HD9010-SIE HDTV Source ID Encoder Instruction Manual

© Copyright 2005, 2006

EVERTZ MICROSYSTEMS LTD.

5288 John Lucas Drive, Burlington, Ontario, Canada L7L 5Z9

Phone: 905-335-3700 Sales Fax: 905-335-3573 Support Fax: 905-335-0909

Internet: Sales: sales@evertz.com

Tech Support: service@evertz.com
Web Page: http://www.evertz.com

Version 1.2 July 2006

The material contained in this manual consists of information that is the property of Evertz Microsystems and is intended solely for the use of purchasers of the HD9010-SIE High Definition Source ID Encoder. Evertz Microsystems expressly prohibits the use of this manual for any purpose other than the operation of the device.

All rights reserved. No part of this publication may be reproduced without the express written permission of Evertz Microsystems Ltd. Copies of this guide can be ordered from your Evertz products dealer or from Evertz Microsystems.

IMPORTANT SAFETY INSTRUCTIONS

The lightning flash with arrowhead symbol within an equilateral triangle is intended to alert the user to the presence of uninsulated "Dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (Servicing) instructions in the literature accompanying the product.

- Read and keep these instructions
- Heed all warnings.
- Follow all instructions.
- Do not use this apparatus near water
- Clean only with dry cloth.
- Do not block any ventilation openings. Install in accordance with the manufacturer's instructions.
- Do not install near any heat sources such as radiators, heat registers, stoves, or other apparatus (including amplifiers) that produce heat.
- Do not defeat the safety purpose of the polarized or grounding-type plug. A polarized plug
 has two blades with one wider than other. A grounding-type plug has two blades and a third
 grounding prong. The wide blade or the third prong is provided for your safety. If the
 provided plug does not fit into your outlet, consult an electrician for replacement of the
 obsolete outlet.
- Protect the power cord from being walked on or pinched particularly at plugs, convenience receptacles and the point where they exit from the apparatus.
- Only use attachments/accessories specified by the manufacturer
- Unplug this apparatus during lightning storms or when unused for long periods of time.
- Refer all servicing to qualified service personnel. Servicing is required when the apparatus
 has been damaged in any way, such as power-supply cord or plug is damaged, liquid has
 been spilled or objects have fallen into the apparatus, the apparatus has been exposed to
 rain or moisture, does not operate normally, or has been dropped.

WARNING

TO REDUCE THE RISK OF FIRE OR ELECTRIC – SHOCK, DO NOT EXPOSE THIS APPARATUS TO RAIN OR MOSITURE"

WARNING

DO NOT EXPOSE THIS EQUIPMENT TO DRIPPING OR SPLASHING AND ENSURE THAT NO OBJECTS FILLED WITH LIQUIDS, SUCH AS VASES, ARE PLACED ON THE EQUIPMENT"

WARNING

TO COMPLETELY DISCONNECT THIS EQUIPMENT FROM THE AC MAINS, DISCONNECT THE POWER SUPPLY CORD PLUG FROM THE AC RECEPTACLE"

WARNING

THE MAINS PLUG OF THE POWER SUPPLY CORD SHALL REMAIN READILY OPERABLE"

INFORMATION TO USERS IN EUROPE

<u>NOTE</u>

This equipment with the CE marking complies with bother the EMC Directive (89/336/EEC) and the Low Voltage Directive (73/23/EEC) issued by the Commission of the European Community.

Compliance with these directives implies conformity to the following European standards:

- EN60065 Product Safety
- EN55103-1 Electromagnetic Interference Class A (Emission)
- EN55103-2 Electromagnetic Susceptibility (Immunity)

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to the European Union EMC directive. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

INFORMATION TO USERS IN THE U.S.A.

NOTE

FCC CLASS A DIGITAL DEVICE OR PERIPHERAL

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

<u>WARNING</u>

Changes or Modifications not expressly approved by Evertz Microsystems Ltd. could void the user's authority to operate the equipment.

Use of unshielded plugs or cables may cause radiation interference. Properly shielded interface cables with the shield connected to the chassis ground of the device must be used.

REVISION HISTORY

<u>REVISION</u>	<u>DESCRIPTION</u>	DATE
0.1	Preliminary Version	Aug 05
1.0	First release – added VCG DISABLE GPI input. Formatting changes	Oct 05
1.1	Corrected procedure for entering Source ID message	Oct 05
	Add description for Drop Frame Conversion mode, document changes to Preset Save and Preset Load functions Fix Typos in Special Indicators section Add note that unit required Video Input for normal operation	Jul 06

Information contained in this manual is believed to be accurate and reliable. However, Evertz assumes no responsibility for the use thereof nor for the rights of third parties, which may be effected in any way by the use thereof. Any representations in this document concerning performance of Evertz products are for informational use only and are not warranties of future performance, either express or implied. The only warranty offered by Evertz in relation to this product is the Evertz standard limited warranty, stated in the sales contract or order confirmation form.

Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the Evertz sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify Evertz Customer Service department. Evertz reserves the right, without notice or liability, to make changes in equipment design or specifications.

TABLE OF CONTENTS

1.	OVE	RVIEW	1-1
	1.1.	HOW TO USE THIS MANUAL	1-2
	1.2.	DEFINITIONS	1-3
2.	INST	TALLATION	2-1
	2.1.	REAR PANEL	
		2.1.1. Video Connections	
		2.1.2. Gen Lock Reference Connections	
		2.1.3. Linear Timecode	
		2.1.4. Parallel I/O Connections	
		2.1.6. Power Connections	
	2.2.	MOUNTING	2-3
	2.3.	POWER REQUIREMENTS	2-4
	2.4.	CONNECTING THE VIDEO	2-4
		2.4.1. High Definition Video Input	
		2.4.2. High Definition Video Output	2-4
	2.5.	CONNECTING THE LINEAR TIME CODE	2-5
		2.5.1. Connecting the Primary LTC Generator	
		2.5.2. Connecting the Primary LTC Reader	
	2.6.	CONNECTING THE AUXILLIARY TIME CODE	
		2.6.1. Connecting the Auxiliary LTC Generator	
		2.6.2. Connecting the Auxiliary LTC Reader	
	2.7.	CONNECTING TO A VTR RS-422 PORT	
		2.7.1. Passively listening to a VTR under Edit Control	
	20	CONNECTING TO A PROFILE RS-232 PORT	
	2.9.	CONNECTING THE HD9010-SIE TO A COMPUTER	
		2.9.1. Physical Connections	∠-0
3.	HOV	V TO OPERATE THE SOURCE ID ENCODER	3-1
	3.1.	AN OVERVIEW OF KEY AND DISPLAY FUNCTIONS	
		3.1.1. The Setup Menu Pushbutton Group	
		3.1.2. The Display Button Group	
		3.1.4. The Character Window Pushbutton Group	
		3.1.5. The Function Button Group	
		3.1.6. The Preset Button Group	3-3
		3.1.7. An Overview of the SHIFT Key functions	
		3.1.8. Shaft Encoder Knob	
		3.1.9. An Overview of the Status Indicators	3-5

3.2.	FRONT PANEL DISPLAY FUNCTIONS	3-6
	3.2.1. Front Panel Displays	
	3.2.2. Special Front Panel Indicators	3-6
3.3.	PROGRAMMING A SOURCE ID MESSAGE INTO THE ENCODER	3-6
0.0.	3.3.1. Source ID Data Entry Mode	
3.4.	AN OVERVIEW OF THE SETUP MENU SYSTEM	
2 5	CONFIGURING THE GENERATOR	2 2
ა.ა.	3.5.1. Configuring the Generator Mode	
	3.5.2. Setting the Generator Time	
	3.5.3. Turning the ATC Generator On	
	3.5.4. Setting the ATC Packet Type	
	3.5.5. Selecting the Line to Insert VANC Packets On.	3-4
	3.5.6. Selecting the Generator Drop Frame Mode	
	(29.97 and 59.94 FPS video standards only)	3-5
	3.5.6.1. Conversion Between Drop Frame and Non Drop Frame Counting Modes	3-6
	3.5.7. Generator LTC Parity Mode Selection	
	3.5.8. Configuring how the RDR SID and RDR LVS Modes Works	
	when there is no Primary reader Code	3-2
3.6.	CONFIGURING THE READERS	3-3
0.0.	3.6.1. Setting the Primary reader	
	3.6.2. Setting the ATC Reader Packet Type.	
	3.6.3. Selecting the Format of the ATC Reader Time and User Bit Data	
	3.6.4. Selecting the Format of the LTC Reader Time and User Bit Data	
	3.6.5. Selecting the Format of the Auxiliary LTC Reader Time and User Bit Data	3-4
3.7.	CONFIGURING THE CHARACTER GENERATOR FUNCTIONS	3-5
	3.7.1. Selecting the Character Style	
	3.7.2. Selecting whether the Frames, Fields and Symbols will be displayed on the VCG	3-6
	3.7.3. Selecting and Positioning the Individual Character Inserter Windows	3-6
	3.7.4. Positioning the Overall Character Display	
	3.7.5. Special VCG Indicators	3-7
3.8	GENERAL CONFIGURATION ITEMS	3-7
0.0.	3.8.1. Selecting the Video Standard	_
	3.8.2. Selecting the Generator Framing Reference	
	3.8.3. Adjusting the Output Level of the LTC Generators	
	3.8.4. Adjusting the Baud Rate of the Serial Ports	3-9
	3.8.5. Selecting Active or Passive VTR Communications on the AUXCOM Port	3-9
	3.8.6. Turning off the HDSDI Characters When The Program Source is 'ON AIR'	3-10
	3.8.7. Setting the LVS address	
	3.8.8. Working with System Parameters	
	3.8.9. Viewing the Firmware Version	
	3.8.10. Upgrading the Firmware	
	3.8.11. Resetting the HD9010-SIE to its Factory Defaults	
3.9.	CONFIGURING THE GENERAL PURPOSE INPUTS AND OUTPUTS	3-11

4. S	SERIAL REMOTE CONTROL PROTOCOL	4-1
	4.1.1. Data Format	4-1 4-2 4-3 4-3 4-4 4-4 4-4
	4.2.3. Command Processing	
5. T	ECHNICAL DESCRIPTION	5-1
5.	5.1. SPECIFICATIONS 5.1.1. HDTV Serial Digital Video Input 5.1.2. HDTV Serial Digital Video Outputs 5.1.3. Reference Input 5.1.4. LTC Generators 5.1.5. LTC Readers 5.1.6. Serial Ports 5.1.7. Physical 5.1.8. Electrical	5-1 5-1 5-1 5-1 5-2 5-2
	5.2.1. Overview	5-2 5-3 5-3 5-3 5-4 5-5 5-5
Fi Fi Fi	5.3.2. Changing DIP Switch Settings ss igure 1-1: HD9010-SIE Block Diagram igure 2-1: HD9010-SIE Rear Panel igure 2-2: Connection of HD9010-SIE in Eavesdropping Mode igure 3-1: HD9010-SIE Front Panel Layout igure 3-2: Overview of the Setup Menu	1-2 2-1 2-7 3-1

Tables	
Table 2-1: Parallel I/O Connector Pin Definitions	2-2
Table 2-2: COM1 Pin Definitions	
Table 2-3: AUX COM Pin Definitions - RS-422 Controller Configuration	2-3
Table 2-4: High Definition Video Input Formats	
Table 2-5: RS-422 Eavesdrop Cable	2-7
Table 2-6: RS-422 Straight Through Cable	
Table 3-1: Top Level of the Generator Setup Menu	3-2
Table 3-2: Top Level of the Generator Setup Menu	3-3
Table 3-3: Top Level of the VCG Setup Menu	
Table 3-4: Top Level of the Utility Setup Menu	3-7
Table 3-5: Parallel I/O Connector Pin Definitions	
Table 4-1: VTR Commands and their Valid Responses	4-3
Table 4-2: Interpretation of Messages in LVS Mode	4-5
Table 5-1: DIP Switch Functions	5-6

CHAPTER 1 TABLE OF CONTENTS

1.	OVERVIEW	1-1
	1.1. HOW TO USE THIS MANUAL	1-2
	1.2. DEFINITIONS	1-3
Fig	ures Figure 1-1: HD9010-SIE Block Diagram	1-2

This page left intentionally blank

1. OVERVIEW

The HD9010-SIE HDTV Source ID Encoder provides a cost-effective method of inserting timecode, source ID and machine status information into the high definition digital video. The HD9010-SIE uses RP188 Ancillary Time Code (ATC) to encode the source ID information into the video. The HD9010-SIE is a combination dual generator/ dual reader for Linear Time Code (LTC) and RP188 Ancillary Time Code (ATC), and contains a high resolution character inserter which can be burn the generator or reader numbers and source ID directly into the serial digital program output.

The HD9010-SIE operates in one of four modes. In VTR mode, it is designed to listen to communications between a VTR and its controller, and take time code and machine status. In LVS mode, the HD9010-SIE is designed to interface to a Profile Disk recorder running the LVS software. The serial port of the LVS device sends recorder status, scene and control information to the HD9010-SIE. In RDR mode, the HD9010-SIE takes time from its LTC or VITC reader and in GEN mode it allows the user to preset a time into the time code generator. In all modes, the source ID name is programmed from the front panel of the HD9010-SIE and encoded into the user bits.

The HD9010-SIE will accept SMPTE 292M (1.5 Gb/s) high definition serial digital video. The HD9010-SIE generators can be slaved to incoming LTC or ATC or can be set to free run. The generators may also be momentarily synchronized to one of the readers, and then it continues to increment normally regardless of the reader code. The second LTC output normally follows the primary output, however the two generators can be operated at different frame rates to supply both 24Fps and 30Fps time code when shooting in a 1080p/24 environment.

The high-resolution character inserter provides independently positionable windows to show time, source ID, status, LVS info and control information on the program output. The choice of white or black characters with or without contrasting background mask is selected from the front panel menu.

