7730DAC-HD HDTV Digital to Analog Converter | 1. | OVERVIEW | 1 | |----|---|----| | 2. | INSTALLATION | 2 | | | 2.1. VIDEO IN AND OUT | 2 | | | 2.1.1. Video Output - BNC Rear Panel 2.1.2. Video Output - 15 Pin D Connector Rear Panel | | | | 2.2. AUX I/O | 4 | | | 2.2.1. Connecting the General Purpose Inputs | 4 | | 3. | SPECIFICATIONS | 5 | | | 3.1. VIDEO INPUT | 5 | | | 3.2. ANALOG VIDEO OUTPUTS | 5 | | | 3.3. INPUT TO OUTPUT PROCESSING DELAY | 5 | | | 3.4. GENERAL PURPOSE INPUTS | 6 | | | 3.5. ELECTRICAL | 6 | | 4. | STATUS LEDS | 6 | | | 4.1. MODULE STATUS LEDS | 6 | | 5. | CARD EDGE CONTROLS | 6 | | | 5.1. SELECTING THE OUTPUT SIGNAL FORMATS | 7 | | | 5.2. CONTROLLING THE ASPECT RATIO MARKERS | 8 | | | 5.3. ENABLING DUAL-LINK DATA INPUT | 8 | | 6. | JUMPERS | 9 | | | 6.1. SELECTING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL FRAME STATUS | 10 | | | 6.2. CONFIGURING THE MODULE FOR FIRMWARE UPGRADES | 10 | | | 6.3. PROVIDING POWER TO THE GENERAL PURPOSE INPUTS | 10 | ## 7700 MultiFrame Manual 7730DAC-HD HDTV Digital to Analog Converter ## **Figures** | Figure 1: 7730DAC-HD Block Diagram | | |--|---| | Figure 2: 7730DAC-HD Rear Panels | 2 | | Figure 3: GPI Input Circuitry | 5 | | Figure 4: Dual-link input data format (Y:Cb:Cr:A) | 9 | | Figure 5: Dual-link input data format (R:G:B:A) | 9 | | Figure 6: Location of Jumpers | | | Tables | 2 | | Table 1: Video I/O Pinout | | | Table 2: Audio and Aux I/O Pinout | | | Table 3: DIP Switch Functions | | | Table 4: Video Output Selection Switch Settings (Dual-link Disabled) | 7 | | Table 5: Minimum VGA Monitor Specifications | | | Table 6: 4:3 Marker Switch Settings | 8 | | Table 7: Dual-link DIP switch settings | | | Table 8: Video Output Selection Switch Settings (Dual-link Enabled) | | #### **REVISION HISTORY** | REVISION | <u>DESCRIPTION</u> | <u>DATE</u> | |----------|---|-------------| | 1.0 | Original Version | Mar 00 | | 1.1 | Minor typographical errors fixed 4:3 marker support marked as future | Mar 00 | | 1.2 | Model V-A changed to VA, new rear panel drawing Gender of Audio/Aux I/O connector changed | May 00 | | 1.3 | VGA Monitor Specifications added
Removed discontinued Audio Output option | July 00 | | 1.4 | Dual-link functionality added
Supported by software version 2.1 | Aug 00 | | 1.5 | Fixed description of Local Fault LED | Oct 00 | | 1.6 | Added more detail to video input specification | Jan 01 | | 1.6.1 | Remove Preliminary watermark | May 02 | | 1.7 | Added input to output delay specification | Jun 04 | Information contained in this manual is believed to be accurate and reliable. However, Evertz assumes no responsibility for the use thereof nor for the rights of third parties, which may be effected in any way by the use thereof. Any representations in this document concerning performance of Evertz products are for informational use only and are not warranties of future performance, either express or implied. The only warranty offered by Evertz in relation to this product is the Evertz standard limited warranty, stated in the sales contract or order confirmation form. Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the Evertz sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify Evertz Customer Service department. Evertz reserves the right, without notice or liability, to make changes in equipment design or specifications. #### 1. OVERVIEW The 7730DAC-HD is a professional quality digital to analog converter for HDTV. The 7730DAC-HD supports all signal standards specified in SMPTE 240M, SMPTE 274M and SMPTE 296M. The 7730DAC-HD is available in 2 different versions to meet a variety of applications. (See specifications for complete information) | Model | Video DAC
