
iControl GSM Scripting Manual

GSM Scripting Manual

JavaScript support in iControl GSM builds on core JavaScript (ECMAScript). It further implements
E4X (ECMAScript for XML), which makes XML a first-class data type in JavaScript. This
document outlines the features that are specific to iControl GSM's implementation. The reader
is expected to have a basic understanding of JavaScript. If you need to learn or refresh your
memory, a good starting point is http://www.mozilla.org/js/scripting/.

Object hierarchy

�● navigator - Navigator
�● gsm - GSM

Classes

�● Gateway
�● GSM

�❍ GSMAlarm
�❍ GSMPlugin
�❍ ScriptedAlarmConsumerPlugin
�❍ SNMPManagerPlugin

�● KaleidoAlto
�● KaleidoK2
�● KaleidoX
�● Navigator
�● RCP100
�● Router
�● SNMPAgent

�❍ SNMPVarbind
�● SNMPPoller
�● SNMPResultEvent
�● SNMPTrapReceiver

�❍ SNMPTrapEvent
�● WorkBook

�❍ Spreadsheet
■ Row

■ Cell
�● XMLHttpRequest

Reference

Navigator

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (1 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 1

http://www.mozilla.org/js/scripting/

iControl GSM Scripting Manual

The Navigator object represents the GSM application as a whole. There is only one
Navigator object in the application, and it is accessible as the global variable navigator.

Property/Method Description

appCodeName Represents the internal code name of the application. Read-only.

appName Read-only property used to get the name of the application, for instance
"iControl GSM".

appVersion Read-only property used to get the application version string.

gsmAggregator Read-only property of type GSM referencing all the currently discovered GSM
services as one.

gsms[] Array of GSM objects indexed by the IP address of the corresponding
GSM server. The array also contains an entry for the gsmAggregator
under the key "aggregator".

language Read-only property used to get the language of the application.

routers[] An Array of Router objects representing the routers that have been discovered
on the network, indexed by their router IDs (as strings).

securityDomain Read-only property identifying the security domain path for the current
application. Will be null if security hasn't been enabled for a site.

vendor Read-only property used to get the vendor of the application.

connectCrosspoint() This method switches a single router cross point. It takes four parameters: the
router ID (string), and the level, source and destination (as numbers). It is
equivalent to navigator.routers[routerID].connectCrosspoint
(level, source, destination);

resetAllLatches() Resets all alarm latches for the application.

getAudioClip() This method takes a single parameter representing the fully-qualified URL of a
sound (WAV, AIFF, AU) file. The returned object can be controlled using its three
methods: play(), loop() and stop(). Note that the sound will be played on
the server running GSM; to play sounds on client computers, please refer to the
iControlWeb scripting manual.

getService(longId[,timeout]) This method returns a Jini service proxy which matches the supplied
longID. It is possible that the service needs to be discovered on the
network first, which could take some time. If the service can not be
found within the allowed time (as specified by the optional timeout
parameter, which is a number of milliseconds that defaults to 10000
(10 seconds)), undefined is returned. If a service is found but the
service proxy is incompatible (and therefore unusable), the method
will return null.

includeJS(script) This function is used to load an external JavaScript file into the
context of the navigator object. By using this method you can create
reusable JavaScript libraries. The parameter is an absolute URL to
load the script from, as a string.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (2 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 2

iControl GSM Scripting Manual

setTimeout() A utility method that schedules a task for execution after a given
delay. This method takes two parameters: a task and a timeout delay
(in milliseconds) before the task is executed. The task can be one of
two things: either a JavaScript Function or a script string to be
evaluated. In either case, this in the script refers to the Navigator.
One advantage of using a Function over a string is that the
environment where the function was defined remains accessible
inside the function (this is technically called a closure). The method
returns an object that can be saved and used to cancel the task later
on using clearTimeout().

clearTimeout() This method can be used to cancel a task that was previously
scheduled using setTimeout(). It takes a single parameter that must
be the object that was returned when the task was initially scheduled.

setInterval() A utility method that schedules a task for execution each time a given
time interval has elapsed. This method takes two parameters: a task
and an interval delay (in milliseconds) between task executions. The
task can be one of two things: either a JavaScript Function or a script
string to be evaluated. In either case, this in the script refers to the
Navigator. One advantage of using a Function over a string is that
the environment where the function was defined remains accessible
inside the function (this is technically called a closure). The method
returns an object that can be saved and used to cancel the task later
on using clearInterval().

clearInterval() This method can be used to cancel a task that was previously
scheduled using setInterval(). It takes a single parameter that
must be the object that was returned when the task was initially
scheduled.

sendEmail() This method can be used to send e-mails. It takes up to seven
parameters: the SMTP (mail) server host name or IP address, the list of
recipient e-mail addresses (comma separated string), the sender's e-
mail address, the subject, the message body, and optionally the
username and password if authentication is required with the SMTP
server. (since 3.01)

GSM

The GSM object represents the GSM service. It allows scripts to interact with the GSM service.
The local GSM service can be referenced using the global gsm object.