Features:

- Video formats supported: 1080i/60, 1080i/50, 1080p/30sF, 1080p/25sF, 1080p/24sF, 1035i/60, 720p/60, 720p/50 and the 1/1.001 divisor versions where applicable.
- Embeds source ID information into RP188 LTC and VITC ancillary time code packets on output video.
- Read line auto detected, insertion line for RP188 programmable
- Two LTC readers and two LTC generators operate at 24, 25 or 30 Fps nominal rate in accordance with SMPTE 12M specification.
- Genlocks to NTSC/PAL colour black or HD Tri-level sync
- Character Inserter displays timecode, source ID and VTR status in the picture. Windows can be
 positioned and turned off and on independently
- White or black characters on contrasting background,
- Serial interface reads status LVS info and CTL information from the Profile in LVS mode and Timecode and VTR status from a Sony protocol VTR in VTR mode
- LTC and ATC Time Code reader to supply time code in RDR modes
- Front panel display and control using menu system
- Optional: dual power supply configuration
- Parallel GPI/O and serial remote control
- Field upgradeable firmware as new features become available
- Optional input relay bypass for power failure bypass protection

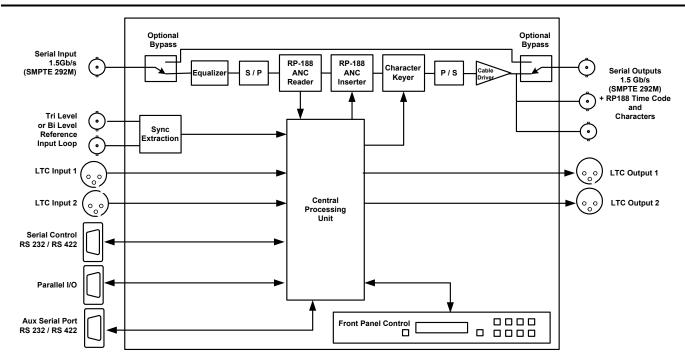


Figure 1-1: HD9010-SIE Block Diagram

1.1. HOW TO USE THIS MANUAL

This manual is organised into 5 chapters: Overview, Installation, Calibration, System Parameters, and Technical Description. The overview section contains a brief overview of the HD9010-SIE operation and a glossary to define concepts and terms used throughout the remainder of the manual. We highly recommend taking the time to become familiar with the terms and concepts described here before proceeding into the rest of the manual.

Chapter 2 gives a detailed description of the rear panel connectors, and how the HD9010-SIE should be connected into your system.

Chapter 3 shows how to calibrate the system timing and verify that the HD9010-SIE is accurately numbering the film and video frames.

Chapter 4 gives a discussion of how the default operation of the HD9010-SIE can be changed using System Parameters. The system parameters can affect the system timing through the Afterburner, placement of characters on the raster, 2:3 cadence control, functions of parallel inputs and outputs to name a few.

Chapter 5 gives technical information such as the specifications and how to update the firmware in the HD9010-SIE.

This symbol is intended to alert the user to important operating instructions.

The exclamation point within an equi-lateral triangle is intended to alert the user to the presence of important safety related operating and maintenance (Servicing) instructions in this manual.

1.2. **DEFINITIONS**

- **24p:** A progressively scanned high definition video format with 1920 pixels and 1080 lines. (See also description sF.)
- 4:2:2 The sampling ratio used in the HDTV digital video signal. For every 4 samples of luminance there are 2 samples each of R-Y (Red minus Luminance) and B-Y (Blue minus luminance).
- **4:4:4** A sampling ratio that has equal amounts of the luminance and both chrominance channels.
- A wide screen television format such as HDTV in which the aspect ratio of the screen is 16 units wide by 9 high as opposed to the 4x3 of normal TV.
- **AES/EBU**: (Sometimes abbreviated as AES) Refers to the digital audio standard (AES3-1992) set by the Audio Engineering Society and European Broadcast Union and used by most forms of digital audio from CDs to professional digital video.
- **Aspect Ratio**: The ratio of width to height in a picture. Theatre screens generally have an aspect ratio of 1.85 to 1, widescreen TV (16x9) is 1.77 to 1, and normal TV (4x3) is 1.33 to 1.
- **CCIR (International Radio Consultative Committee)** An international standards committee. (This organisation is now known as ITU.)

CCIR-601: See ITU-R601.

- Cliff effect: (also referred to as the 'digital cliff') This is a phenomenon found in digital video systems that describes the sudden deterioration of picture quality when due to excessive bit errors, often caused by excessive cable lengths. The digital signal will be perfect even though one of its signal parameters is approaching or passing the specified limits. At a given moment however, the parameter will reach a point where the data can no longer be interpreted correctly, and the picture will be totally unrecognisable.
- **Component analog:** The non-encoded output of a camera, video tape recorder, etc., consisting of the three primary colour signals: red, green, and blue (RGB) that together convey all necessary picture information. In some component video formats these three components have been translated into a luminance signal and two colour difference signals, for example Y, B-Y, R-Y.
- **Component digital:** A digital representation of a component analog signal set, most often Y, B-Y, R-Y. The encoding parameters are specified by ITU-R709 for HDTV signals. SMPTE 274M and SMPTE 296M specify the parallel interface.
- **Composite analog:** An encoded video signal such as NTSC or PAL video that includes horizontal and vertical synchronizing information.

Composite digital: A digitally encoded video signal, such as NTSC or PAL video that includes horizontal and vertical synchronizing information.

D1: A component digital video recording format that uses data conforming to the ITU-R601 standard. Records on 19 mm magnetic tape. (Often used incorrectly to refer to component digital video.)

D2: A composite digital video recording format that uses data conforming to SMPTE 244M. Records on 19 mm magnetic tape. (Often used incorrectly to refer to composite digital video.)

D3: A composite digital video recording format that uses data conforming to SMPTE 244M. Records on 1/2" magnetic tape.

D5: A component digital video recording format that uses data conforming to the ITU-R601 standard. Records on 1/2" magnetic tape.

HD-D5: A component digital video recording format that uses data conforming to the ITU-R709 standard. Records on 1/2" magnetic tape.

Drop frame: In NTSC systems, where the frame rate is 29.97002618 frames per second, the drop frame mode permits time of day indexing of the frame numbers by dropping certain frame numbers. Specifically, frames 0, and 1 at the beginning of each minute except minutes 0,10,20,30,40, & 50, are omitted, to compensate for an approximate timing error of 108 frames (3 seconds 18 frames) per hour. A flag bit is set in the time code to signal when the drop frame mode is in effect.

EBU (European Broadcasting Union): An organisation of European broadcasters that among other activities provides technical recommendations for the 625/50 line television systems.

Embedded audio: Digital audio is multiplexed onto a serial digital video data stream.

Gen lock: In order to derive the 6 Hz relationship between 23.98 Fps and 29.97 Fps frame boundaries, and to ensure that the timecode to 6 Hz relationship is fixed, an NTSC colour black video reference must be supplied to the HDHD9010-SIE Film Footage Encoder. Normally, the gen lock signal is the colour black system reference to which the 24p tri-level sync generator is gen locked. The gen lock reference is only necessary when the system video type is 1080p/23.98sF.

ITU: The United Nations regulatory body governing all forms of communications. ITU-R (previously CCIR) regulates the radio frequency spectrum, while ITU-T (previously CCITT) deals with the telecommunications standards.

ITU-R601: An international standard for standard definition component digital television from which was derived SMPTE 125M and EBU 3246-E standards. ITU-R601 defines the sampling systems, matrix values and filter characteristics for both Y, B-Y, R-Y and RGB component digital television signals.

ITU-R709: An international standard for High definition component digital television from which was derived SMPTE 274M and SMPTE 296M standards. ITU-R709 defines the sampling systems, matrix values and filter characteristics for both Y, B-Y, R-Y and RGB component digital television signals.

OVERVIEW Revision 1.2 Page 1-4

Jam sync:Refers to the operation of slaving the generator to data coming from the reader. Jam sync should be used when dubbing time code from one tape to another, as the quality of the time code signal deteriorates with each generation, and will become unusable after the third generation.

In the jam sync mode, the generator and reader times are compared with each other during each frame, automatically compensating for the decoding offsets. If for any reason they are not equal, the jam is bypassed, and the generator substitutes the next frame number. If the number of consecutive jam bypass errors exceeds 5, the last valid reader time is jammed into the generator again. In the absence of valid reader data within the last 5 frames, the generator continues to increment normally until valid reader code resumes. At this time it will be rejammed to the reader, thus repairing large dropouts on the reader tape.

Letterbox:Placing a wide screen image on a conventional TV by placing black bands at the top and bottom of the screen.

Linear time code: (Also known as Longitudinal Time Code) A digital code used for timing and control purposes on videotape and associated audio tape machines. It is recorded on a linear track with audio characteristics and is referred to as LTC. Each 80 bit code word is associated with one television frame, and consists of 26 time bits, 6 flag bits, 32 user bits and 16 sync bits. This time code may run at 24, 25 or 30 frames per second depending on the video format. See also SMPTE 12M

LTC: See Linear Time Code

NTSC: National Television Standards Committee established the television and video standard in use in the United States, Canada, Japan and several other countries. NTSC video consists of 525 horizontal lines at a field rate of approximately 60 fields per second. (Two fields equals one complete Frame). Only 487 of these lines are used for picture. The rest are used for sync or extra information such as VITC and Closed Captioning.

Phase Alternating Line. The television and video standard in use in most of Europe. Consists of 625 horizontal lines at a field rate of 50 fields per second. (Two fields equals one complete Frame). Only 576 of these lines are used for picture. The rest are used for sync or extra information such as VITC and Teletext.

Pixel: The smallest distinguishable and resolvable area in a video image. A single point on the screen. In digital video, a single sample of the picture. Derived from the words *picture element*.

Serial digital: Digital information that is transmitted in serial form. Often used informally to refer to serial digital television signals.

SMPTE (Society of Motion Picture and Television Engineers): A professional organisation that recommends standards for the film and television industries.

SMPTE 12M: The SMPTE standard for Time and address code. SMPTE 12M defines the parameters required for both linear and vertical interval time codes.

SMPTE 274M: The SMPTE standard for bit parallel digital interface for high definition component video signals with an active picture of 1080 lines x 1920 pixels.

SMPTE 291M: The SMPTE standard for encoding ancillary data packets in serial digital video signals.

SMPTE 292M: The SMPTE standard for high definition serial digital component interfaces.

SMPTE 296M: The SMPTE standard for bit parallel digital interface for high definition component video signals with an active picture of 720 lines x 1280 pixels.

SMPTE 299M: The SMPTE standard for embedding audio in serial digital high definition (SMPTE 292M) video signals.

SMPTE RP188: The SMPTE recommended practice for embedding SMPTE 12M timecode into ancillary data packets in serial digital video signals.

sF: (Also known as *segmented frame*) The picture is progressively scanned, however divided into two *segments*, containing the odd and even lines. The segments are then sent out the serial digital interface in the same way that the fields of an interlaced video signal are. This format is often used at nominal frame rates of 24, 25 or 30 frames per second.

TRS: Timing reference signals used in composite digital systems. (It is four words long).

TRS-ID: Abbreviation for "Timing Reference Signal Identification". A reference signal used to maintain timing in composite digital systems. (It is four words long.)

User bits: 32 bits in the time code are user assignable. They typically are used to contain reel numbers, scene and take numbers, or other user-oriented data.

OVERVIEW Revision 1.2 Page 1-6

CHAPTER 2 TABLE OF CONTENTS

2.	INS	TALLATION	2-′
	2.1.	REAR PANEL 2.1.1. Video Connections 2.1.2. Gen Lock Reference Connections 2.1.3. Linear Timecode 2.1.4. Parallel I/O Connections 2.1.5. Serial I/O Connections 2.1.6. Power Connections	2-2 2-2 2-2 2-2
	2.2.	MOUNTING	2-3
	2.3.	POWER REQUIREMENTS	2-4
	2.4.	2.4.1. High Definition Video Input	2-4
	2.5.	2.5.1. Connecting the Primary LTC Generator	2-
	2.6.	2.6.1. Connecting the Auxiliary LTC Generator	2-6
	2.7.	2.7.1. Passively listening to a VTR under Edit Control	2-6
	2.8.	CONNECTING TO A PROFILE RS-232 PORT	2-8
	2.9.	CONNECTING THE HD9010-SIE TO A COMPUTER	
	Figui	re 2-1: HD9010-SIE Rear Panelre 2-2: Connection of HD9010-SIE in Eavesdropping Mode	
Tab		e 2-1: Parallel I/O Connector Pin Definitions	2-1
		e 2-2: COM1 Pin Definitions	
	Table	e 2-3: AUX COM Pin Definitions - RS-422 Controller Configuration	2-3
		e 2-4: High Definition Video Input Formats	
		e 2-5: RS-422 Eavesdrop Cablee 2-6: RS-422 Straight Through Cable	
			· · · · · · · · · · · · · · · · · · ·

This page left intentionally blank

2. INSTALLATION

2.1. REAR PANEL

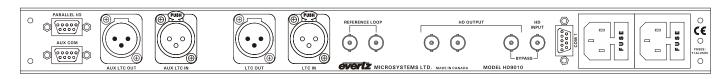


Figure 2-1: HD9010-SIE Rear Panel

The following sections describe the purpose of the rear panel connectors of the HD9010-SIE. Sections 2.1.1 to 2.1.6 describe the specific generator, reader, and video signals that should be connected to the HD9010-SIE.

2.1.1. Video Connections

HD INPUT Input BNC connector for 10-bit serial digital video signals, compatible with the SMPTE 292M standard. The HD9010-SIE is capable of working with the high definition video formats shown in Table 2-4.

HD BYPASS OUTPUT High definition serial digital video output, compatible with the SMPTE 292M standard, with the RP188 Ancillary Time Code and optional characters inserted. When the optional bypass relay (HBP option) is activated (on power failure or from the front panel) the HD BYPASS OUTPUT will be a direct relay connection to the HD INPUT.

HD OUTPUT High definition serial digital video output, compatible with the SMPTE 292M standard, with the RP188 Ancillary Time Code and optional characters inserted. When the optional bypass relay (HBP option) is activated (on power failure or from the front panel) the HD OUTPUT BNCs will not have any video signal on them.

2.1.2. Gen Lock Reference Connections

REFERENCE LOOP Input BNC loop for a genlock reference. The input can be either a 1 V p-p colour black or Tri-level reference. The **REFERENCE LOOP** is a high impedance input therefore, the reference signal must be properly terminated at the end of the line. The sync format must be one of the valid sync types for the video standard in use as shown in Table 2-4. See section 3.8.2 for information on selecting the *REFERENCE MODE* of the HD9010-SIE.

2.1.3. Linear Timecode

LTC OUT: A Male XLR connector for the output of SMPTE/EBU linear time code.

LTC IN: A Female XLR connector for input of SMPTE/EBU linear time code.

AUX LTC OUT: A Male XLR connector for the output of SMPTE/EBU linear time code.

AUX LTC IN: A Female XLR connector for input of SMPTE/EBU linear time code.

2.1.4. Parallel I/O Connections

PARALLEL I/O: A 9 pin female 'D' connector contains several other general purpose parallel remote control inputs and outputs. The inputs and outputs operate at TTL levels. There are two different versions of hardware that may be installed in the HD9010-SIE. The *HARDWARE VERSION* menu item will tell you whether you have Rev 1 (7700PB3) or Rev 2 (7700PH4) hardware installed. GPI3 and GPI4 inputs are not available on the Rev 1 hardware.

Table 2-1 shows the power up default functions of the **PARALLEL I/O** connector pins when the *GEN MODE* is NOT set to *time rctI* mode, however, the functions of pins 1, 4, 5, 8, and 9 may be changed using system parameter values. (See section 3.9 for information about the default function of the inputs.)