Outputs | GPIO | |--------------|----------------------|---------------| | 7730DAC-HD | 4 BNCs | | | 7730DAC-HD-V | 15 Pin VGA | 6 on 15 pin D | Card edge control allows the user to select between YPrPb, RGB or VGA style analog outputs with a variety of sync output options. User controlled 4:3 alignment markers also allow for convenient framing of the video signal. Dual-link 4:4:4:4 input format is supported when using two cards in parallel. With two different passive rear modules the 7730DAC-HD can easily interface to either standard broadcast monitors or VGA computer monitors. #### Features: - Support for all SMPTE 274 and 296M video formats - Full 10 Bit Broadcast quality - 4:4:4 interpolated component output - Card edge selectable YPrPb, RGB or VGA outputs with bi-level or tri-level sync - GPI controllable 4:3 alignment markers - Dual-link 4:4:4:4 input format supported with two cards (auto-timing to be implemented in the future) - BNC rear connector plates for use with standard broadcast monitors - 15 pin VGA connector plates for use with VGA computer monitors - Front panel LEDs indicate video presence, module faults Figure 1: 7730DAC-HD Block Diagram #### 2. INSTALLATION The 7730DAC-HD series modules come with a companion rear plate. For information on mounting the rear plate and inserting the module into the frame see the 7700FR chapter section 3. Figure 2: 7730DAC-HD Rear Panels #### 2.1. VIDEO IN AND OUT **HD INPUT** Input BNC connector for 10-bit serial digital video signals with embedded audio, compatible with the SMPTE 292M standard. The 7730DAC-HD automatically selects the video standard. #### 2.1.1. Video Output - BNC Rear Panel **ANALOG OUTPUT** There are three BNC connectors with Y, Pr, Pb or RGB outputs from the 7730DAC. These outputs can have either bi-level or tri-level sync superimposed. The output signals available are selected using DIP switches 1 to 4. (See Table 4) **SYNC OUTPUT** The SYNC output can be programmed for bi-level or tri-level HD sync depending on the settings of DIP switches 1 to 4. (See Table 4) ### 2.1.2. Video Output - 15 Pin D Connector Rear Panel #### **VIDEO** This female HD 15 pin D connector is compatible with standard VGA monitor connectors. The outputs can be programmed as standard VGA signals or Y, Pb, Pr or RGB outputs from the 7730DAC. These outputs can have either bi-level or tri-level sync superimposed. The output signals available are selected using DIP switches 1 to 4. (See Table 4) When the VGA mode is selected you can connect a standard VGA monitor using a straight through VGA Cable. When other modes are selected you can connect a standard broadcast monitor using the 15 pin D to BNC adapter cable provided with the module. | Pin# | Name | Description | |------|-------|---------------------| | 1 | R | Red | | 2 | G | Green | | 3 | В | Blue | | 4 | | Not connected | | 5 | | Not connected | | 6 | AGND | Video Analog Ground | | 7 | AGND | Video Analog Ground | | 8 | AGND | Video Analog Ground | | 9 | | Not connected | | 10 | AGND | Video Analog Ground | | 11 | | Not connected | | 12 | | Not connected | | 13 | Hsync | Horizontal Sync | | 14 | Vsync | Vertical Sync | | 15 | | Not connected | **Table 1: Video I/O Pinout** #### 2.2. AUX I/O The **AUX I/O** (7730DAC-HD-V) connector is used for general purpose Inputs. Table 2 shows the pinout of the male high density DB-15 connector. | Pin# | Name | Description | |------|------|--------------------------------------| | 1 | GPI4 | General Purpose Input 4 – future use | | 2 | Vext | External voltage for GPI's | | 3 | | | | 4 | | | | 5 | | | | 6 | GND | Ground | | 7 | GPI2 | General Purpose Input 2 – future use | | 8 | GPI3 | General Purpose Input 3 – future