

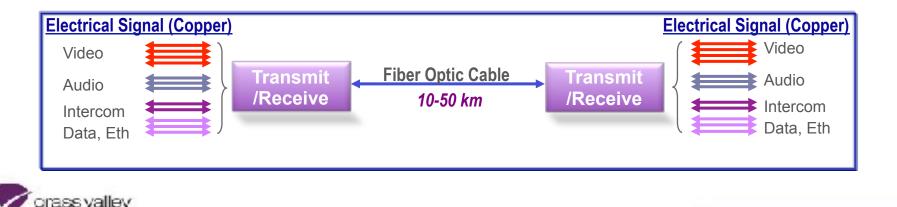
Agenda

Fiber 101 Overview

Fiber in Broadcast Multiplexing Signals Fiber types Connectivity Options Maintenance / Troubleshooting

Typical Live Broadcast Scenario

With and Without Fiber



What is the Fiber Solution series?

- Fiber-based signal multiplexers and transport solutions for sending source-quality signals over long distances
- Primarily for acquisition and production: news, sports and entertainment
- Known as Telecast Fiber Systems founded in 1991, Acquired by Belden in 2009, integrated into Grass Valley production line in 2014
- First product: A portable fiber system for remote TV production

BELDEN FRANC

• Allowed long distance camera signal transmission over a single tactical fiber cable

Telecast Product Markets & Applications

Outside Broadcast (OB Trucks)

- Live production of entertainment & sports events
- Contracted to mobile production companies

bexel

ESPA

Large Venues

- Professional & university sports venues
- Venue broadcast infrastructure
- In-house production of events

SPORT

ABELDEN FRAND

Electronic News Gathering (ENG)

NBC

- Live news field coverage
- Multi-camera field
 production

ODO NEWS

Government

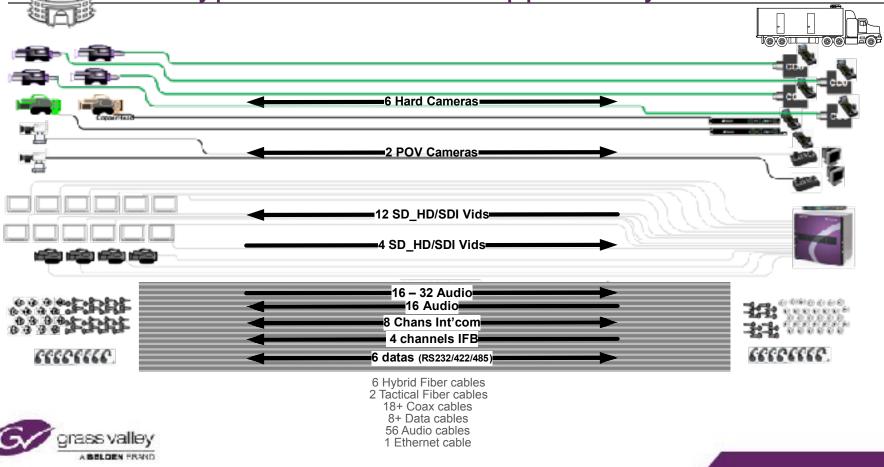
- Federal, state, and local government executive and legislative branches
- Court houses
- Law enforcement