Pin #	Name	Description		
1	GPI1	GPI0 1 Input/Output		
2	GPI6	GPI 6 Input		
3	GPI8	GPI 8 Input		
4	GPI3	GPIO 3 Input/Output		
5	GPI5	GPIO 5 Input/Output		
6	GND	Ground		
7	GPI7	GPI 7 Input		
8	GPI2	GPIO 2 Input/Output		
9	GPI4	GPIO 4 Input/Output		

Table 2-1: Parallel I/O Connector Pin Definitions

2.1.5. Serial I/O Connections

COM1:

A 9 pin female 'D' connector for connection to a computer is used for firmware upgrades to the unit or connecting to a Profile server (when the HD9010-SIE is in *LVS-SID* mode) See section 2.8 for a cable wiring diagram and more information on connecting the HD9010-SIE to the Profile Server.

Pin #	Name	Description			
1	GND	Chassis ground			
2	TxD	RS-232 Transmit Output			
3	RxD	RS-232 Receive Input			
4					
5	Sig Gnd	RS-232 Signal Ground			
6					
7	RTS	RS-232 RTS Input			
8	CTS	RS-232 CTS Output			
9					

Table 2-2: COM1 Pin Definitions

AUX COM: This 9-pin female 'D' connector is configured as an RS-422 controller port and used to sense status information from the video playback device (VTR, server, etc.) supplying video to the HD9010-SIE (when the HD9010-SIE is in *VTR SID* or *VTR LVS* mode). See section 2.7 for a cable wiring diagram and more information on connecting the HD9010-SIE to the playback device's serial control port.

Pin #	Name	Description		
1	GND	Chassis ground		
2	Rx-	Receive A (Rx-) Input		
3	Tx+	Transmit B (Tx+) Output		
4	Aux Rx+	Auxiliary Receive B (Rx+) – not used at this time		
5	Spare	Not connected		
6	Aux Rx-	Auxiliary Receive B (Rx-) – not used at this time		
7	Rx+	Receive B (Rx+) Input		
8	Tx-	Transmit A (Tx-) Output		
9	GND	Chassis ground		

Table 2-3: AUX COM Pin Definitions - RS-422 Controller Configuration

2.1.6. Power Connections

LINE: The HD9010-SIE Film Footage Encoder has a universal power supply operating on either 115v/60 Hz or 230v/50 Hz AC operation.

2.2. MOUNTING

The HD9010-SIE is equipped with rack mounting angles and fits into a standard 19 inches by 1.75 inches by 17.75 inches (483 mm \times 45 mm \times 451mm) rack space. The mounting angles may be removed if rack mounting is not desired.

2.3. POWER REQUIREMENTS

Power requirements are 115 or 230 volts AC at 50 or 60 Hz. The HD9010-SIE has a universal power supply that automatically senses the input voltage. Power should be applied by connecting a 3-wire grounding type power supply cord to the power entry module on the rear panel. The power cord should be minimum 18 AWG wire size; type SVT marked VW-1, maximum 2.5 m in length.

The power entry module combines a standard power inlet connector, two 5 x 20 mm fuse holders and an EMI line filter.

CAUTION - TO REDUCE THE RISK OF ELECTRIC SHOCK, GROUNDING OF THE GROUND PIN OF THE MAINS PLUG MUST BE MAINTAINED

2.4. CONNECTING THE VIDEO

2.4.1. High Definition Video Input

The high definition program video source should be connected to the HD INPUT BNC. The HD9010-SIE can be configured to auto detect one of the high definition digital video in the formats shown in Table 2-4 or set manually to match the incoming video type using the *Video Standard* Menu.

The Video LED indicator will be On when there is video present matching the selected video type. When it is blinking it indicates that there is video present but the VIDEO TYPE menu item does not match the input video format.

The HD9010-SIE requires a stable video input for normal operation.

2.4.2. High Definition Video Output

The HD BYPASS and HD OUTPUT outputs contain the input high definition video with RP215 ancillary data (VANC) and optional characters keyed in. Connect one of these outputs to any input on your system that accepts SMPTE 292M serial digital video. The three outputs are identical except that the HD BYPASS output may be protected by an optional bypass relay (+HBP option). When the relay is active, the HD BYPASS output is directly connected to the HD INPUT, and the other two HD OUTPUTS will have no video output.

Common Name	Pixels / Active Lines	Frame Rate	Progressive /Interlace	SMPTE Standard	Valid Genlock Types
1080i/60	1920 x 1080	30	I	274M	1080i/60 1080p/30sF 525i/30
1080i/59.94	1920 x 1080	29.97 (30/1.001)	I	274M	1080i/59.94 1080p/29.97sF NTSC
1080i/50	1920 x 1080	25	I	274M	1080i/50 PAL
1080p/30sF	1920 x 1080	30	P (sF)	274M	1080i/59.94 1080p/29.97sF 525i/30
1080p/29.97sF	1920 x 1080	29.97 (30/1.001)	P (sF)	274M	1080i/59.94 1080p/29.97sF NTSC
1080p/25sF	1920 x 1080	25	P (sF)	274M	1080i/50 PAL
1080p/24sF	1920 x 1080	24	P (sF)	274M	1080p/24sF 625i/48
1080p/23.98sF	1920 x 1080	23.98 (24/1.001)	P (sF)	274M	1080p/23.98sF 625i/47.96
720p/60	1280 x 720	60	Р	296M	1080i/60 1080p/30sF 720p/60 525i/30
720p/59.94	1280 x 720	59.94 (60/1.001)	Р	296M	1080i/59.94 1080p/29.97sF 720p/59.94 NTSC
720p/50	1280 x 720	50	Р	296M	1080i/50 1080p/25sF 720p/50 625i/25

Table 2-4: High Definition Video Input Formats

2.5. CONNECTING THE LINEAR TIME CODE

The HD9010-SIE has two linear time code (LTC) inputs and two LTC outputs. The frame rate of the primary LTC output will be the same as the system video frame rate. The frame rate of the AUX LTC output will be the same as primary LTC output when the system video frame rate is 25 frames per second.

2.5.1. Connecting the Primary LTC Generator

The primary LTC Generator output is available on the LTC OUT XLR connector on the rear panel. The output level of the generator is factory set to 1 volt peak to peak, but may be adjusted using the level adjustment (labelled RTP1) located on the 9000TCIO circuit card.

The auxiliary LTC Generator output is available on the AUX LTC OUT XLR connector on the rear panel. The output level of the generator is factory set to 1 volt peak to peak, but may be adjusted using the level adjustment (labelled RTP2) located on the 9000TCIO circuit card.

The generator code output should be connected to the time code input of your video recorder. Pin 1 of the XLR is ground, and pins 2 and 3 provide a balanced output. When using a machine with an unbalanced input the signal should be connected to Pin 3 of the generator output XLR. Pin 2 should be left open.

2.5.2. Connecting the Primary LTC Reader

Connect the LTC output from your video recorder to the HD9010-SIE's LTC IN XLR connector. When using an unbalanced input to the reader, the signal should be applied to pin 3 of the reader input connector. Normally, the unused input, (pin 2) should be connected to ground (pin 1). This input is used to jam sync the HD9010-SIE's Video LTC generator to the code previously recorded on tape. This mode is used when the Record VTR is generating its own time code and the HD9010-SIE needs to read it to insert the VTR's timecode into the RP188 Ancillary time code packets.

2.6. CONNECTING THE AUXILLIARY TIME CODE

The frame rate of the auxiliary time codes may be different than the system video frame rate. Specifically, in applications where the video rate is 23.98 frames per second the auxiliary time code frame rate will usually be 29.97 frames per second.

2.6.1. Connecting the Auxiliary LTC Generator

The auxiliary LTC output Generator is available on the AUX LTC OUT XLR connector at the rear panel. The output level of the generator is factory set to 1 volt peak to peak, but may be adjusted using the level adjustment (labelled RTP2) located on the 9000TCIO circuit card.

Pin 1 of the XLR is ground, and pins 2 and 3 provide a balanced output. When using a machine with an unbalanced input the signal should be connected to Pin 3 of the generator output XLR. Pin 2 should be left open.

2.6.2. Connecting the Auxiliary LTC Reader

Connect the auxiliary LTC to the AUX LTC IN XLR connector. When using an unbalanced input to the reader, the signal should be applied to pin 3 of the reader input connector. Normally, the unused input, (pin 2) should be connected to ground (pin 1). This input is used to read timecode from the audio player when it is being controlled externally, so that the audio time code can be properly logged.

2.7. CONNECTING TO A VTR RS-422 PORT

2.7.1. Passively listening to a VTR under Edit Control

When the HD9010-SIE is in the *VTR SID* or *VTR LVS* mode, the AUXCOM serial port is used to eavesdrop on the RS-422 serial control between a VTR and its controller. The *AUXCOM MODE* menu item on the *Utility* menu must be set to *Aux mode passive*. (See section 3.8.5). The serial port is used to obtain timecode and status information from the VTR. At this time the HD9010-SIE is customized to eavesdrop on the communications between a Lance HSE-100 Edit Controller and a Sony VTR. The use of other edit controllers may not give expected results on the VTR status of the HD9010-SIE. See chapter 4 for a complete description of the serial port operation. Figure 2-2 and Table 2-5 show how to make an appropriate eavesdropping cable.

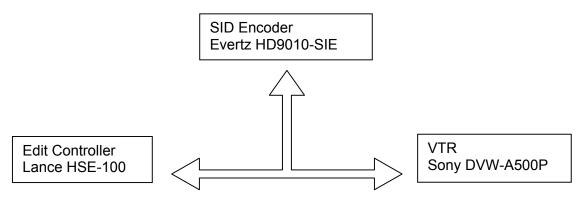


Figure 2-2: Connection of HD9010-SIE in Eavesdropping Mode

Edit Controller RS422 Controller port				HD9010-SIE AUXCOM Serial Port (RS422 Controller)	
Description	Pin	Pin	Description	Pir	n Description
Frame Ground	1	1	Frame Ground	1	Frame Ground
Receive A (Rx-)	2	2	Transmit A (Tx-)	2	Receive A (Rx-)
Transmit B (Tx+)	3	3	Receive B (Rx+)	3	Transmit B (Tx+)
Transmit Gnd	4	4	Receive Gnd	4	n/c
Spare	5	5	Spare	5	Spare
Receive Gnd	6	6	Transmit Gnd	6	n/c
Receive B (Rx+)	7	7	Transmit B (Tx+)	7	Receive B (Rx+)
Transmit A (Tx-)	8	8	Receive A (Rx-)	8	Transmit A (Tx-)
Frame Gnd	9	9	Frame Gnd	9	Frame Gnd

Table 2-5: RS-422 Eavesdrop Cable

2.7.2. Actively Polling a VTR for Time Code and Status

When HD9010-SIE is in the *VTR SID* or *VTR LVS* mode and the VTR is not under edit control, the AUXCOM serial port may be used to actively request time code and status from a VTR. The *AUXCOM MODE* menu item on the *Utility* menu must be set to *Aux mode active*. (See section 3.8.5). See chapter 4 for a complete description of the serial port operation). Use a standard straight through RS-422 serial control cable as shown in Table 2-6 shows how to make an appropriate eavesdropping cable.

VTR RS422 Tributary port		SID Encoder AUXCOM Serial Port (RS422 Controller)	
Pin	Description	Pin	Description
1	Frame Ground	1	Frame Ground
2	Transmit A (Tx-)	2	Receive A (Rx-)
3	Receive B (Rx+)	3	Transmit B (Tx+)
4	Receive Gnd	4	n/c
5	Spare	5	Spare
6	Transmit Gnd	6	n/c
7	Transmit B (Tx+)	7	Receive B (Rx+)
8	Receive A (Rx-)	8	Transmit A (Tx-)
9	Frame Gnd	9	Frame Gnd

Table 2-6: RS-422 Straight Through Cable

2.8. CONNECTING TO A PROFILE RS-232 PORTWhen the HD9010-SIE is in *RDR LVS* or *VTR LVS* mode, the **COM1** serial remote control port is used to listen to a serial data stream from the Profile disk recorder. This serial communication is normally daisy-chained to each of the HD9010-SIE units that are connected on the Profile outputs. The serial port is used to obtain status, LVS and CTL information from the Profile recorder. (See chapter 4 for a complete description of the serial port operation).

In order to properly address each of the HD9010-SIE units connected in the daisy chain, the Profile sends out an 'address' before each command. The LVS ADDRESS menu item on the Utility menu of the HD9010-SIE must be set to match the address that the Profile is using for a specific output.

2.9. CONNECTING THE HD9010-SIE TO A COMPUTER

2.9.1. Physical Connections

A nine pin sub-miniature 'D' connector **(COM 1)** is provided for connection to a computer. This serial port provides a bi-directional RS-232-C data link for upgrading firmware. In order to connect your HD9010-SIE to your computer use standard 9 pin 'straight through' cable. See section 5.2 for a complete description of how to upgrade the firmware. Contact the factory for further information about the serial data output. The baud rate of this port is set using the *COM 1 BAUD RATE* menu item.

When the HD9010-SIE is in *RDR LVS* or *VTR LVS* mode, the receive input of the **COM1** serial remote control port is used to listen to a serial data stream from the Profile disk recorder. The transmit output of the **COM1** serial remote control port is used to transmit various debug messages.