use | | 9 | | | | 10 | | | | 11 | GPI1 | 4:3 Marker enable/ disable | | 12 | | | | 13 | | | | 14 | | | | 15 | | | Table 2: Audio and Aux I/O Pinout #### 2.2.1. Connecting the General Purpose Inputs The GPI's are active low with internal pull up resistors (4.7k Ohms) to the Vext pin. By default the Vext pin is connected to +5V supplied from the module to provide power to the GPIO opto-isolator circuitry. In this configuration the user can activate GPIs simply by connecting the GPI input pins to Ground. This can be done with a button, switch, relay or an open collector transistor. Alternately, the user can disconnect the internal +5 volts and connect an external power source for the opto-isolator circuitry. See section 6.3 for information on configuring the Vext jumper. The externally supplied Vext voltage must be greater than the voltage supplied to GPI by at least 5v. Figure 3 shows the input circuit for the General purpose inputs. Figure 3: GPI Input Circuitry ### 3. SPECIFICATIONS #### 3.1. VIDEO INPUT Standard: 1.485 Gb/sec SMPTE 292M Standards supported are: SMPTE 240M (1035i) SMPTE 274M (1080i, 1080psF, 1080p [except 1080p/60 and 1080p/59.94] SMPTE 296M.(720p) **Connector:** 1 BNC per IEC 60169-8 Amendment 2. **Equalization:** Automatic 125m @ 1.5Gb/s (Belden 1694) #### 3.2. ANALOG VIDEO OUTPUTS Standard: SMPTE 240M, 274M, 296M – same as input **Connectors:** 7730DAC-HD: 4 BNC per IEC 60169-8 Amendment 2. 7730DAC-HD-V 15 pin high density female D type Signal Level: Video: 1Vpp nominal YPrPb/RGB or 0.7Vpp nominal VGA - Selectable as per Table 4 **Sync:** 300mV or 4V Impedance: 75 ohm DC Offset: $0V \pm 0.1V$ **Return Loss:** > 45 dB up to 30 MHz #### 3.3. INPUT TO OUTPUT PROCESSING DELAY Processing Delay: 800nsec # 7700 MultiFrame Manual 7730DAC-HD HDTV Digital to Analog Converter #### 3.4. GENERAL PURPOSE INPUTS Number of Inputs: 4 **Type:** Opto-isolated, active low with internal pull-ups to Vext pin. May be internally jumpered to +5V **Connector:** Male High Density DB-15 Signal Level: +5V nominal #### 3.5. ELECTRICAL **Voltage:** + 12VDC **Power:** 6 Watts. **EMI/RFI:** Complies with FCC regulations for class A devices. Complies with EU EMC directive. #### 4. STATUS LEDS #### 4.1. MODULE STATUS LEDS The location of the status LEDs is shown in Figure 6. **MODULE OK** This Green LED will be On when the module is operating properly. LOCAL FAULT This Red LED makes it easy to identify one module in a frame that is missing an essential input or has another fault. The LED will blink on and off if the microprocessor is not running. The LED will be on solid when input video is lost or there is a fault in the module power supply. SIGNAL PRESENT: This Green LED will be On when there is a valid HDTV video signal present at the module input. #### 5. CARD EDGE CONTROLS The 7730DAC-HD is equipped with an 8 position DIP switch to allow the user to select various output signals available formats. The On position is down, or closest to the printed circuit board. Table 3 gives an overview of the DIP switch functions. | DIP Switch | Function | |------------|-------------------------------| | 1 | | | 2 | Video Output signal select | | 3 | | | 4 | | | 5 | Aspect Ratio Marker enable | | 6 | Dual-link input format enable | | 7 | Not used | | 8 | Not used | **Table 3: DIP Switch Functions** #### 5.1. SELECTING THE OUTPUT SIGNAL FORMATS When the 7730DAC is operating in the single link 4:2:2 mode, (DIP switch 6 Off) DIP switches 1 to 4 are used to select the combination of output signals present on the video output connectors as shown in Table 4. When dual Link is enabled (DIP switch 6 On) DIP switches 1 to 4 are redefined as shown in Table 8. The VGA mode is