- 5. Power on the PTX.
- 6. After a few moments, the prompt PPCBOOT> will appear. Enter the command upload.
- 7. Start the firmware upload on the terminal application (for instance, in *HyperTerminal* select Transfer/Send File...), use Xmodem as the transfer protocol, and select the firmware file. For example, *ptx.bin*.
- 8. Once the upload is complete the message upload okay is displayed.
- 9. Power off the PTX.
- 10. Set the PTX run/upgrade jumper to the run position.
- 11. Remove the serial adapter cable.
- 12. Power on the PTX.

This page left intentionally blank