CHAPTER 3 TABLE OF CONTENTS

5.	HOV	VIO OPERATE THE SOURCE ID ENCODER	3-1
	3.1.	AN OVERVIEW OF KEY AND DISPLAY FUNCTIONS	3-1
		3.1.1. The Setup Menu Pushbutton Group	3-1
		3.1.2. The Display Button Group	3-2
		3.1.3. Panel Lock Key Functions	3-2
		3.1.4. The Character Window Pushbutton Group	3-2
		3.1.5. The Function Button Group	3-3
		3.1.6. The Preset Button Group	
		3.1.7. An Overview of the SHIFT Key functions	
		3.1.8. Shaft Encoder Knob	
		3.1.9. An Overview of the Status Indicators	3-5
	3.2.	FRONT PANEL DISPLAY FUNCTIONS	3-6
		3.2.1. Front Panel Displays	3-6
		3.2.2. Special Front Panel Indicators	3-6
	3.3.	PROGRAMMING A SOURCE ID MESSAGE INTO THE ENCODER	3-6
	0.0.	3.3.1. Source ID Data Entry Mode	
	3.4.	AN OVERVIEW OF THE SETUP MENU SYSTEM	3-7
	3.5.	CONFIGURING THE GENERATOR	3-2
	0.0.	3.5.1. Configuring the Generator Mode	_
		3.5.2. Setting the Generator Time	
		3.5.3. Turning the ATC Generator On	
		3.5.4. Setting the ATC Packet Type.	
		3.5.5. Selecting the Line to Insert VANC Packets On	
		3.5.6. Selecting the Generator Drop Frame Mode	
		(29.97 and 59.94 FPS video standards only)	3-5
		3.5.6.1. Conversion Between Drop Frame and Non Drop Frame Counting Modes	
		3.5.7. Generator LTC Parity Mode Selection	
		3.5.8. Configuring how the RDR SID and RDR LVS Modes Works	
		when there is no Primary reader Code	3-2
	3.6.	CONFIGURING THE READERS	3-3
		3.6.1. Setting the Primary reader	
		3.6.2. Setting the ATC Reader Packet Type	
		3.6.3. Selecting the Format of the ATC Reader Time and User Bit Data	
		3.6.4. Selecting the Format of the LTC Reader Time and User Bit Data	
		3.6.5. Selecting the Format of the Auxiliary LTC Reader Time and User Bit Data	
	3.7.	CONFIGURING THE CHARACTER GENERATOR FUNCTIONS	3-5
		3.7.1. Selecting the Character Style	
		3.7.2. Selecting whether the Frames, Fields and Symbols will be displayed on the VCG	3-6
		3.7.3. Selecting and Positioning the Individual Character Inserter Windows	
		3.7.4. Positioning the Overall Character Display	
		3.7.5. Special VČG Indicators	

3.8.	GENERAL CONFIGURATION ITEMS	3-7
	3.8.1. Selecting the Video Standard	3-8
	3.8.2. Selecting the Generator Framing Reference	3-8
	3.8.3. Adjusting the Output Level of the LTC Generators	
	3.8.4. Adjusting the Baud Rate of the Serial Ports	
	3.8.5. Selecting Active or Passive VTR Communications on the AUXCOM Port	3-9
	3.8.6. Turning off the HDSDI Characters When The Program Source is 'ON AIR'	
	3.8.7. Setting the LVS address	
	3.8.8. Working with System Parameters	
	3.8.9. Viewing the Firmware Version	
	3.8.10. Upgrading the Firmware	
	3.8.11. Resetting the HD9010-SIE to its Factory Defaults	
3.9.	CONFIGURING THE GENERAL PURPOSE INPUTS AND OUTPUTS	3-11
Figures		
	re 3-1: HD9010-SIE Front Panel Layout	3-1
	re 3-2: Overview of the Setup Menu	
Tables		
Tabl	e 3-1: Top Level of the Generator Setup Menu	3-2
Tabl	e 3-2: Top Level of the Generator Setup Menu	3-3
	e 3-3: Top Level of the VCG Setup Menu	
	e 3-4: Top Level of the Utility Setup Menu	
Tabl	e 3-5: Parallel I/O Connector Pin Definitions	3-12

3. HOW TO OPERATE THE SOURCE ID ENCODER

The HD9010-SIE HDTV Source ID Encoder is a full function time code reader/generator system for high definition serial digital video. The HD9010-SIE is a combination dual generator/ dual reader for Linear Time Code (LTC) and RP188 Ancillary Time Code (ATC), and contains a high resolution character inserter which can be burn the generator or reader numbers directly into the serial digital program output. The HD9010-SIE combines the latest LSI technology with sophisticated embedded microcontroller firmware to provide a powerful, flexible high definition master time code reader and generator system.

The basic HD9010-SIE operates in one of five modes. In the *VTR* modes, it is designed to listen to communications between a VTR and its controller, and take time code and machine status. In the *RDR* modes, the HD9010-SIE takes time from its LTC or VITC reader and in GEN mode it allows the user to preset a time into the time code generator. In the *LVS* modes, the HD9010-SIE is designed to interface to a Profile Disk recorder running the LVS software. The serial port of the LVS device sends recorder status, scene and control information to the HD9010-SIE. In all modes, the source ID name is programmed from the front panel of the HD9010-SIE and encoded into the user bits.

3.1. AN OVERVIEW OF KEY AND DISPLAY FUNCTIONS

Figure 3-1: HD9010-SIE Front Panel Layout

The front panel controls consist of a 16 digit alphanumeric display, 10 LED status indicators, a 20 pushbutton keypad, and a shaft encoder knob.

The keypad is used to program the source ID message that will be encoded, to control the front panel *Setup* menu system, to enter numeric data such as the time and date, and to provide control of the front panel display. When the **SHIFT** key is held down, the meanings of some of the keys are modified, gaining quick access to a wider variety of functions. (Throughout this manual **SHIFT** + indicates that you should hold down the **SHIFT** key while pressing the second key.) The shaft encoder knob is used to navigate the front panel menu system and to adjust the phasing of the sync pulse outputs.

A front panel *Setup* menu provides a quick and simple method of configuring the HD9010-SIE for your application. Sections 3.3 to 3.8 give detailed information on the specific operations required to control the HD9010-SIE.

3.1.1. The Setup Menu Pushbutton Group

The Setup pushbutton group consists of the **GEN**, **RDR**, **VCG**, **UTIL**, **SELECT** and **ESC** keys and the **SHAFT ENCODER** knob and is used to navigate the *Setup menu* system. The **GEN**, **RDR**, **VCG** and **UTIL** keys allow you to quickly go to various parts of the menu while the **SELECT**, **ESC** and **SHAFT ENCODER** knob are used to navigate the menu.

GEN Enters the *GENERATOR SETUP* menu that is used to set up various items related to the LTC and Ancillary Time Code generators. (See section 0)

- RDR Enters the *READER SETUP* menu that is used to set up various items related to LTC and Ancillary Time Code readers. (See section 3.6)
- VCG Enters the VCG SETUP menu that is used to set up various items related to character generator windows. (See section 3.7)
- **UTIL** Enters the *UTILITIES SETUP* menu that is used to set up various items related to the overall operation of the HD9010-SIE. (See section 3.8)
- **SELECT** When in one of the *Setup* menus the **SELECT** key is used to move to the next lower submenu levels or to select a menu parameter that is to be changed. The **SELECT** key is also used in combination with the numeric keys to enter numeric data.
- When in one of the *Setup* menus the **ESC** key is used to move to the next lower sub-menu levels or to select a menu parameter that is to be changed. The **ESC** key is also used to cancel the process of entering numeric data.
- **SHAFT ENCODER** When in one of the *Setup* menus, the **SHAFT ENCODER** knob is used to move to various items in the menu system. (See also section 3.3)

3.1.2. The Display Button Group

The Display pushbutton group consists of the **DISPLAY** key and is used to select the information being displayed on the front panel when you are not in one of the *Setup* menus. After you press the **DISPLAY** key, you can use the **SHAFT ENCODER** knob to select the *Status* or *Display* items.

DISPLAY Allows you to quickly view the various times of the readers and generators, as well as other display data. (See section 0)

3.1.3. Panel Lock Key Functions

PANEL LOCK Pressing this key will lock the front panel. The LED beside the PANEL LOCK key will come on indicating that the front panel keys are disabled. Pressing the PANEL LOCK key again will return the front panel keys to their normal functions and the PANEL LOCK LED will go Off. The DISPLAY key will still be functional when the PANEL LOCK is On.

3.1.4. The Character Window Pushbutton Group

- SELECT Initiates VCG Window Select Mode and highlights the Generator time VCG window. Hold the HORZ or VERT keys down while turning the SHAFT ENCODER to move the window, use the CHAR GEN ON/OFF key to turn the window on or off. Rotate the SHAFT ENCODER without holding any keys down to select the next window and so on. Press The SELECT key to return to the normal VCG display mode.
- **ON/OFF** Turns the character generator ON and OFF. When in the *VCG Window Select Mode* the **CHAR GEN ON/OFF** key is used to turn individual windows ON and OFF.

HORZ When in the *VCG Window Select Mode*, press this key and turn the **SHAFT ENCODER** knob to position the highlighted character window horizontally on the screen. (See also section **3.7.3**.)

When not in the *VCG Window Select Mode*, press this key and turn the **SHAFT ENCODER** knob to position all the character windows horizontally on the screen. (See also section **3.7.4**.)

When in the *VCG Window Select Mode*, press this key and turn the **SHAFT ENCODER** knob to position the highlighted character window vertically on the screen. (See also section **3.7.3**.)

When not in the *VCG Window Select Mode*, press this key and turn the **SHAFT ENCODER** knob to position all the character windows vertically on the screen. (See also section **3.7.4**.)

3.1.5. The Function Button Group

- **ANC GEN** Is used to turn the RP188 ancillary generator on and off. The ANC GEN indicator is ON when the RP188generator is enabled. The time and user bits of the RP188 generator are the same as for the primary LTC generator.
- JAM Is used to momentarily jam the primary reader's time into the generator time. When the SHIFT + JAM keys are pressed the HD9010-SIE generator will be put into continuous jam sync mode. See section **3.6.1** for information about selecting the primary reader.
- When the generator time (GTM) is displayed on the front panel, pressing the **HOLD** key stops the generator time from incrementing. A special character (H) appears to the left of the numeric display on the front panel, indicating that the display is in Hold mode. Pressing the **HOLD** key again starts the generator incrementing.

When one of the readers is displayed on the front panel, pressing the **HOLD** key freezes the reader display data on the front panel and in the VCG. A special character ($\mathbb F$) appears to the left of the numeric display on the front panel, indicating that the display is in Freeze mode. Press the **HOLD** key again to return to normal update mode.

3.1.6. The Preset Button Group

SAVE Is used to save the current configuration of the HD9010 into one of the user preset memories. The Front panel prompts you to enter the preset number you want to load

Save Preset #?

Use the numbered keys to select the preset memory to save into. The front panel shows the preset memory to save to, and the current video standard.

Sv 3 AUTO-I/60 ?

To select another preset memory press one of the numbered keys. To confirm saving the preset press the **SELECT** key. The front panel shows

Sv 3<AUTO-I/60

LOAD

Is used to load one of the saved user presets into the HD9010TM. The Front panel prompts you to enter the preset number you want to load

Preset load #?

Use one of the numbered keys to select the preset to load. The Front panel shows the preset number and the video standard of the preset.

Ld 3 AUTO-I/60 ?

To select another preset to load press one of the numbered keys. To confirm the preset load press the **SELECT** key. The front panel shows

Ld 3 AUTO-I/60 >

When you load a user preset you will overwrite all the settings of the HD9010-SIE.

3.1.7. An Overview of the SHIFT Key functions

When the **SHIFT** key is held down, the meanings of some of the keys are modified, gaining quick access to a wider variety of functions. (Throughout this manual **SHIFT** + indicates that you should hold down the **SHIFT** key while pressing the second key.) Following is a summary of the shifted key functions

When you are entering user bits into the Generator, holding the **SHIFT** key while you press the numeric keys 0 through 5 will change their entered values to the hexadecimal values A through F.

When you are selecting values in the menus, holding the **SHIFT** key while you turn the using the **SHAFT ENCODER** knob will advance the values faster.

SHIFT+JAM Enters or cancels the continuous Jam Sync mode.

3.1.8. Shaft Encoder Knob

The shaft encoder's function is to select various menu items or change the value a menu item's parameter value.

SHAFT ENCODER When in one of the *Setup* menus, the **SHAFT ENCODER** knob is used to move to various items in the menu system or change a menu item's parameter value. (See also section 3.3)

When in *VCG Window Select Mode*, the **SHAFT ENCODER** knob in conjunction with the **HORZ** and **VERT** keys is used to position the individual character windows. (See also section 3.3) When not in *VCG Window Select Mode*, the **SHAFT ENCODER** knob in conjunction with the **HORZ** and **VERT** keys is used to position all the character windows. (See also section 3.3)

When the *DISPLAY* LED is On, the **SHAFT ENCODER** knob is used to select what is displayed on the front panel display.

3.1.9. An Overview of the Status Indicators

There are 15 status indicators located on the front panel that show operational status of the HD9010-SIE at a glance.

PANEL LOCKThis green LED indicates that the Front Panel is locked against accidental changes.

GEN This green LED indicates that the *GENERATOR SETUP* menu mode is active.

RDR This green LED indicates that the *READER SETUP* menu mode is active.

VCG This green LED indicates that the *VCG SETUP* menu mode is active.

UTIL This green LED indicates that the *UTILITY SETUP* menu mode is active.

DISPLAY This green LED indicates that the *Normal* front panel display mode is active.

PSU STATUS 1, 2 These green LEDs indicate that the corresponding power supply is functioning normally. On units fitted with a single power supply the PSU STATUS 2 LED will be Off all the time.

VIDEO This green LED indicates that valid video signal is present.

GENLOCK This green LED indicates that a valid genlock reference is present and the HD9010-SIE has locked to it.

JAM This green LED indicates that continuous jam sync mode is active

ANC This green LED indicates that RP188 ancillary timecode is present on the video input

LTC 1 This green LED indicates that linear timecode is present on the LTC input

LTC 2 This green LED indicates that linear timecode is present on the AUX LTC input

ANC GEN This green LED indicates that RP188 ancillary timecode is being inserted on the video output

BYPASS This green LED indicates that optional bypass relay is active. The HD video input is directly connected to the HD BYPASS output and the HD9010-SIE will have no effect on the video signal.

3.2. FRONT PANEL DISPLAY FUNCTIONS

3.2.1. Front Panel Displays

The **DISPLAY** key is used to select what data is being displayed in the alphanumeric display. After you press the **DISPLAY** key, you can use the shaft encoder knob to select the various *Display* items. The leftmost characters of the display indicate what is being displayed as follows:

```
Generator time information
GTM 12:34:56.00
GUB 12 34 56 78
                      Generator user bit information
                      LTC Reader time information
LTM 12:34:56.00
LUB 12 34 56 78
                      LTC Reader user bit information
                      AUX LTC Reader Time information
XTM 12:34:56.00
XUB 12 34 56 78
                      AUX LTC Reader user bit information
                      RP188 Ancillary Reader Time information
ATM 12:34:56.00
                      RP188 Ancillary user bit information
AUB 12 34 56 78
                      Com 1 status information
COM1: ACTIVE
                      AUX COM status information
COM2: NOT ACTIVE
                      GPI Input status information
GPI: 111111111
                      Source ID information
SRC ID: AAAAAAAA
```

3.2.2. Special Front Panel Indicators

The following special indicators are used between the seconds and frames digits of the front panel time display to identify non-drop frame and drop frame code when the time code is counting at 29.97 frames per second.

Non Drop Frame Colon (:)
Drop Frame Period (.)

3.3. PROGRAMMING A SOURCE ID MESSAGE INTO THE ENCODER

The HD9010-SIE encodes a source ID message of up to 9 alphanumeric characters, and is shown in the following format:

AAAAAAAA

The A represents alphanumeric message characters. Leading spaces in the source ID message are automatically blanked and the messages are right justified.

3.3.1. Source ID Data Entry Mode

A special data entry mode is provided to allow the user to program the source ID message. Press **DISPLAY** and turn the **SHAFT ENCODER** until the *SRC ID* is displayed on the front panel. Press **ENTER** (**SELECT**) to enter the Source ID programming mode. The **SHAFT ENCODER** and **ENTER** keys are used to select individual characters in the message and change them.

The following detailed procedure should be used to enter the source ID message.

- 1. Press **DISPLAY** and then turn the **SHAFT ENCODER** until the SRC ID is displayed on the front panel.
- 2. Press the **ENTER** (**SELECT**) key to enter Source ID programming mode. The display will show:

SRC ID: AAAAAAAA

The leftmost character of the message will blink indicating that it is selected for entry. If the character is a space then it will be shown as a blinking underline () character.