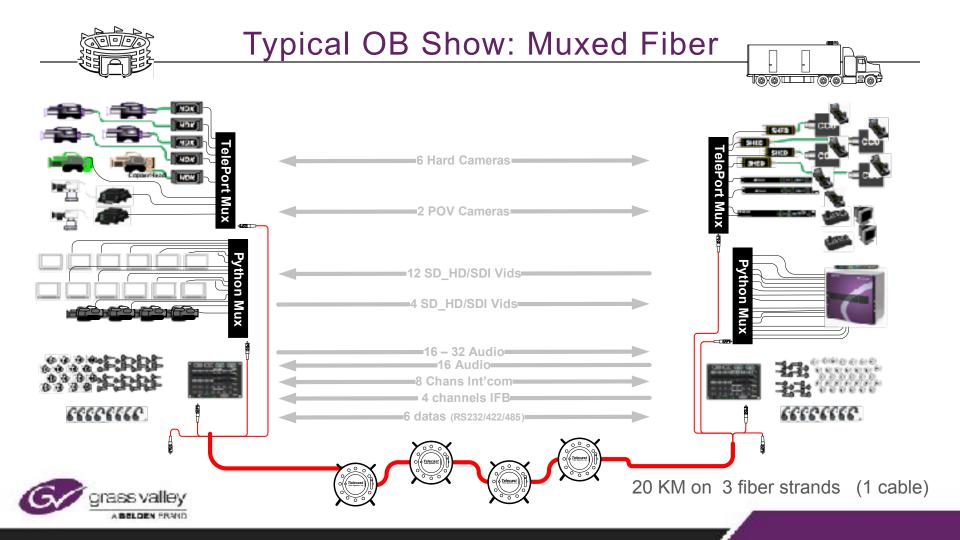
Digital Teleproduction

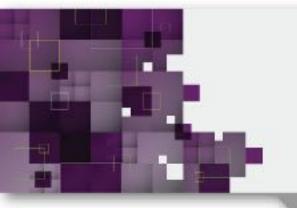
- Digital cinema production (2D, 3D & 4K)
- Non-drama and reality TV production
- Live TV
 production

The Solution – Fiber Optics

- Multiple signals can be carried on a single, lightweight fiber optic strand
- Labor savings & utilization faster set-up and strike
- Transportation costs (shipping & trucking penalties)
- Distance a signal can be carried (no repeaters)




The most comprehensive camera fiber systems



Typical OB Show: Copper & Hybrid

Fiber 101 How it works / Review

Fiber Optics – Primary Components

Transmitter: converts virtually <u>ANY</u> electrical analog or digital signal into an optical signal.

- If analog, the light source modulates.
- If digital, it flashes really fast! More robust transmission in digital

Fiber cable: consists of one or more glass fibers, which act as waveguides for the optical signal.

Receiver: The converts the optical signal back into a replica of the original electrical signal

Why Fiber Optics

JP's Top 10 Reasons Fiber Popularity has grown in Broadcast / Motion Picture Industries

- 1. Bandwidth
- 2. Distance
- 3. Speed of Deployment / Strike
- 4. Immune to EMI, RFI, Crosstalk & Hum
- 5. Universal Carrier
- 6. Limited Space in Conduit
- 7. Weight Truck Belly Bay / Shipping
- 8. Cost of fiber optic electronics declining
- 9. Robust / Tactical Fiber
- 10. Future Proofing

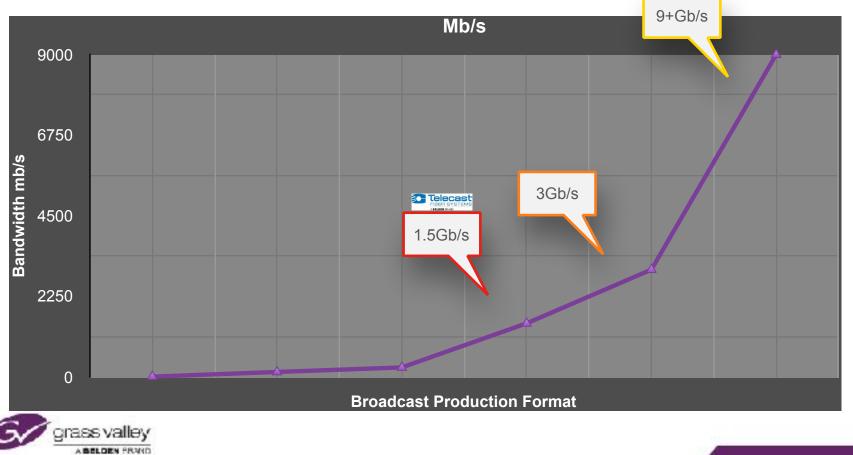
Broader Understanding of Fiber Technology