Property/Method Description

snmpPlugins[] An array of all the SNMPManagerPlugins indexed by the IP address of the corresponding
SNMP device.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (3 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 3

iControl GSM Scripting Manual

addAlarm() This method creates and publishes a new GSM alarm.

The method takes six parameters, all of type string: the alarm URI, the
alarm name, the alarm path (separated by / characters), the device class, the
device URI and the type of alarm ("status" or "text"). Alternately and
preferably, the alarm type (last parameter) can be specified as a
combination of numeric flags from GSMAlarm.TYPE_STATUS, GSMAlarm.
TYPE_TEXT and GSMAlarm.TYPE_NOT_LOGGED using the | operator.

Refer to the GSM user manual for more information on each of these
parameters.

The return value is a GSMAlarm, which can be used to update the status of
the alarm.

getAlarm() This method takes a single parameter of type string, representing the
alarm URI of the alarm you need, and it returns a GSMAlarm object which
contains the current information about the alarm (including its current
status). Note that it provides only a snapshot of the alarm, and will not
update in real time.

addVirtualAlarm() This method takes two parameters.

The first one, of type Object, describes the parameters of the virtual alarm.
This object must provide the necessary fields that describe the new virtual
alarm:

�● name (string),
�● path ("/"-delimited string),
�● mode (string: "AND", "OR" or "XOR"),
�● textLogic (optional string):

�❍ "null": no text logic (default)
�❍ "concatenate": concatenate texts from sub-alarms
�❍ "errors": list the sub-alarms that are in error

�● forIncident (optional boolean)
�❍ true: create as an incident template
�❍ false: create as a regular virtual alarm (default)

The second parameter can be simply an Array of alarm URIs (as strings)
representing the sub-alarms of the virtual alarm, in which case their
contribution will be all be PASSTHROUGH, or, if you want to specify other
contributions, it can be an associative array with the alarm URIs as string
keys and the contribution as numeric values (from the possible values
found in GSMAlarm: PASSTHROUGH, INVERT, CRITICAL, MAJOR, MINOR,
DISABLED, FAULTS_ONLY).

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (4 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 4

iControl GSM Scripting Manual

This method returns a GSMAlarm object referring to the newly created (or
modified) virtual alarm.

logEvent() This method takes two parameters: a GSMAlarm that the event relates to,
and a message string to attach to the event. Given those informations, it
will log an event that can later be seen in the GSM log viewer.

resetAllLatches() Resets all alarm latches for the application.

setFaultSeverities() Defines the severities that will trigger incidents. This method takes as parameter an array of
strings representing the statuses. The possible values are defined in GSMAlarm. The
default "fault" severities are: MINOR, MAJOR, CRITICAL, UNKNOWN.

eval() The eval() method takes a single string parameter representing
JavaScript code to be evaluated in the context of the remote GSM. It returns
the value returned by the evaluated script element. An example would be:

eval("navigator.appVersion;");

GSMAlarm

The GSMAlarm object encapsulates the concept of both an alarm descriptor and an alarm in a
single entity. It can be used to create a new GSM alarm descriptor and manipulate its status
over time, or to wrap alarm notifications received from other modules (in which case you won't
be able to modify most of the fields).

Property/Method Description

Constructor The constructor creates and publishes a new GSM alarm.

It takes six parameters, all of type string: the alarm URI, the
alarm name, the alarm path (separated by / characters), the
device class, the device URI and the type of alarm ("status" or
"text"). Alternately and preferably, the alarm type (last
parameter) can be specified as a combination of flags from
TYPE_STATUS, TYPE_TEXT and TYPE_NOT_LOGGED.

Refer to the GSM user manual for more information on each of
these parameters.

status Read/write dynamic property referencing the current status of
the alarm in GSM.

previousStatus Read/write dynamic property referencing the previous status of
the alarm in GSM.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (5 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 5

iControl GSM Scripting Manual

latchedStatus Read-only dynamic property referencing the current latched
status of the alarm in GSM.

previousLatchedStatus Read-only dynamic property referencing the previous latched
status of the alarm in GSM.

acknowledgementStatus Read-only dynamic property referencing the current
acknowledgement status of the alarm in GSM.

previousAcknowledgementStatus Read-only dynamic property referencing the previous
acknowledgement status of the alarm in GSM.

operationalMode Read-only dynamic property referencing the current operational
mode(s) of the alarm in GSM (OFFLINE or MAINTENANCE or a
combination of both).