- 3. Use the **SHAFT ENCODER** to change the character. Only the ASCII characters from <space> to Z are permitted for the message characters.
- 4. Press and hold the **SHIFT** key, then rotate the **SHAFT ENCODER** to select the next character to be entered.
- 5. Repeat steps 3 and 4 until all the characters have been entered.
- 6. When you have entered the desired Source ID message press **ENTER** to accept the new Source ID message. If you want to exit the Source ID programming mode without changing the programmed message press the **ESC** key.

3.4. AN OVERVIEW OF THE SETUP MENU SYSTEM

The key to the operational flexibility of the HD9010-SIE lies in the *Setup* menu system. The *Setup* menu system uses the 16 digit alphanumeric display and provides a quick, intuitive method of configuring HD9010-SIE, guiding you to the correct setup for your application.

The HD9010-SIE menu system consists of four main menus with several choices for each menu item. . The **GEN**, **RDR**, **VCG** and **UTIL** keys allow you to quickly go to various parts of the menu while the **SELECT**, **ESC** and **SHAFT ENCODER** knob are used to navigate the menu.

To enter the *GENERATOR SETUP* menu, press the **GEN** key. Similarly you can enter the *READER SETUP*, the *VCG SETUP* or *UTILITY SETUP* menus by pressing the **RDR**, **VCG** and **UTIL** keys respectively. Once you are in one of the four main menus, the top level menu items are shown in UPPER CASE. Turn the **SHAFT ENCODER** knob to display the desired item within the top level menu and press the **SELECT** key. The displayed parameters to be adjusted will be shown in Title Case (The First Letter Of Each Word Is Capitalized). The active value for that parameter will be shown blinking.

OPERATION Revision 1.2 Page 3-7

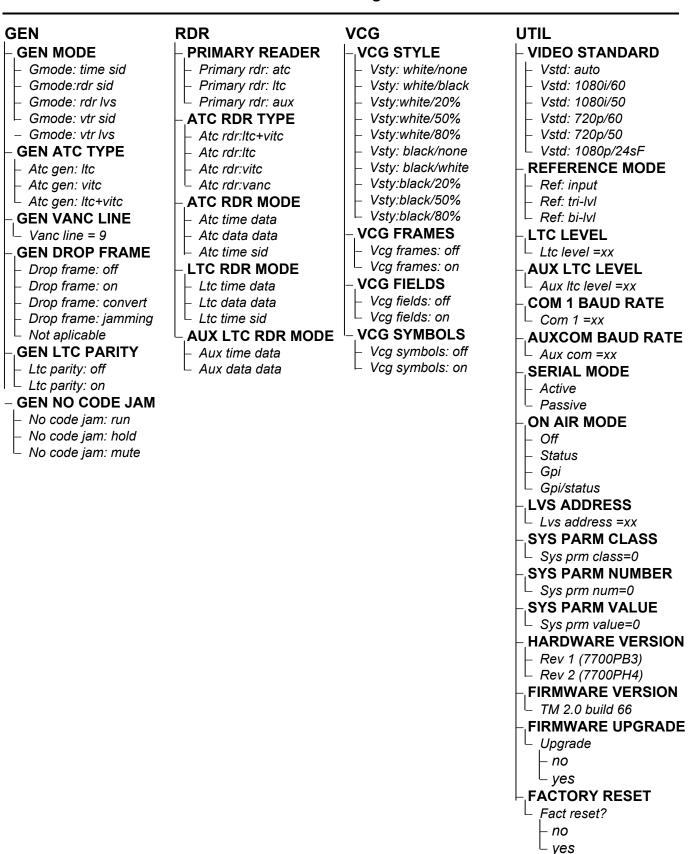


Figure 3-2: Overview of the Setup Menu

Turn the **SHAFT ENCODER** knob to change the value of the displayed parameter. When the value shown is not the active value the display will stop blinking. When you have selected the desired parameter value press the **SELECT** key to make that value the active value. (The display will start blinking again). Press the **ESC** key when the display is blinking to move back up the menu to the top saving your selection. You can press the **ESC** key when the display is not blinking to move back up the menu to the top level without saving your selection. You can select other menu items from the top level by turning the **SHAFT ENCODER** knob, followed by the **SELECT** key. Alternately you can exit the setup menu and return to the normal *DISPLAY* mode by pressing the **ESC** key.

Sections 0 to 3.8 provide detailed descriptions of the *GENERATOR*, *READER*, *VCG* and *UTILITY SETUP* menus. The tables in these sections are arranged in an indented structure to indicate the path taken to reach the control.

3.5. CONFIGURING THE GENERATOR

The *GENERATOR SETUP* menu is used to set up various generator modes such as selecting Drop Frame, Jam Sync Modes, ATC Generator Line number, whether user bits contain static numbers or time information, etc. The chart below shows the items available in the *GENERATOR SETUP* menu. Sections 3.5.1 to 3.5.8 give detailed information about each of the sub menus.

GEN MODE	Sets the operating mode of the LTC and ATC generators.
GEN ATC TYPE	Selects whether LTC or VITC or both ATC packets will be inserted
GEN VANC LINE	Configures the line number to insert VANC packets
GEN DROP FRAME	Configures the generator drop frame mode
GEN LTC PARITY	Configures the parity of the LTC generator
GEN NO CODE JAM	Configures the action when input code is missing and the HD9010-SIE is in continuous JAM sync mode

Table 3-1: Top Level of the Generator Setup Menu

3.5.1. Configuring the Generator Mode

GEN MODE

Gmode time sid Gmode rdr sid Gmode rdr lvs Gmode vtr sid Gmode vtr lvs The *GEN SRC ID MODE* menu item is used to choose a method of encoding the source ID information. The HD9010-SIE operates in one of five modes. In all modes, the source ID name is programmed from the front panel of the HD9010-SIE and encoded into the user bits. (see section 3.3.)

The encoded source ID information consists of a nine alphanumeric character message and optional VTR status and LVS info and is multiplexed into the user bits of three consecutive frames.

In *TIME SID* mode the user enters the time from the front panel and encodes 9 character source ID into the user bits.

In *RDR SID* mode, the HD9010-SIE takes time from its primary reader source (see section 3.6.1) and encodes 9 character source ID into the user bits.

In *RDR LVS* mode, the HD9010-SIE receives recorder status, scene and control information from a Profile Disk recorder running the LVS software. The HD9010-SIE takes time from its primary reader source (see section 3.6.1) and encodes the source ID and LVS info into the user bits.

In *VTR SID* mode, the HD9010-SIE listens to communications between a VTR and its controller, or can directly poll the VTR to get its time code and status. The HD9010-SIE takes it time from this machine time code and encodes the source ID and VTR status info into the user bits.

VTR LVS mode is a combination of the RDR LVS and VTR SID modes. The serial port of the LVS device sends recorder status, scene and control information to the HD9010-SIE. The HD9010-SIE also receives VTR time code and status though it AUX COM port. The HD9010-SIE takes time from this VTR time code and encodes the source ID, VTR machine status and LVS info into the user bits.

3.5.2. Setting the Generator Time

When the HD9010-SIE generator is not operating in the *Continuous Jam Sync* mode, the user can set the generator time using the following procedure. (In the continuous jam sync mode, the generator will be slaved to incoming code from the reader.) Press the **DISPLAY** key and turn the **SHAFT ENCODER** *k*nob to display the generator time if it is not already displayed. The display prompt will show GTM when generator time is being displayed. Press **GEN HOLD** key (when the Generator is being displayed on the front panel) to start or stop the generator clock. The **ENTER (SELECT)** and **ESC** keys are used in conjunction with the numeric keys to set the generator time.

When entering time data make sure that the generator is not in the continuous JAM SYNC mode (indicated when the JAM LED is on). If it is, press SHIFT + JAM to return to free run mode.

Press the **ENTER** key to recall the last time that you entered into the generator. The display prompt at the left of the display will blink while data entry mode is active, and the dual functioned keys are now changed to their numeric values. If you want to re-enter this time press the **ENTER** key to complete the data entry into the generator time

Pressing any numeric key will clear the previous value and place the new value into the numeric display, starting at the right. Unentered digits are assumed to be zero, hence leading zero digits are not required. When the required number of digits are entered, then press the **ENTER** key to complete the data entry into the generator time.

Attempts to enter too many digits, or make illegal entries, i.e. 65 minutes, will result in the display returning to the last valid time entry made. Re-enter the correct value and press the **ENTER** key. Pressing the **ESC** key will cancel the data entry mode without changing any data.

The numeric keys return to their normal display functions when the data entry has been completed by pressing **ENTER** or cancelled by pressing the **ESC** key. The display prompt will return to its steady On state when data entry mode has been completed.

Numeric entry mode must be terminated (GTM will be On steady) before any of the front panel keys will resume normal operation.

3.5.3. Turning the ATC Generator On

The **ANC GEN ON/OFF** key is used to turn the Ancillary Time code (ATC) inserter on and off. (You must exit the Setup menu to turn the ATC generator on or off.) When the ATC generator is Off, the program video passes through the ATC keyer with nothing added. When the ATC generator is On, the RP188 ancillary time code and the VANC data packet will be added to the program video.

3.5.4. Setting the ATC Packet Type.

GEN ATC TYPE	
--------------	--

Atc gen:ltc
Atc gen:vitc
Atc gen:ltc+vitc

The SMPTE RP188 recommended practice for Ancillary Timecode (ATC) identifies two types of ATC packets. The *GEN ATC TYPE* menu item is used to select whether the ATC generator will insert LTC, VITC or both types of ancillary timecode packets.

Select ATC gen:LTC to insert LTC type ATC packets.

Select ATC gen:VITC to insert VITC type ATC packets.

Select ATC gen:LTC+VITC (default) to insert both LTC and VITC type ATC packets.

3.5.5. Selecting the Line to Insert VANC Packets On.

In addition to inserting ATC packets into the HANC area of the HDSDI, the HD9010TM inserts a VANC packet that contains the generator time and user bit information as well as user data entered using the AUX COM serial port. Contact the factory for information about inserting user data into the VANC packet.

GEN VANC LINE
Vanc line = 9

The *GEN VANC LINE* menu item is used to select the line on which the VANC packets will be inserted. The HD9010TM keeps track of the lines for each video standard; you will have to set the line numbers separately for each video standard.

The VANC packets can be inserted in the vertical interval between the second line after the vertical interval switch line (line 9) and the beginning of active picture

This menu item controls the location of the VANC data packet only. The location of the ATC packets are fixed by SMPTE RP188 and will be located on lines 9 and 10 in the HANC area.

3.5.6. Selecting the Generator Drop Frame Mode (29.97 and 59.94 FPS video standards only)

In the 29.97 and 59.94 frames per second video standards, the time code frame rate of approximately 29.97 frames per second causes an error between real time and 'video time'. To overcome this problem, the drop frame mode was created. This mode compensates for the approximate 86 seconds per day error by dropping the first two frame counts (0, 1) at the start of each minute, except minutes 0, 10, 20, 30, 40, and 50. A drop frame flag bit is set in the code when the drop frame format is used. When the HD9010-SIE is operating in the 29.97 and 59.94 frames per second video standards, the generator may be programmed to count in either the drop frame or non-drop frame mode.

GEN DROP FRAME

Drop frame: off Drop frame: on Drop frame: convert Drop frame: jamming Not applicable The *GEN DROP FRAME* menu item is used to the desired drop frame mode for the generator.

Select *Drop frame off* to configure the generator in the non-drop frame or 'full frame' mode.

Select *Drop frame on* to configure the generator in the drop frame mode.

Select *Drop frame convert* to configure the HD9010-SIE to operate in a special Drop Frame conversion Mode. See section 3.5.6.1 for more information on using the Drop Frame Conversion Mode.

When the HD9010-SIE is in the continuous Jam Sync mode, the generator drop frame mode is the same as the incoming time code data. The Drop Frame sub menu shows *Drop frame jamming*.

When the HD9010-SIE is operating in the 24, 25 or 50 frames per second video standards, the Drop Frame sub menu shows *Not applicable*.

The AUX LTC output will normally output nominal 24 FPS time code that is concurrent with the nominal 30 FPS timecode on the main LTC. When the main LTC output is in the Drop Frame counting mode, the AUX LTC output will be muted as there is no 24 FPS equivalent.

3.5.6.1. Conversion Between Drop Frame and Non Drop Frame Counting Modes

In certain circumstances, it may be necessary to convert from the Non Drop Frame counting mode to the Drop Frame counting mode. For example, material that originated in a 1080p/23.98 format will have a 24 frame per second time code, which by definition is non drop frame time code. If that material is subsequently converted to a 1080i/59.94 format the recommended procedure for conversion of the time code (according to SMPTE 12M) will result in a 30 frame per second non drop frame time code where the hours, minutes and seconds are aligned with the 24 frame per second code. Some broadcast delivery specifications require Drop Frame time code. Because of the 'dropped frame counts' in Drop Frame time code, the time code count will diverge from Non Drop Frame time code, The Drop Frame and Non Drop Frame time codes will only be co-incident at one frame count which shall be called the "Sync Point'.

When the HD9010-SIE is operating with 1080i/59.94 or 720p/59.94 video standard, the HD9010-SIE can be placed in a special Drop Frame conversion mode by setting the *GEN DROP FRAME* menu item to *convert*. In this mode, the HD9010-SIE will be placed into a continuous jam sync mode, and the Drop Frame mode of the Generator will be set to be the *opposite* of the drop frame mode of the reader selected by the *PRIMARY READER* menu item.

For example, if the *PRIMARY READER* menu item is set to LTC, and there is Non Drop Frame timecode connected to the main LTC reader input, the generator will be automatically set to the Drop Frame counting mode. The generator ATC and the main LTC output will be drop frame time code.

To use the Drop Frame Conversion mode, the user must first set the SYNC POINT register, which identifies the frame count where the Drop Frame and Non Drop Frame time codes will coincide. To access the SYNC POINT register press the DISPLAY buttons one or more times or press the DISPLAY button and turn the SHAFT ENCODER until the display prompt shows SYN. The ENTER and ESC keys are used in conjunction with the numeric keys to set the value stored in the SYNC POINT register.

The entered sync point will be rounded down to the nearest minute, as the dropped frames only occur on minute boundaries.

The HD9010TM *OFFSET* register can also be used to enter a frame offset to account for frame delays in a standards converter or other video processing device. To access the *OFFSET* register press the **DISPLAY** buttons one or more times or press the **DISPLAY** button and turn the **SHAFT ENCODER** until the display prompt shows OFS. The **ENTER** and **ESC** keys are used in conjunction with the numeric keys to set the value stored in the OFFSET register.

The examples below show how the time code will be converted in the Drop Frame Convert mode of operation.

Example 1: Reader in Non Drop Frame, Generator will be in Drop Frame, Sync Point at 1 hour, no video processing delay between reader timecode and generator time code.