Types of Signals on Fiber

Common broadcast signals can be converted to light and transmitted of fiber

Video

- 1. Composite video
- 2. HD/SDI
- 3. 3G
- 4. 4K / Ultra HD


Audio

- 1. Analog Audio (mic/line)
- 2. AES
- 3. Intercom

Broadcast Bandwidth Growth

Dala Rale:	143	143 Mb/s SMPTE 259M		177 Mb/s ITU R BT. 601		270 Mb/s SNPTE 259N		380 Mb/s SMPTE 258M		1.5 GD/s SMPTE 202M		3.0 Gb/s SIMPTE 424M	
Spec:	SMPT												
Application:		Composite N ISC		Composite PAL		Component Senal Video		Component Serial Widescreen		HD-SDI		1080p/50 1000p/60	
	11.		14.		н.		I L	m	н.	100	14.		
179DT	500	152	450	137	300	116	340	104	110	34	00	\sim	
1865A	040	247	200	232	(20)	1101	520	1543	120	3.9	N54	NW.	
8279	910	277	040	247	640	195	N¥A	976	N/A	97A	NA.	N/A	
1855A-7787A	800	259	950	290	790	201	610	207	250	79	150	46	
1855P	989	501	597	274	(42	226	643	198	108	59	125	59	
9209	1030	\$14	593	285	750	229	NFA .	974	N4/A	MVA.	NAA.	N/A	
9209A	1430	314	1094	288	60	228	ELV.	NIG	NAM.	Mith	NAA .	NW.	
1505.6.7784.6.	1162	4436	1360	415	1110	338	970	296	310	24	2523	67	
1505F	1065	354	10-00	317	630	253	7.10	216	215	- 66	14.5	44	
1506A	1365	415	1200	356	940	206	0.10	2417	2.54	77	165	~	
9231	1430	436	1270	387	1000	305	NEA	95A	NPA.	954	NAA.	NIA.	
9141	1432	136	1270	307	1000	305	NW	800	NoA.	965	NAA.	NW5	
112111	1430	435	1280	330	1000	305	NFA .	96A	N#A	NVA.	R!A	N/A	
0201 B	1430	435	1270	38.4	1000	305	NEA	16/A	N#2A	NVA	R!A	N/A	
82811-	1250	3811	1100	335	000	212	NEX	9.76	NAX.	N/A	R/A	B/A	
1894A-7710A	1850	572	1710	32.1	1420	438	1200	3.01	400	192	220	K2	
18941	1900	457	1360	415	1070	328	910	277	265	67	190	58	
1695A	1700	SIL	1550	472	1270	307	1090	2.32	.310	94	220	67	
(7)1A	27.50	0.20	2460	756	2010	622	1760	5.05	550	105	260	110	
77376	2630	802	2360	719	1920	585	1540	500	440	124	270	82	

The serial digital interconnect standards are designed to operate where the signal loss at 1/2 the clock frequency does not exceed the approximate loss value listed below. The maximum length values shown are tasked on ignorial length or does to the other design of the following only of

Waxement length - 30 dB loss at N2 the clock hequency. SMTPE 2009, PML, Wedesarcen-Maximum length = 30 dB lose at N2 the clock frequency: SMTPE 2029

Fiber Optic Design Basic Principles / What Signals / How Many Strands

Fiber Optic Design for Broadcast

Fiber Design Considerations & Questions

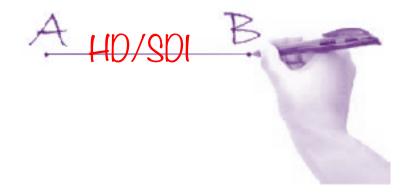
- What types of signals do you need to move?
- What direction? (one way or bidirectional)
- How far? (across campus, small studio)
- What fiber do you have currently in your facility?
- How many strands?
- Power? (SMPTE 311)
- Fiber Connectors (existing vs. new)
- Application? (live sports, news, fly pack, installed)
- Budget?