only available on models equipped with the VGA style Video Output connector. When using the VGA output mode, the VGA monitor must have sufficient resolution and vertical resolution to display the input video. Table 5 shows the minimum requirements for each video format supported by the 7730DAC-HD. | DIP Switch* | | ch* Description | | Description Pr / R Y / G | | Pb / B | Sync | | |-------------|-----|-----------------|-----|--------------------------|---------------------|--------------------|---------------------|----------------| | 1 | 2 | 3 | 4 | | | | | | | Off | Off | Off | Off | YPrPb with Tri Level | Pr + Tri-level Sync | Y + Tri-level Sync | Pb + Tri-level Sync | Tri-level Sync | | On | Off | Off | Off | YPrPb with Bi Level | Pr + Bi-level Sync | Y + Bi-level Sync | Pb + Bi-level Sync | Bi-level Sync | | Off | On | Off | Off | RGB with Tri Level | R+ Tri-level Sync | G + Tri-level Sync | B + Tri-level Sync | Tri-level Sync | | On | On | Off | Off | RGB with Bi Level | R + Bi-level Sync | G + Bi-level Sync | B + Bi-level Sync | Bi-level Sync | | Off | Off | On | Off | RGB Tri Level on G | R | G + Tri-level Sync | В | Tri-level Sync | | On | Off | On | Off | RGB Bi Level on G | R | G + Bi-level Sync | В | Bi-level Sync | | Off | On | On | Off | VGA | R | G | В | H & V Sync | | On | On | On | Off | RGB Tri Level Ext. | R | G | В | Tri-level Sync | | Off | Off | Off | On | RGB Bi Level Ext. | R | G | В | Bi-level Sync | **Table 4: Video Output Selection Switch Settings (Dual-link Disabled)** | Video Format | Minimum
Horizontal
Resolution | Minimum
Vertical
Resolution | Minimum
Vertical Refresh
Rate | |--------------------|-------------------------------------|-----------------------------------|-------------------------------------| | 1080i/60 (59.94) | 1920 dots | 1080 lines | 60 (59.94) Hz | | 1080i/50 | 1920 dots | 1080 lines | 50 Hz | | 1080p/24sF (23.98) | 1920 dots | 1080 lines | 48 (47.97) Hz | | 1035i/60 (59.94) | 1920 dots | 1080 lines | 60 (59.94) Hz | | 720p/60 (59.94) | 1280 dots | 720 lines | 60 (59.94) Hz | **Table 5: Minimum VGA Monitor Specifications** ## 5.2. CONTROLLING THE ASPECT RATIO MARKERS DIP switch 5 controls whether the aspect ratio markers will be enabled. | DIP 5 | FUNCTION | DESCRIPTION | |-----------|-----------|--| | Off | Use GPI 1 | The markers will be On when the GPI 1 input is closed to ground. | | (default) | | | | On | On | The markers will be On all the time. | **Table 6: 4:3 Marker Switch Settings** #### 5.3. ENABLING DUAL-LINK DATA INPUT DIP switch 6 controls whether or not the 7730DAC-HD will interpret the input data stream as dual-link 4:4:4:4 formatted data, which allows for full bandwidth chroma. A single 7730DAC-HD module will only process two dual-link data channels; therefore, two 7730DAC-HD modules are necessary to process all four channels. | DIP 6 | FUNCTION | DESCRIPTION | |-----------|------------------------------------|---| | Off | Dual-link | Video data is processed as being 4:2:2 formatted. | | (default) | disabled | | | On | Dual-link
processing
enabled | Video data is processed as being two channels of dual-link 4:4:4:4 formatted video. | Table 7: Dual-link DIP switch settings When operating in dual-link mode, DIP switches 1 to 4 (see Table 8) are used to indicate the input colour space of the video data and the output sync format. In dual-link mode, the colour space converter on the 7730DAC-HD is always bypassed. DIP switches 1 to 4 should be set to identical values on both modules. | | DIP S | witch' | : | Description | Input Data | M | lodule A | A Outpu | t | Module B Output | | | | | | |-----|-------|--------|-----|-------------------------|-----------------|---------|----------|---------|---------|-----------------|------|---------|------|------|-----| | 1 | 2 | 3 | 4 | | Colour