Sync Point: 01:00:00:00 Offset: 00:00:00:00

Reader	Generator	Reader	Generator
00:58:00:00	00;57;59;26	→ 00:59:59:28	00;59;59;28
00:58:00:01	00;57;59;27	00:59:59:29	00;59;59;29
00:58:00:02	00;57;59;28	01:00:00:00	01;00;00;00
00:58:00:03	00;57;59;29	01:00:00:01	01;00;00;01
00:58:00:04	00;58;00;02	01:00:00:02	01;00;00;02
00:58:00:05	00;58;00;03	01:00:00:05	01;00;00;05
00:58:59:28	00;58;59;26	01:00:59:28	01;00;59;28
00:58:59:29	00;58;59;27	01:00:59:29	01;00;59;29
00:59:00:00	00;58;59;28	01:01:00:00	01;01;00;02
00:59:00:01	00;58;59;29	01:01:00:01	01;01;00;03
00:59:00:02	00;59;00;02	01:01:00:02	01;01;00;04
00:59:00:03	00;59;00;03	01:01:00:03	01;01;00;05

Example 2: Reader in Non Drop Frame, Generator will be in Drop Frame, Sync Point at 1 hour, 4 frame video processing delay between reader timecode and generator time code

Sync Point: 01:00:00:00 Offset: 00:00:00:04

Reader	Generator	Reader	Generator
00:58:00:00	00;58;00;02	→ 00:59:59:28	01;00;00;02
00:58:00:01	00;58;00;03	00:59:59:29	01;00;00;03
00:58:00:02	00;58;00;04	01:00:00:00	01;00;00;04
00:58:00:03	00;58;00;05	01:00:00:01	01;00;00;05
00:58:00:04	00;58;00;06	01:00:00:02	01;00;00;06
00:58:00:05	00;58;00;07	01:00:00:05	01;00;00;07
00:58:59:28	00;59;00;02	01:00:59:28	01;01;00;04
00:58:59:29	00;59;00;03	01:00:59:29	01;01;00;05
00:59:00:00	00;59;00;04	01:01:00:00	01;01;00;06
00:59:00:01	00;59;00;05	01:01:00:01	01;01;00;07
00:59:00:02	00;59;00;06	01:01:00:02	01;01;00;08
00:59:00:03	00;59;00;07	01:01:00:03	01;01;00;09

In order to convert the generator time exactly to the reader time at the SYNC POINT make sure the OFFSET is set 00:00:00:00

3.5.7. Generator LTC Parity Mode Selection

The purpose of the phase correction parity bit (LTC bit 27 in 30 FPS, 59 in 25 FPS) is to compensate for phase reversals in the LTC bi-phase mark modulation that could occur when code inserts are performed. Use of the bi-phase mark parity bit is optional, as some readers may not recognize its presence.

GEN LTC PARITY

Ltc parity: off Ltc parity: on

The GEN LTC PARITY item controls the parity mode of the generator.

Select *Ltc parity off* to configure the generator for the non parity mode. The bi-phase mark parity bit will be always set to zero.

Select *Ltc parity on* to configure the generator for the parity mode. The bi-phase mark parity bit will be put in a state where every 80 bit word will contain an even number of logic zeros, in order that the magnetization transient between bit cell 79 of one word and bit cell zero of the next shall always be in the same direction.

3.5.8. Configuring how the RDR SID and RDR LVS Modes Works when there is no Primary reader Code

GEN NO CODE JAM

No code jam: Run No code jam: Hold No code jam: Mute The GEN NO CODE JAM item controls the operation of the RDR SID and RDR LVS Modes when there is no incoming code.

Select *No code jam run* when you want the generator to free run when there is no incoming Reader code. When the reader code resumes, the generator will re-jam to the incoming code. Using this mode will allow the user to repair large dropouts in the incoming code. The generated code will be continuous if the incoming code is also continuous.

Select *No code jam hold* when you want the generator to stop when there is no incoming Reader code. When the reader code resumes, the generator will re-jam to the incoming code. Use this mode if you want the output of the generator to stop on the last number read when you stop the tape machine supplying the incoming code to the reader.

Select *No code jam mute* when you want to turn off the generator when there is no incoming Reader code. The generator time will stop at the last number read. When the reader code resumes, the generator will turn on and re-jam to the incoming code. Use this mode if you want the output of the generator to turn off completely when you stop the tape machine supplying the incoming code to the reader.

3.6. CONFIGURING THE READERS

The *READER SETUP* menu is used to set up various items related to the input references to the HD9010-SIE. The chart below shows the items available in the *READER SETUP* menu. Sections 3.6.1 to 3.6.5 give detailed information about each of the sub menus.

PRIMARY READER

Sets the primary reader

ATC RDR TYPE

Sets whether the ATC reader will read LTC or VITC RP188 packets or VANC data packets.

ATC RDR MODE

Sets the operating mode of the ATC reader.

LTC RDR MODE

Sets the operating mode of the main LTC reader.

AUX LTC RDR MODE

Sets the operating mode of the auxiliary LTC reader.

Table 3-2: Top Level of the Generator Setup Menu

3.6.1. Setting the Primary reader

PRIMARY READER

Primary rdr: atc Primary rdr: ltc Primary rdr: aux The *PRIMARY READER* menu is used to select which reader will be used in the *RDR SID* and *RDR LVS* modes. The primary reader will have an asterisk (*) displayed beside its name on the front panel display. The reader data from the other readers will still be visible from the front panel and VCG windows but will have no effect on the generator time in the jam sync modes, or user bits in the user bit transfer modes.

Select *Primary rdr: atc* to configure the ancillary time code reader (ATC) as the primary reader.

Select *Primary rdr: Itc* to configure the main linear time code reader (LTC) as the primary reader.

Select *Primary rdr: aux* to configure the auxiliary linear time code reader (Aux) as the primary reader.

3.6.2. Setting the ATC Reader Packet Type.

ATC RDR TYPE

Atc rdr:ltc+vitc
Atc rdr:ltc
Atc rdr:vitc

The SMPTE RP188 recommended practice for Ancillary Timecode (ATC) identifies two types of ATC packets. The *ATC RDR TYPE* menu item is used to select whether the ATC reader will read LTC or VITCor both types of ancillary timecode packets.

Select *Atc rdr:ltc+vitc (default)* to read either LTC or VITC type ATC packets. The HD9010TM will read whichever type is present. Select *Atc rdr:ltc* to read LTC type ATC packets.

Select Atc rdr:vitc to read VITC type ATC packets.

3.6.3. Selecting the Format of the ATC Reader Time and User Bit Data

ATC RDR MODE

ATC mode time data ATC mode data data ATC mode time sid The ATC RDR MODE menu item is used to select how the information that is contained in the time and user bits of the ATC reader is displayed.

Select *ATC mode time data* when the time bits contain normal time information and the user bits contain numeric data.

Select *ATC mode data data* when both the time and the user bits contain numeric data. In this mode the raw data from the time and user bits including the flag bits will be displayed

Select *ATC mode time data* when the time bits contain normal time information and the user bits contain source id data.

3.6.4. Selecting the Format of the LTC Reader Time and User Bit Data

LTC RDR MODE

LTC mode time data LTC mode data data LTC mode time sid The LTC RDR MODE menu item is used to select how the information that is contained in the time and user bits of the LTC reader is displayed.

Select *LTC mode time data* when the time bits contain normal time information and the user bits contain numeric data.

Select *LTC mode data data* when both the time and the user bits contain numeric data. In this mode the raw data from the time and user bits including the flag bits will be displayed.

Select *LTC mode time data* when the time bits contain normal time information and the user bits contain source id data.

3.6.5. Selecting the Format of the Auxiliary LTC Reader Time and User Bit Data

AUX RDR MODE

AUX mode time data AUX mode data data AUX mode time sid The AUX RDR MODE menu item is used to select how the information that is contained in the time and user bits of the AUX reader is displayed.

Select *AUX mode time data* when the time bits contain normal time information and the user bits contain numeric data.

Select *AUX mode data data* when both the time and the user bits contain numeric data. In this mode the raw data from the time and user bits including the flag bits will be displayed

Select *AUX mode time data* when the time bits contain normal time information and the user bits contain source id data.

3.7. CONFIGURING THE CHARACTER GENERATOR FUNCTIONS

The HD9010-SIE has independently positionable character windows to display the generator time and source id/status, LTC, AUX LTC and ATC reader time and user bits. In the RDR LVS and VTR LVS modes there are two additional windows to display the LVS info and CTL info. The SHAFT ENCODER knob in conjunction with the HORZ and VERT keys control the position of the character windows. The VCG CONTROL ON/OFF key selects whether the video character generator (VCG) keyer is on or off. The use of these keys in combination with the VCG CONTROL SELECT key selects which windows are displayed and their position on the screen.

The *VCG SETUP* menu is used to configure the character style, and whether frames, fields and symbols should be displayed in the character generator. The following descriptions appear in the order they appear on the menu. The chart below shows the items available in the *VCG SETUP* menu. Sections 3.7.1 to 3.7.5 give detailed information about each of the sub menus.

	 i
VCG STYLE	Sets the Character ger
VCG FRAMES	Turns the Character ge
VCG FIELDS	Turns the Character ge
VCG SYMBOLS	Turns the Character go
	•

Sets the Character generator character colour and background style

Turns the Character generator Time code Frames display on or off

Turns the Character generator Time code Fields display on or off

Turns the Character generator Window Symbols on or off

Table 3-3: Top Level of the VCG Setup Menu

3.7.1. Selecting the Character Style

VCG STYLE

Vsty: white/none Vsty: white/black Vsty:white/20% Vsty:white/50% Vsty: white/80% Vsty: black/none Vsty: black/white Vsty:black/20% Vsty:black/50% Vsty:black/80% The CHAR STYLE menu item is used to select whether the background mask will be used and whether the characters will be white or black. The on screen format menus are always white characters keyed into a black background mask.

Select *white/none* to disable the background and key white characters directly into the picture.

Select *white/black* to key white characters on a black background mask into the picture.

Select *white/20%, white/50%* or *white/80%* to key white characters on a transparent grey background mask into the picture.

Select *black/none* to disable the background and key black characters directly into the picture.

Select *black/white* to key black characters on a white background mask into the picture.

Select *black/20%*, *black/50%* or *black/80%* to key black characters on a transparent white background mask into the picture.

3.7.2. Selecting whether the Frames, Fields and Symbols will be displayed on the VCG

VCG FRAMES

Vcg frames: Off Vcg frames: On

The *VCG FRAMES* menu item is used to select whether the frames will be shown when the time is displayed in the character inserter.

Select Vcg frames off to hide the time code frames.

Select Vcg frames on to show the time code frames.

VCG FIELDS

Vcg fields: Off Vcg fields: On

The *VCG FIELDS* menu item is used to select whether the fields will be shown when the time is displayed in the character inserter.

Select *Vcg fields off* to hide the time code fields.

Select *Vcg fields on* to show the time code fields.

VCG SYMBOLS

Vcg symbols: Off Vcg symbols: On

The *VCG SYMBOLS* menu item is used to select whether the symbols will be shown when the time is displayed in the character inserter.

Select Vcg symbols off to hide the symbols.

Select Vcg symbols on to show the symbols.

3.7.3. Selecting and Positioning the Individual Character Inserter Windows

Separately positionable character windows displaying the generator time and user bits are available. There are also separate windows for the ATC, LTC and auxiliary LTC reader time and user bits. The **SHAFT ENCODER** knob in conjunction with the **HORZ** and **VERT** keys controls the position of the character windows. The **VCG CONTROL ON/OFF** key selects whether the video character generator (VCG) keyer is on or off. The use of these keys in combination with the **VCG CONTROL SELECT** key selects which windows are displayed and their position on the screen.

Press VCG CONTROL SELECT to enable the *Window Select* mode. All the character windows will appear on the screen with the window for the generator time highlighted. Use the CHAR GEN ON/OFF key to turn the Time window on or off. Press the CHAR GEN WINDOW key to highlight the Source ID window. Use the VCG CONTROL ON/OFF key to turn the highlighted window on or off. Press and hold the HORZ key and turn the SHAFT ENCODER knob to move the window horizontally. Press and hold the VERT key and turn the SHAFT ENCODER knob to move the window vertically. Turn the SHAFT ENCODER knob without any keys held down to select the next window and then turn it on or off and move it to the desired location in the same way. The HD9010-SIE returns to the normal VCG display mode after the last window has been selected. Windows that were turned off in *Window Select* mode will disappear.

3.7.4. Positioning the Overall Character Display

In the normal VCG display mode, when none of the windows are highlighted, the arrow keys $(\uparrow, \Psi, \leftarrow, \rightarrow)$ move all the displayed windows by the same relative amount. For example, to move the time and source ID/status windows both down by one line press the Ψ key.

3.7.5. Special VCG Indicators

The following special indicators are used between the seconds and frames digits of the time window in the character inserter to identify non drop frame and drop frame code (NTSC only)

Non Drop Frame Colon (:)
Drop Frame (NTSC) Period (.)

3.8. GENERAL CONFIGURATION ITEMS

The *UTILITY SETUP* menu is used to set up various items related to the overall operation of the HD9010-SIE such as Video standard, LTC output levels, genlock phasing, and firmware versions. Table 3-4 shows the items available in the *UTILITY SETUP* menu. Sections 3.8.1 to 3.8.9 give detailed information about each of the sub menus.

VIDEO STANDARD	Sets the video standard
REFERENCE MODE	Selects the generator framing reference
LTC LEVEL	Sets the amplitude level of the main LTC output
AUX LTC LEVEL	Sets the amplitude level of the auxiliary LTC output
COM 1 BAUD RATE	Sets the baud rate of the COM 1 serial port
AUXCOM BAUD RATE	Sets the baud rate of the AUX COM serial port
SERIAL MODE	Sets the mode of the AUX COM serial port
ON AIR MODE	Blanks Character windows on the SDI output when 'On Air'
LVS ADDRESS	Sets the LVS address that the HD9010-SIE will respond to
SYS PARM CLASS	Sets the system parameter class for the parameter value to change
SYS PARM NUMBER	Sets the system parameter number for the parameter value to change
SYS PARM VALUE	Sets the system parameter value
HARDWARE VERSION	Displays the current hardware version of the unit
FIRMWARE VERSION	Displays the current firmware version of the unit
UPGRADE FIRMWARE	Load new firmware into the unit
FACTORY RESET	Resets the unit to its Factory default condition

Table 3-4: Top Level of the Utility Setup Menu

3.8.1. Selecting the Video Standard

VIDEO TYPE

Vstd: auto Vstd: 1080i/60 Vstd: 1080i/50 Vstd: 720p/60 Vstd: 1080p/24sF The VIDEO STANDARD menu item is used to set the video standard in use.

When you select *auto* the HD9010-SIE will auto detect the video standard and automatically reconfigure itself. The current video standard will be shown in brackets.

You can also select the video standard manually.