3ality Technica 3D Live Broadcast

From Point A to Point B....What do I Need?

One size fits all solution?

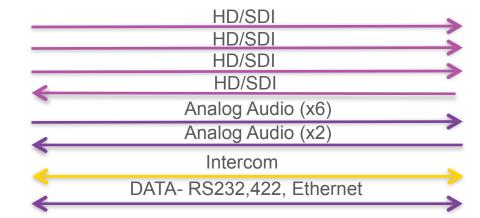
Is there one product to satisfy my needs Is the solution made up out of multiple products Scalable


Variations (product or fiber dependent)

Project Scope?

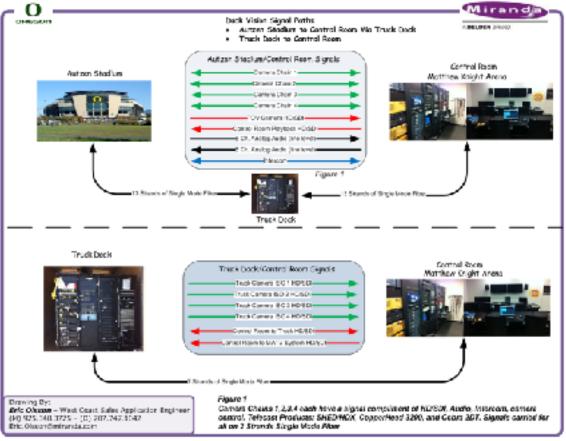
Simple

Single signal over one strand One type of signal (HD, Audio) Complex Single control room/multiple venue


Single control room/multiple venue CWDM



Determining a Fiber Solution



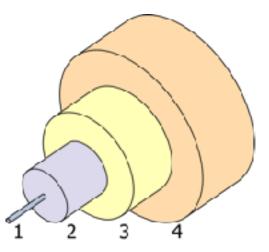
How Many Strands?

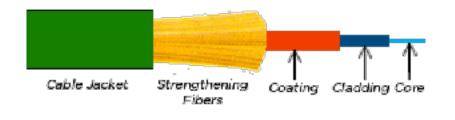
Budget Restrictions?

Sample Configuration Drawing

Fiber Science

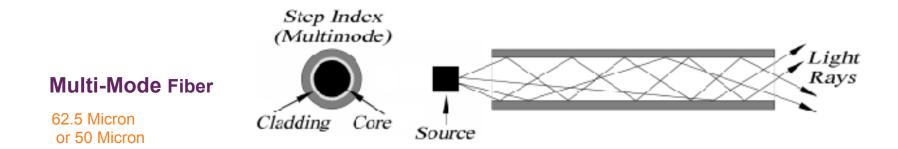
Under the Hood

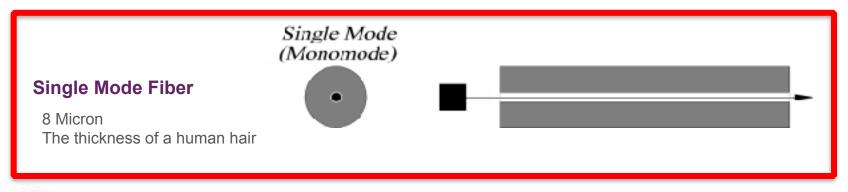




Fiber Properties

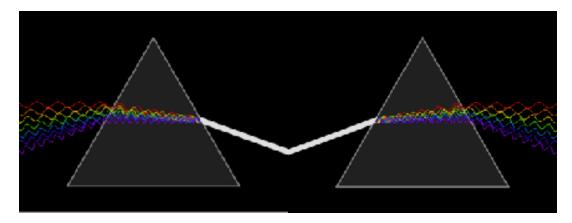
The structure of a typical single-mode fiber.