space | Y/G | Pb/B | Pr/R | Sync | Y/G | Pb/B | Pr/R | Sync | | | | Off | Off | Off | Off | YPrPb
with Tri Level | YCbCr | Y + Tri | Pb - | + Tri | Tri | α + Tri | Pr + | Tri | Tri | | | | On | Off | Off | Off | YPrPb
with Bi Level | YCbCr | Y + Bi | Pb + Bi | | Pb + Bi | | Bi | α+ Bi | Pr + | · Bi | Bi | | Off | On | Off | Off | RGB
with Tri Level | RGB | G+ Tri | B+ Tri | | B+ Tri | | Tri | α + Tri | R + | Tri | Tri | | On | On | Off | Off | RGB
with Bi Level | RGB | G + Bi | B + Bi | | B + Bi | | Bi | α + Bi | R + | Bi | Bi | | Off | Off | On | Off | RGB
Tri Level on G | RGB | G | В | | Tri | α | F | 2 | Tri | | | | On | Off | On | Off | RGB
Bi Level on G | RGB | G | В | | Bi | α | F | } | Bi | | | | Off | On | On | Off | VGA | RGB | G | В | | H&V | α | F | } | H&V | | | | On | On | On | Off | RGB Tri Level
Ext. | RGB | G | В | | Tri | α | F | 1 | Tri | | | | Off | Off | Off | On | RGB Bi Level
Ext. | RGB | G | E | 3 | Bi | α | F | 1 | Bi | | | Table 8: Video Output Selection Switch Settings (Dual-link Enabled) Figure 4 shows the required input data format and timing when running two 7730DAC-HD modules in dual-link Y:Cb:Cr:A mode (YCbCr colour space). Figure 4: Dual-link input data format (Y:Cb:Cr:A) Figure 5 shows the required input data format and timing when running two 7730DAC-HD modules in dual-link G:B:R:A mode (RGB colour space). Figure 5: Dual-link input data format (R:G:B:A) ### 6. JUMPERS Figure 6: Location of Jumpers # 6.1. SELECTING WHETHER LOCAL FAULTS WILL BE MONITORED BY THE GLOBAL FRAME STATUS #### **FRAME STATUS** The FRAME STATUS jumper J22 located at the front of the module determines whether local faults (as shown by the Local Fault indicator) will be connected to the 7700FR frame's global status bus. To monitor faults on this module with the frame status indicators (on the PS FRAME STATUS LED's and on the Frame's Fault Tally output) install this jumper. (Default) When this jumper is removed, local faults on this module will not be monitored. For convenience you may re-install the jumper so that only one side is connected. #### 6.2. CONFIGURING THE MODULE FOR FIRMWARE UPGRADES #### **UPGRADE** The UPGRADE jumper J16 located at near the top of the module near the MODE jumper block is used when firmware upgrades are being done to the module. For normal operation it should be installed in the *RUN* position. See the *Upgrading Firmware* section of this manual for more information. To upgrade the firmware in the module unit pull it out of the frame. Move Jumper J16 into the *UPGRADE* position. Install the Upgrade cable provided (located in the vinyl pouch in the front of this manual) onto header J24 at the card edge. Re-install the module into the frame. Run the upgrade as described in the *Upgrading Firmware* section of this manual. Once the upgrade is completed, remove the module from the frame, move J16 into the *RUN* position, remove the upgrade cable and re-install the module. The module is now ready for normal operation. #### 6.3. PROVIDING POWER TO THE GENERAL PURPOSE INPUTS #### **VEXT** The GPIO jumper J81 is located at the top of the module approximately two thirds of the way to the back. When this jumper is installed in the +5V position (the two pins closest to the rear of the module) the GPI inputs will be pulled up to +5 volts. When the jumper is installed in the *VEXT* position (the two pins closest to the front of the module) the GPI inputs will be pulled up to a user supplied voltage connected to pin 2 of the AUX I/O connector. See section 2.2.1 of this manual for more information on connecting the GPI inputs.