Select *1080i/60* for operation with 1080i/59.94 or 1080i/60 video conforming to SMPTE 274M.

Select *1080i/50* for operation with 1080i/50 video conforming to SMPTE 274M.

Select 1080p/24sF for operation with 1080p/23.98 or 1080p/24 video conforming to SMPTE 274M.

Select 720p/60 for operation with 720p/59.94 or 720p/60 video conforming to SMPTE 296M.

3.8.2. Selecting the Generator Framing Reference

REFERENCE MODE

Ref: input Ref: tri-lvl Ref: Bi-lvl The REFERENCE MODE menu item is used to set whether the internal timing of the HD9010-SIE will be locked to the input video or the External Reference input. The updating of the generator clock, character displays and LTC phasing, and output video timing reference signals (TRS) are in turn locked to the internal timing reference of the HD9010-SIE.

Select *input* to reference the HD9010-SIE to the input video. This setting will cause the internal timing reference of the HD9010-SIE to become disrupted and unlocked when an HD input signal is not present. This may cause disturbances in the output video, but is the preferred method when you cannot time the input video to the reference within one line.

Select *tri-IvI* to reference the HD9010-SIE to a tri-level sync signal applied to the GENLOCK input. Select *bi-IvI* to reference the HD9010-SIE to a bi-level sync signal applied to the GENLOCK input. These settings will allow the internal timing reference of the HD9010-SIE to remain locked to the reference when an HD input signal is not present, providing a stable video output. The input video must be timed to the sync reference within one horizontal line period for proper alignment of the picture content on the output video. The format of the reference sync signal must be in accordance with the standards shown in Table 2-4.

Regardless of the setting of this menu control the HD9010-SIE requires a stable video input for normal operation.

3.8.3. Adjusting the Output Level of the LTC Generators

LTC LEVEL
Ltc Level =xx

The *LTC LEVEL* menu item is used to adjust amplitude of the main LTC output. Turn the shaft encoder to adjust. The recommended output level setting is 35, which is approximately 1 volt peak to peak.

AUX LTC LEVEL
Aux Ltc Level =xx

The AUX LTC LEVEL menu item is used to adjust amplitude of the auxiliary LTC output. Turn the shaft encoder to adjust. The recommended output level setting is 35, which is approximately 1 volt peak to peak.

3.8.4. Adjusting the Baud Rate of the Serial Ports

COM 1 BAUD RATE
Com 1 baud =xx

The COM 1 BAUD RATE menu item is used to set the baud rate of the COM 1 serial port. Turn the shaft encoder to adjust. This serial port is used to receive LVS data or for debugging purposes (selected by the. COM1 MODE menu item) Contact the factory for further information about using this port for debugging. Note that the setting of this menu item does not affect the LVS baud rate (see section 4.2) or the firmware upgrade baud rate (see section 5.2).

AUXCOM BAUD RATE
Aux Com Baud =xx

The AUXCOM BAUD RATE menu item is used to set the baud rate of the AUX COM serial port. Turn the shaft encoder to adjust. Note that the setting of this menu item does not affect the VTR communications baud rate (see section 4.1) As this serial port is not used for any other purpose at this time, the AUXCOM BAUD RATE menu setting has no effect.

3.8.5. Selecting Active or Passive VTR Communications on the AUXCOM Port

SERIAL MODE
Ser mode active

Ser mode passive

The SERIAL MODE menu item is used determine if the HD9010-SIE will passively listen to VTR communications or actively poll the VTR for time and status information when it is in VTR SID or VTR LVS mode. See section 2.7 for information about connecting the VTR or other device to the AUXCOM serial port. The baud rate is fixed at 38,400 for VTR communications.

Select Ser mode active to have the HD9010-SIE poll the VTR.

Select Ser mode passive to have the HD9010-SIE listen to communications between the VTR and a controller.

3.8.6. Turning off the HDSDI Characters When The Program Source is 'ON AIR'

ON AIR MODE

On air mode off On air mode status On air mode gpi On air mode gpi/sts The Characters on the HDSDI output of the HD9010-SIE can be turned off when the source device is in PLAY or VAR PLAY or when the SID GPI input is closed to ground. This feature is controlled by the ON AIR menu item.

Select *On air mode status* to blank all the Character windows on the HDSDI output when the machine Status is Play or VAR. The SID GPI input is ignored.

Select *On air mode gpi* to blank all the Character windows on the HDSDI output when the SID GPI input is closed to ground. The machine status is ignored.

Select On air mode gpi/sts to blank all the Character windows on the HDSDI output when the machine Status is Play or VAR, or when the SID GPI input is closed to ground.

When *On air mode off* is selected, the Character windows on the HDSDI outputs ignore the VTR Status and the SID GPI input.

3.8.7. Setting the LVS address

LVS ADDRESS

Lvs Address = xx

The LVS ADDRESS menu item is used to set up the LVS address that the HD9010-SIE will respond to when it is in one of the *LVS* modes. Use the **SHAFT ENCODER** to adjust. Valid numbers are in the range of 01 to 09.

3.8.8. Working with System Parameters

The HD9010-SIE allows the user to control various seldom-used features and debug aids by the use of system parameters. These parameters are grouped according to classes. Within each class, parameters are identified by a parameter number. Each parameter has a 4 byte signed binary number value with the default value for each parameter being zero. There are two menus item used to set the System parameter class and number and a third menu item, to change its value. Contact the factory before changing any System parameters from their default values.

SYS PARM CLASS
Sys Prm Class=0

This menu sets the system parameter class for the parameter value you want to change.

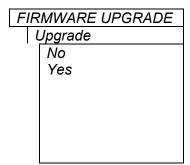
SYS PARM NUMBER
Sys Prm Num=0

This menu sets the system parameter number for the parameter value you want to change.

SYS PARM VALUE

Sys Prm Value=0

This menu changes the value of the system parameter selected by the SYS PARM VALUE and SYS PARM NUMBER menu items.


3.8.9. Viewing the Firmware Version

FIRMWARE VERSION
1.1 build 66

The Firmware Version menu item allows you to view the firmware version that is installed in the HD9010-SIE. When you press the **SELECT** key, the display shows the software version which will be something like:

1.1 build 66

3.8.10. Upgrading the Firmware

The Firmware Upgrade menu item allows you to initiate an upgrade of the firmware from the front panel. When you press the **SELECT** key, you are prompted to confirm that you really want to upgrade. Turn the shaft encoder knob to *yes* and then press the **SELECT** key to confirm. When you press the **SELECT** key the unit will be placed in programming mode and its serial port is opened to communicate with the terminal software program. The front panel display shows <code>UPGRADING...</code> See section 5.2 for complete instructions on upgrading the firmware.

3.8.11. Resetting the HD9010-SIE to its Factory Defaults

FAC	CTORY RESET
F	Reset
	No
	Yes

The Factory Reset menu item allows you to reset the HD9010-SIE to its factory default condition. When you press the **SELECT** key, you are prompted to confirm that you really want to reset the unit. Turn the shaft encoder knob to yes and then press the **SELECT** key to confirm. When you press the **SELECT** key the unit will be reset to its factory default condition. The front panel display shows RESETTING...

3.9. CONFIGURING THE GENERAL PURPOSE INPUTS AND OUTPUTS

A 9 pin D connector located on the rear panel labelled **PARALLEL I/O** provides control inputs for remote control of some of the model HD9010-SIE functions. Several of these inputs can also be configured as open collector outputs that can be assigned to a variety of functions. The pinout of the D connector is shown in Table 2-1. For information about changing the default functions of the GPI inputs contact the factory.

The *GPI* front panel display (accessible by pressing the **DISPLAY** button one or more times) will show the status of the GPI inputs. The GPI status display (GPI: 111111111) is a group of 8 digits representing the GPI inputs (GPI 8 on the left, GPI 1 on the right) When the digit is showing a 0, the GPI input is low. When the digit is showing a 1 the input is high.

There are eight remote control inputs as shown in Table 3-5.

Pin #	Name	Description
1	GPI1	Panel Lock
2	GPI6	GEN run/hold
3	GPI8	VCG Disable
4	GPI3	ATC enable
5	GPI5	SID GPI Input
6	GND	Ground
7	GPI7	GEN Set
8	GPI2	Jam sync enable
9	GPI4	Bypass

Table 3-5: Parallel I/O Connector Pin Definitions

- **VCG DISABLE** When closed to ground this input turns off the character inserter keyer. This input has higher priority than the front panel CHAR GEN ON/OFF key and the keyer will remain Off as long as the input is closed to ground.
- **ATC ENABLE** Provides an alternate method of turning the VITC generator On and Off. The VITC generator is turned On by a high to low transition on this input, and turned Off by a low to high transition.
- **BYPASS** When closed to ground this input activates the SDI bypass relay.
- **JAM SYNC** Provides an alternate method of syncing the generator time of the active reader time when the unit is not in the *convert* mode. Momentarily closing this input to ground and releasing it will perform a synchronization to the reader time.
- **GEN HOLD** Provides an alternate method of selecting the Generator Hold function. The generator Hold function is selected by a high to low transition on this input, and deselected by a low to high transition.
- **GEN SET** Provides an alternate method of selecting the Generator Set function. The generator Set function is selected by a high to low transition on this input, and deselected by a low to high transition. When this input is closed to ground the last entered time value is entered into the Generator again.
- **PANEL LOCK**When closed to ground this input activates the Panel Lock function. The panel will remain locked as long as the input is closed to ground.
- SID GPI The HD9010-SIE allows the user to encode one remote control contact closure information into the RP188 ATC user bits along with the source ID information. When this input is closed to ground the encoder VCG can be turned off (see section 3.8.6).

OPERATION Revision 1.2 Page 3-12

CHAPTER 4 TABLE OF CONTENTS

4.	ERIAL REMOTE CONTROL PROTOCOL	4-1
4	.1. VTR MODE - COMMUNICATING WITH A VTR	4-1
	4.1.1. Data Format	4-1
	4.1.2. Communications Protocol	4-1
	4.1.3. Message Block Format	
	4.1.4. Commands Supported	
	4.1.5. Time Code Sense Command	
	4.1.6. Status Sense Command	4-4
4	.2. LVS MODE - COMMUNICATING WITH A PROFILE DISK RECORDER	4-4
	4.2.1. Data Format	
	4.2.2. Message Block Format	
	4.2.3. Command Processing	4-5
Table		
٦	able 4-1: VTR Commands and their Valid Responses	4-3
7	able 4-2: Interpretation of Messages in LVS Mode	4-5

This page left intentionally blank

4. SERIAL REMOTE CONTROL PROTOCOL

When the HD9010-SIE is in one of the *VTR* modes, the HD9010-SIE uses the AUX COM port to listen to communications between a VTR and its controller, or to directly poll the VTR. The VTR communications mode must be set using the *AUXCOM MODE* menu item. The serial port is used to obtain timecode and status information from the VTR. See section 4.1

When the HD9010-SIE is in one of the *LVS* modes, the HD9010-SIE uses the COM1 port to listen to a serial data stream from the Profile disk recorder. This serial communication is normally daisy-chained to each of the HD9010-SIE units that are connected on the Profile outputs. This function must be enabled using the *COM1 MODE* menu item. The serial port is used to obtain status, LVS and CTL information from the Profile recorder. See section 4.2.

The following sections describe the commands supported by the HD9010-SIE in each mode.

4.1. VTR MODE - COMMUNICATING WITH A VTR

When the HD9010-SIE is in one of the VTR modes, the AUXCOM serial port is used to listen to RS-422 communications between a VTR and its edit controller. If there is no edit controller device, the HD9010-SIE can be set to actively poll the VTR for its time code and status. The *AUXCOM MODE* menu item on the *Utility* menu selects whether the HD9010-SIE will operate in passive or active VTR communications mode. (See section 3.8.5) Section 2.7 gives information on connecting the HD9010-SIE to the VTR.

4.1.1. Data Format

The AUXCOM serial port is used to listen to RS-422 communications between a VTR and its edit controller. This communications protocol runs at 38400 baud and follows the industry standard SONY VTR protocol.

4.1.2. Communications Protocol

The HD9010-SIE lists to the responses that the VTR is giving to commands it receives from the edit controller. Because various edit controllers use different parts of the protocol, it is necessary to optimize the HD9010-SIE for specific controllers. At this time the protocol is optimized for use with the Lance HVS-100 edit controller. The use of other edit controllers may not give the expected results in monitoring the VTR status information. When the HD9010-SIE is operating in *active* mode then it issues the commands to the VTR instead of the edit controller.

All command values, arguments and data values shown in this document are expressed in hexadecimal format unless otherwise noted.

4.1.3. Message Block Format

The MESSAGE consists of two command bytes followed by optional bytes of data, followed by a checksum and is structured as follows:

II CIVID I/CIVIT II CIVID 2 II DATA I II II DATA II II CITECKSON	CMD 1/CNT	CMD 2	DATA 1		DATA n	CHECKSUM
--	-----------	-------	--------	--	--------	----------

CMD1/CNT First byte of the command. The upper nibble is the command prefix and the lower nibble

is the number of bytes of data.

CMD2 Second byte of the command.

DATA 1...DATA n variable length, any arguments required by the command.

CHECKSUM The one byte sum of the CMD1/CNT, CMD2 and DATA bytes. The checksum is

calculated on the actual bytes of the command not the ASCII Hex representation of

these bytes.

The purpose of the checksum is to verify that all the bytes in the message that contain variable data have been received properly. The checksum is calculated by adding all the previous bytes together. The least significant byte of this sum is then used as the checksum.

For example, to request the current time code data from the VTR, the command message would be transmitted as follows:

ſ	6	1	0	С	6	D
Ī	CMD1	CNT	CMD 2		CHEC	KSUM

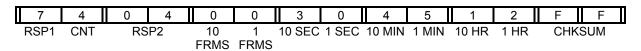
If the VTR does not accept the command message due to a checksum error, parity error or an invalid command, the VTR will respond with an NAK response (11H, 12H).

If the VTR accepts the command message and there is no data response required it will respond with an ACK response (10H, 01H).

If the command message requires a data response, the VTR will transmit a response message that consists of two command bytes followed by optional bytes of data, followed by a checksum and is structured as follows:

RSP 1/CNT	RSP 2	DATA 1	 DATA n	CHECKSUM

RSP1/CNT First byte of the response. The upper nibble is the response prefix and the lower nibble


is the number of bytes of data.

RSP2 Second byte of the response.

DATA 1...DATA n variable length, any data required by the response.

CHECKSUM The one byte sum of the RSP1, RSP2 and DATA bytes. The checksum is calculated on the actual bytes of the response not the ASCII Hex representation of these bytes.