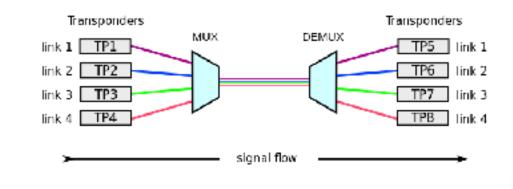

- 1. Core 8 µm diameter
- 2. Cladding 125 µm dia.
- 3. Buffer 250 µm dia.
- 4. Jacket 400 µm dia.



Multi-Mode Vs. Single Mode Fiber

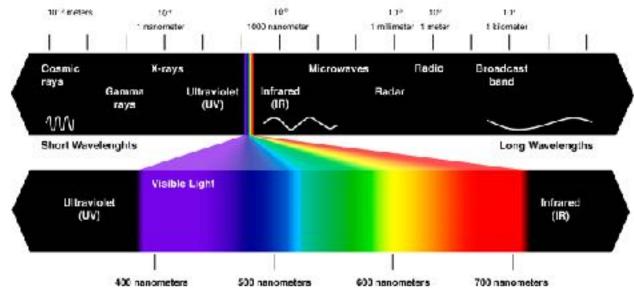
Fiber Drivers SFP



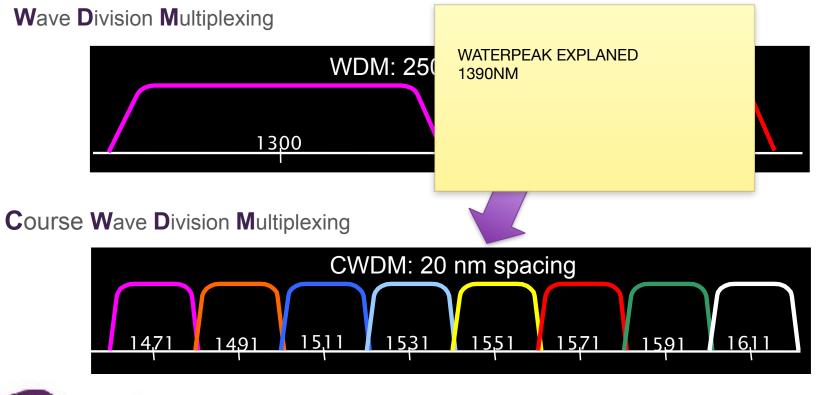


Multiplexing / Muxing

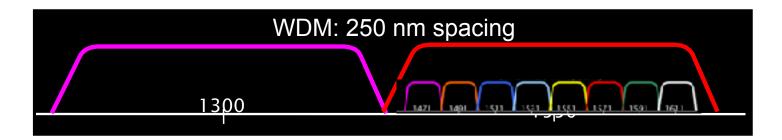
grass valley



wavelength-division multiplexing (WDM)


Typical Broadcast Wavelenths

- Infrared Light 850nm / 1300nm / 1550nm
- Wide Band, CWDM Wavelengths
- -10db to +0 to 3db optical power

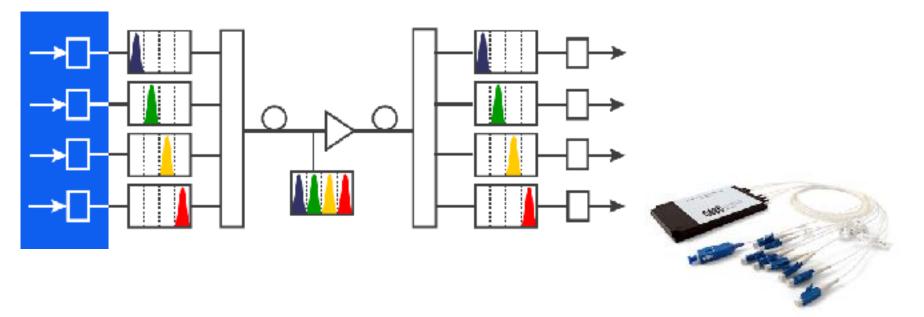


WDM /CWDM

<u>CWDM</u>

250nm spacing is cut up into 20nm increments

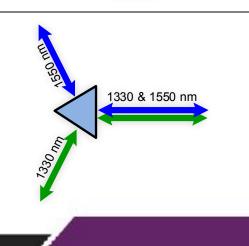
Band 1 (red band) 1471 / 1491 / 1511 / 1531 / 1551 / 1571 / 1591 / 1611


Band 2 (blue band) 1271 / 1291 / 1311 / 1331 / 1351 / 1371 / 1391 / 1411 / 1431 / 1451

Combines / separates 8 channels with a 20 nm spacing

<u>CWDM</u>

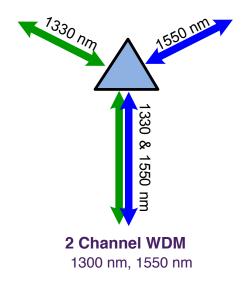
Combines / separates 8 channels with a 20 nm spacing

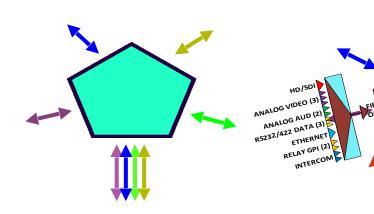


Multiplexing over Fiber

MULTIPLEXOR HD/SDI **Electronic Multiplexing** Combines multiple signals digitally, converts to a single wavelength ANALOG VIDEO (3) Time Division Multiplexing (TDM) ANALOG AUD (2) Frequency Division Multiplexing (FDM) FIBER RS232/422 DATA (3) OUT **Example: Telecast's CopperHead ETHERNET** Combines many signals <u>electronically.</u> **RELAY GPI (2) INTERCOM**

•Wave Division Multiplexing


- WDM, CWDM
- Optically combining several wavelengths of light
- Passive process combines and decombines light (Passive Prism)

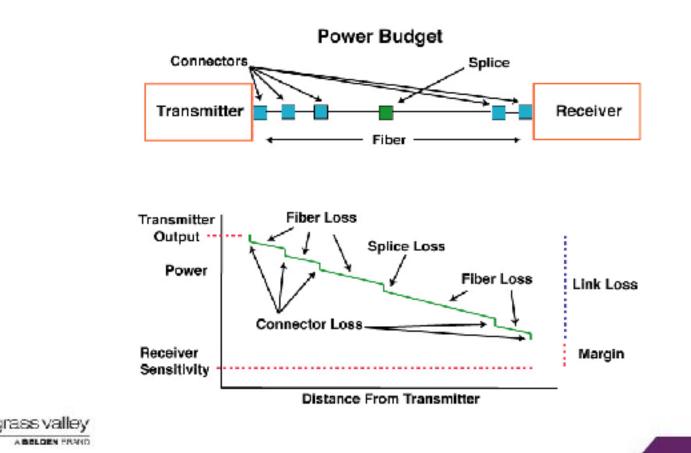


Wave Division Multiplexing

- WDM 2 channels
- Coarse WDM (CWDM) 4, 8,16, 18 channels

4-Channel CWDM ex: 1511, 1531, 1551 & 1571 nm 8-to 18 Channel CWDM ex: 1471, 1491, 1511, 1531, 1551, 1571, 1591 & 1611 nm

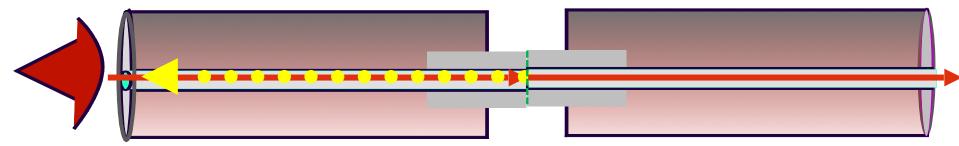
Calculate the Link Budget


• Calculation: Output of the transmitter minus maximum receiver sensitivity

Example:

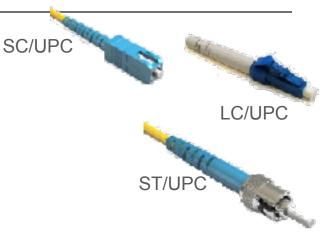
Calculating Optical Budget

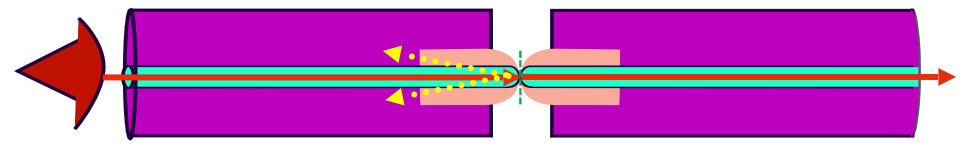
- Military Spec: tougher than triax, coax or wire cables
- Kevlar Reinforced
- TAC1, TAC2, TAC4, TAC6, TAC12
- OX[™] Reel, comes in 3 sizes SM, MD and XL
- Various connector options: MX, OpticalCON, Breakouts (ST, LC, SC, etc.)
- For field deployment, not infrastructure use


MX Expanded Beam

Connections: Flat Polish

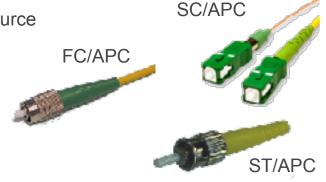
- ST, SC, LC, SMPTE Hybrid
- Critical Alignment butted together at 8 Microns!
- Back Reflections: up to 4% of the light reflected back to the source
- Average return loss: -40dB

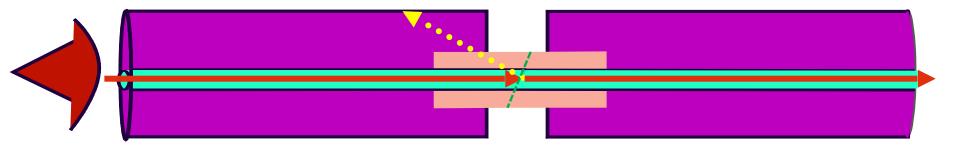




Connections: Ultra Polish

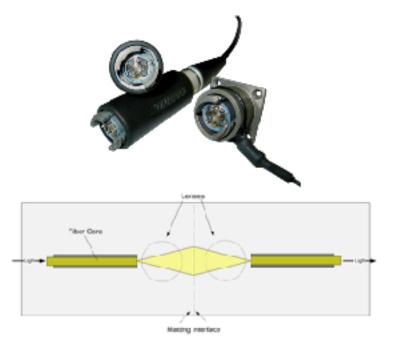
- ST, SC, LC, FC
- Back Reflections: up to .001% of the light reflected back to the source
- Average return loss: -55dB
- Blue denotes "UPC" for "Ultra-Polished Connector"