If the current LTC reader time code was 12:45:30:00 Non Drop Frame the response message would be received as follows:

4.1.4. Commands Supported

Command from Controlling Device	Return to Controlling Device
---------------------------------	------------------------------

CMD1/ CNT	CMD2	DESCRIPTION	RSP1/C NT	RSP2	NAME
61	0C	Time Code Sense	74	04	LTC time data
			74	06	VITC time data
61	20	Status Sense	7X	20	Status data

Table 4-1: VTR Commands and their Valid Responses

4.1.5. Time Code Sense Command

The argument byte for the time code sense command indicates whether the VTR will respond with LTC or VITC, as programmed in the GEN RDR MODE menu setting of the HD9010-SIE.

When LTC data is required the time code sense command will be:

61 0C 01

The response that comes back from the VTR is:

74 04 ff mm ss hh ck

When VITC data is required the time code sense command will be:

61 0C 02

The response that comes back from the VTR is:

74 06 ff mm ss hh ck

When either LTC or VITC data is required the time code sense command will be:

61 0C 03

If the VTR is reading LTC, the response that comes back from the VTR is:

74 04 ff mm ss hh ck

If the VTR is reading VITC, the response that comes back from the VTR is:

74 06 ff mm ss hh ck

4.1.6. Status Sense Command

The argument byte for the status sense command indicates the starting byte of the status block, and how many bytes are to be sent. The HD9010-SIE requests the first three bytes of the status block as follows:

61 20 04

The response that comes back from the VTR is: (sbn represents the nth byte of the status block)

74 20 sb1 sb2 sb3 sb4

4.2. LVS MODE - COMMUNICATING WITH A PROFILE DISK RECORDER

When the HD9010-SIE is in one of the LVS modes, the receive input of the COM1 serial port is used to listen to a serial data stream from the Profile disk recorder. The Profile sends status, LVS scene and CTL information out to multiple devices that are connected in a 'daisy chain' to the Profile's serial port. In order to properly address each of the HD9010-SIE units connected, the Profile sends out an 'address' before each command. The *LVS ADDRESS* menu item on the *Utility* menu must be set to match the address that the Profile is using for a specific output. (See section 3.8.7).

4.2.1. Data Format

The COM1 serial port is used to listen to RS-232 commands from an LVS device. This communications protocol runs at 9600 baud, 8 bits, and no parity.

4.2.2. Message Block Format

All command values, arguments and data values shown are expressed in hexadecimal format unless otherwise noted.

Each message block starts with the ESC (1BH) and is structured as follows:

STX ADDR CMD MESSAGE

ESC Unique character which indicates the start of a message block (0x1B hex)

ADDR Address of the unit command is intended for. The address is sent as 2 ASCII characters. The HD9010-SIE will respond to addresses that match the "LVS ADDRESS" on the menu.

CMD Command to be processed. The command is sent as 2 ASCII characters.

MESSAGE Variable length string of ASCII characters. The content of the message is dependent on the CMD.

4.2.3. Command Processing

The HD9010-SIE only responds to commands 0x27 and 0x28. Each of these commands sends a string of ASCII characters that defines what the message is. Command 0x28H also sends down a 3 ASCII character location pointer at the beginning of the string of characters. Since the MESSAGE is a variable length, and there is no byte count associated with the message, the HD9010-SIE units use a timeout to determine when a message is complete. This means that if the MESSAGE portion of the command is being received and the characters stop coming in for approximately 70 milliseconds the command will be treated as complete and the MESSAGE will be processed.

The MESSAGE portion of the command is scanned for various character patterns to determine various status, scenes, etc. The following table shows a list of the information scanned for (in the order of priority):

MESSAGE	Interpretation	Comments
CTL	Sets CTL ON status.	
EA	Sets LVS status to EA	Next 3 characters considered to be the LVS number
EB	Sets LVS status to EB	Next 3 characters considered to be the LVS number
SA	Sets LVS status to SA	Next 3 characters considered to be the LVS number
SB	Sets LVS status to SB	Next 3 characters considered to be the LVS number
HA	Sets LVS status to HA	Next 3 characters considered to be the LVS number
НВ	Sets LVS status to HB	Next 3 characters considered to be the LVS number
STOP	Sets SID status to STOP	
PLAY	Sets SID status to PLAY	
CUED	Sets SID status to CUED	
F.F.	Sets SID status to FF	
REC	Sets SID status to REC	
REW	Sets SID status to REW	
SHTL	Sets SID status to SHL.	Speed/direction character added based on last setting.
AV	Sets SID status to AV	
STBY	Sets SID status to STBY	
JOG	Sets SID status to JOG.	Speed/direction character added based on last setting.
EJCT	Sets SID status to EJCT.	
VAR= 0.00	Sets speed/direction	Display VAR *
	status to still mode.	
VAR= -	Sets speed/direction	Display VAR <
	status to reverse mode.	
VAR=	Sets speed/direction	Display VAR >
	status to forward mode.	
VAR	Sets SID status to VAR.	Speed/direction character (<, *, >) based on last setting.
<spaces></spaces>	Indicates blanking	The CTL and LVS windows keep track of their positions
	required.	on the screen when they are detected. If the blanks
		detected here are at the same location as the CTL or LVS
		windows the status of the mode will be changed to CTL
		OFF or LVS OFF respectively

Table 4-2: Interpretation of Messages in LVS Mode

This page left intentionally blank

CHAPTER 5 TABLE OF CONTENTS

5. TE	TECHNICAL DESCRIPTION				
5.1	5.1.1. 5.1.2. 5.1.3. 5.1.4. 5.1.5. 5.1.6. 5.1.7.	HDTV Serial Digital Video Input HDTV Serial Digital Video Outputs Reference Input LTC Generators LTC Readers Serial Ports Physical Electrical	5-15-15-15-15-15-2		
5.2	5.2.1. 5.2.2. 5.2.3. 5.2.4. 5.2.5.	Overview	5-2 5-3 5-3 5-3		
5.3	5.3.1.	CICING INSTRUCTIONS	5-5		
Tables Tab	ole 5-1: DI	IP Switch Functions	5-6		

This page left intentionally blank

5. TECHNICAL DESCRIPTION

5.1. SPECIFICATIONS

5.1.1. HDTV Serial Digital Video Input

Standard: 1.485 Gb/sec HDTV Serial component digital SMPTE 292M

standards supported shown in Table 2-4

software selectable or auto detect

Connector: BNC per IEC 60169-8 Amendment 2.

Equalisation: Automatic to 100m @ 1.5Gb/s with Belden 1694 or equivalent cable

5.1.2. HDTV Serial Digital Video Outputs

Standard: SMPTE 292M, same as input

Outputs: 2 Program video with RP188 Ancillary Time code embedded and optional

characters

Connectors: BNC per IEC 60169-8 Amendment 2.

Signal Level: 800mV nominal

DC Offset: 0V ±0.5V

Rise and Fall Time: 200ps nominal

Overshoot: <10% of amplitude

Wide Band Jitter: < 0.15 UI

5.1.3. Reference Input

Type: HD Tri-level Sync,

NTSC or PAL Colour Black 1 V p-p, or

Composite bi-level sync (525i/59.94 or 625i/50) 300 mV (See Table 2-4)

Connector: BNC loop per IEC 60169-8 Amendment 2.

Termination: High Impedance

5.1.4. LTC Generators

Standard: SMPTE 12M

Frame Rate: 24, 25 and 30 Fps nominal **Connectors:** 3 pin male XLR type connector. **Level:** Adjustable, 0.5V to 4.5V p-p

5.1.5. LTC Readers

Standard: SMPTE 12M

Frame Rate: 24, 25 and 30 Fps nominal Connectors: 3 pin female XLR type connector Level: 0.2 to 4V p-p, balanced or unbalanced

5.1.6. Serial Ports

Standard: RS-232 **Number:** 2 ports

Baud Rate:

COM1: 57600 baud (115,200 for Rev 2 hardware) for firmware upgrades

Programmable for data broadcast applications

AUX COM: Programmable **Connectors**: 9 pin female "D"

Control:

COM1: firmware upgrades, time code data broadcast

AUX COM: Programmable - future use

5.1.7. Physical

Dimensions: 19" W x 1.75" H x 18.75" D.

(483mm W x 45mm H x 477mm D)

Weight: 8 lbs. (3.5Kg)

5.1.8. Electrical

Power: Auto ranging, 100 ⇔ 240 VAC, 50/60 Hz 30 VA.

Safety: ETL listed.

Complies with EU safety directive

EMI/RFI: Complies with FCC Part 15 Class A,

EU EMC Directive

5.2. UPGRADING THE FIRMWARE

5.2.1. Overview

The firmware in the HD9010-SIE is contained on a FLASH EPROM. From time to time firmware updates will be provided to add additional features to the unit.

There are two different versions of hardware that may be installed in the HD9010-SIE. The *HARDWARE VERSION* menu item will tell you whether you have Rev 1 (7700PB3) or Rev 2 (7700PH4) hardware installed. The baud rate for upgrading firmware is set differently for the different revisions of the hardware.

You will need the following equipment in order to update the Firmware

- PC with available communications port. The communication speed is 57600 or 115200 baud, therefore a 486 PC or better with a 16550 UART based communications port is recommended.
- "Straight-thru" serial extension cable (DB9 female to DB9 male) or (DB25 female to DB9 male).
- Terminal program that is capable of Xmodem file transfer protocol. (such as HyperTerminal)
- New firmware supplied by Evertz.

5.2.2. Terminal Program Setup.

- 1. Connect the serial cable to the COM1 DB9 connector on the rear panel
- 2. Connect the 9 pin connector on the end of the serial update cable to the PCs' RS-232 communications port
- 3. Start the terminal program.
- 4. Configure the port settings of the terminal program as follows:

	Rev 1 Hardware	Rev 2 Hardware
Baud	57600	115200
Parity	no	no
Data bits	8	8
Stop bits	2	2
Flow Control	None	None

5. Power up the HD9010-SIE unit.

5.2.3. Initiating Firmware Upgrade Mode Via The Front Panel

This is the recommended method of updating the software in the HD9010-SIE Source ID Encoder. It is activated through the *UTILITIES* Setup menu. If you cannot invoke the upload mode via the front panel as outlined in step 6 then follow the steps in section 5.2.4.

6. You can invoke the Firmware upgrade mode using the front panel Setup Menu. (See section 3.2 for information on how to operate the front panel menus.) Press the UTIL key to enter the UTILITIES Setup menu. Scroll to the FIRMWARE UPGRADE menu item by turning the SHAFT ENCODER knob and then press SELECT. If you want to upgrade the main operating firmware in the HD9010-SIE then turn the SHAFT ENCODER knob until the display shows yes and then press SELECT or press the ESC key if you want to abort the programming operation.

When you press the **SELECT** key the unit will be placed in programming mode and its serial port is opened to communicate with the terminal software program. The front panel display shows <code>UPGRADING....</code> Proceed to section 5.2.5 for instructions on uploading the firmware using the terminal program.

5.2.4. Initiating Firmware Upgrade Mode From The Terminal Program

You may send commands to the HD9010-SIE Boot monitor in order to upgrade the HD9010-SIE application firmware.

7. Power up the HD9010-SIE. After the unit powers up, a banner with the boot code version information should appear in the terminal window. The cursor to the right of the word "BOOT>" should be spinning.

For example:

EVERTZ MFC5407 MONITOR 2.1.3

COPYRIGHT 1997, 1998, 1999, 2000, 2001 EVERTZ MICROSYSTEMS LTD.

COLD BOOT |

- 8. The following is a list of possible reasons for failed communications:
 - Defective Serial Upgrade cable.
 - Wrong communications port selected in the terminal program.
 - Improper port settings in the terminal program. (Refer to step 4 for settings). Note that
 HyperTerminal will not change port settings while connected. Click on HyperTerminal's
 "Disconnect" Button then click the "Reconnect" button to activate changes to the port settings.
- 9. While the cursor is spinning press the <CTRL> and <X> keys, this should stop the cursor from spinning. The spinning prompt will only remain for about 5 seconds. You must press <CTRL-X> during this 5 second delay. If the unit continues to boot-up, simply cycle the power and repeat this step.
- 10. Hit the <ENTER> key on your computer once.
- 11. Type the word "upgrade", without quotes, and hit the <ENTER> key once.
- 12. The boot code will ask for confirmation. Type "y", without quotes.

5.2.5. Uploading the new firmware

- 13. You should now see a prompt asking you to upload the file.
- 14. Upload the "*.bin" file supplied using the X-Modem transfer protocol of your terminal program. If you do not start the upload within 10 minutes the unit's Boot code will time out. You can restart the upgrade process by power cycling the unit.

The HD9010-SIE application firmware is contained in a "bin" file will have a name something like

The version number usually follows the main file name (e.g. 2v0_1 is version 2.0 build 1).

Firmware version 2.0 Build 1 or later is compatible with both Rev 1 and Rev 2 hardware. Firmware versions 1.x are compatible only with Rev 1 hardware.

15. The boot code will indicate whether the operation was successful upon completion of the upload.

For Example:

UPLOAD OKAY MFC5407 WARM BOOT> |

- 16. The following is a list of possible reasons for a failed upload:
- If you get the message "transfer cancelled by remote" you must restart the terminal program and load the bin file, then remove and install the module again.
- The supplied "*.bin" file is corrupt.
- Wrong file specified to be uploaded.
- Wrong file transfer protocol used make sure you specify Xmodem, not Xmodem 1K.
- The PCs' RS-232 communications port can't handle a port speed of 57600 or 115200
- Noise induced into the Serial Upgrade cable.

5.2.6. Completing the Upgrade

- 17. Power cycle the unit. The unit should now reboot.
- 18. You can now close the terminal program and disconnect the RS-232 serial cable from the PC.

5.3. SERVICING INSTRUCTIONS

CAUTION – These servicing instructions are for use by qualified service personnel only. To reduce risk of electric shock do not perform any servicing instructions in this section of the manual unless you are qualified to do so.

5.3.1. Changing The Fuses

Check that the line fuse is rated for the correct value marked on the rear panel. Never replace with a fuse of greater value.

The fuse holder is located inside the power entry module. To change the fuses, pull out the fuse holder from the power entry module using a small screwdriver. The fuse holder contains two fuses, one for the line and one for the neutral side of the mains connection. Pull out the blown fuse and place a fuse of the correct value in its place. Use time delay 5 x 20 mm fuses rated for 250 Volts with a current rating of 1 amp. Carefully reinsert the fuse holder into the power entry module.

5.3.2. Changing DIP Switch Settings

At the front edge of the main module inside the unit there is an 8 position DIP switch, which is used to select various operational and diagnostic functions. The ON position is down or closest to the PCB. Most users will have no need to alter the factory switch settings.

DIP Switch	Function
1	Not used – set to Off
2	Bypass Option installed
3	Metadata Slave type 1 (Factory use only) – set to Off
4	Enable data broadcast mode for COM 1
5	Not used – set to Off
6	Metadata Slave type 1 (Factory use only) – set to Off
7	Dual power supply option installed
8	Disable debug message output on COM 1

Table 5-1: DIP Switch Functions

To gain access to the DIP switches you will have to remove the top cover.

Before removing the top cover of the unit make sure that both power cords are disconnected from the mains.