Connections: Angle Polish

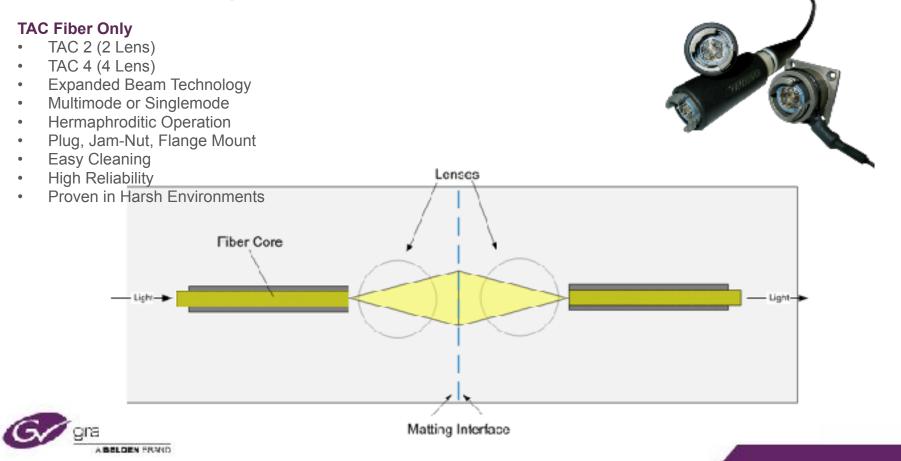
- Ferrule cut at 8-degree angle
- Back Reflections: up to .00032% of the light reflected back to the source
- Average return loss: -65dB
- Green denotes "APC" for "Angle-polished Physical Contact"



Harsh Environment Connectors

MX Expanded Beam Connector

Neutrik OpticalCON Duo/Quad



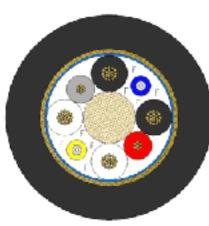
MX Mini-Expanded Beam Connector

Neutrik OpticalCON Connector

- OpticalCON system is based on LC-Duplex connectors
- Duo TAC 2
- Quad TAC 4
- Duo with Copper (powered) SMPTE Hybrid Fiber
- Eliminates LC weakness by Harsh Environment Housing
- Dust protected and rugged connection
- User Flexibility LC Design
- In use since 2005

opticalCON DUO

opticalCON QUAD


Hybrid Fiber Cable: SMPTE 311M

Single Mode Fiber + Power

- Two Single Mode fibers for HD plus all other signals
- Four Large Copper Conductors for High-Voltage
 power
- Two Smaller Copper Conductors for Low-Voltage "signal" (safety interlock)
- 16 gage steel strength member

ass valley

- One SMPTE Standard Connector: SMPTE 304M
- One other common connector: OpticalCON

COMPONENT DESCRIPTION	GTY
аткемати мемлек (семлек)	1
AUNILIWRY COND. (DEACK)	2
AUNILIARY GOND. (WHITE)	2
SIDNAL COND. (384W)	1
SIGNAL COND. (RED)	1
SINCLEMCCE HERE (PLUE)	٦
SINGLEMODE REER (VELLOW)	1
FILLER (F)	AS HEEDED
IS NOTER TAPE	1
CORPER BRAID	1
AAGRET (BLAGR)	1

SMPTE 304M

Keep it Clean!

Particle Migration:

- Repeated matings cause large particles break apart and migrate
- Dirt can spread from the cladding to the core after successive matings
- Dirt mated between connectors can be permanently embedded in the glass, making cleaning impossible
- Major loss of optical budget

Fiber Maintenance

#1 Field Issue with Fiber = DIRT

- · Clean all connectors and connection points
- · Many cleaning tools and fiber cleaning products
- Wet / Dry Cleaning
- Wet Cleaning
- Dry Cleaning

Wet / Dry Solution Cleaning Kit

ElectrO-Wash Wipes

IBC Click Cleaning Tool 1. Simplex or Duplex

- 2. ST, SC
- 3. LC
- 4. SMPTE 304M

Fiber Troubleshooting Tools

Tools for troubleshooting on set fiber issues

- An **optical power meter** (**OPM**) is a device used to measure the power in an optical signal. Many cleaning tools and fiber cleaning products
- **Visual Fault Locator** works as an end-to-end cable continuity tester that helps you diagnose and repair fiber link problems
- An **optical time-domain reflectometer** (**OTDR**) is an instrument used to characterize an optical fiber.

Optical Power Meter

Optical Fault Locator

OTDR- optical time-domain reflectometer