This property is a bit-field, so to check if a given operational
mode (say, OFFLINE) is set, do something like:

if (alarm.operationalMode & GSMAlarm.OFFLINE)
{ // Deal with offline alarm here... }

previousOperationalMode Read-only dynamic property referencing the previous
operational mode(s) of the alarm in GSM (OFFLINE or
MAINTENANCE or a combination of both).

text The value of the text of the alarm, for a text alarm. This is a read/
write property.

uri This is a read/write property.

name This is a read/write property.

pathString This is a read/write property.

deviceClass A String that identifies the type of device this alarm is attached
to. This is a read-only property.

deviceURI A String that identifies the URI of the device to which this alarm
belongs. The device URI serves as a unique identifier for a device,
and all alarms that come from the same device have the same
URI. This is a read-only property.

timestamp A read-only Date property indicating the time at which the alarm
occured, as determined by the alarm publisher.

timecode A read-only string property indicating the timecode at which
the alarm occured, when known. The returned string is in the
form: "hh:mm:ss:ff". The value of the property might be null
when no timecode information is available.

type The type of the alarm, as a combination of flags from
TYPE_STATUS, TYPE_TEXT and TYPE_NOT_LOGGED (read-only).

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (6 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 6

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:Date

iControl GSM Scripting Manual

live This is a read/write property. If you created this alarm and then
set this property to false, the alarm will be destroyed and
removed from GSM. You can set this to true later to publish it
again.

resetLatch() This method resets the latch on the alarm in GSM.

acknowledge() This method acknowledges the alarm in GSM.

setOperationalMode() This method sets or unsets the specified operational mode on
the alarm in GSM. It takes two parameters of types int and
boolean. The first parameter specifies the mode, and the second
specifies whether to set or unset (true or false). Note: NO_MODE
cannot be used.

addAction() This method allows attaching of an alarm consumer GSMPlugin
to a given alarm. Whenever the alarm changes after that, the
plug-in will be notified.

removeAction() This method allows detaching of an alarm consumer GSMPlugin
from a given alarm. Whenever the alarm changes after that, the
plug-in will no longer be notified.

NORMAL A possible value for status.

MINOR A possible value for status.

MAJOR A possible value for status.

CRITICAL A possible value for status.

UNKNOWN A possible value for status.

DISABLED A possible value for status.

NON_EXISTENT A possible value for status.

PASSTHROUGH A possible contribution value for a sub-alarm. The sub-alarm's
status will be contributed as is to the overall status of a virtual
alarm.

INVERT A possible contribution value for a sub-alarm. The inverted value
of the sub-alarm's status will be contributed to the overall status
of a virtual alarm, based on the correspondences below.

 NORMAL -> ERROR
 MINOR -> NORMAL
 MAJOR -> NORMAL
 CRITICAL -> NORMAL
 NON_EXISTENT -> UNKNOWN
 PENDING -> PENDING
 DISABLED -> DISABLED
 UNKNOWN -> UNKNOWN

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (7 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 7

iControl GSM Scripting Manual

FAULTS_ONLY A possible contribution value for a sub-alarm. The contributed
status will be NORMAL unless the sub-alarm's status is a fault
(CRITICAL, MAJOR, MINOR).

NO_MODE The value of operationalMode when no mode is set.

OFFLINE A possible value for operationalMode.

MAINTENANCE A possible value for operationalMode.

TYPE_STATUS A possible value for the alarm type parameter of the constructor
and of the GSM.addAlarm() method. Can be combined with the
other types using the | operator.

TYPE_TEXT A possible value for the alarm type parameter of the constructor
and of the GSM.addAlarm() method. Can be combined with the
other types using the | operator. For instance, to create an alarm
that will have text and status, you can specify TYPE_TEXT |
TYPE_STATUS.

TYPE_NOT_LOGGED A possible value for the alarm type parameter of the constructor
and of the GSM.addAlarm() method. Can be combined with the
other types using the | operator. For instance, to create a text
alarm that should not be logged (say, because it changes too
often), you can specify TYPE_TEXT | TYPE_NOT_LOGGED.

GSMPlugin

The GSMPlugin object represents a GSM alarm provider or consumer plug-in.

Property/Method Description

Constructor The constructor instantiates a new GSM plug-in. The fully-qualified type of the
plug-in must be specified as the sole String parameter to the constructor.

The actual fields of the plug-in are defined by the plug-in itself, and therefore vary depending on the type of plug-
in instantiated. Refer to the plug-in documentation to know which properties are available and what they do. Some
of the most commonly used are listed below.

com.miranda.icontrol.gsm.server.plugins.consumers.ScriptedAlarmConsumerPlugin

onAlarm() Event handler that is called when one of the alarms this plug-in is attached to
changes. The method has a single parameter, the alarm object (a GSMAlarm).

All SNMP provider plug-ins

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (8 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 8

iControl GSM Scripting Manual

parameters[] A write-only property used to configure the plug-in. Each plug-in can define its
own properties to define its behavior, but all plug-ins support at least the
following properties: host, name and path, all of type string.

asyncParameters[] This property works just like parameters, except it executes asynchronously.
Setting parameters re-executes the plug-in, which in some instances may take
a long time (especially if the target device is momentarily down). If you don't
need to wait for the results of setting the parameters (you usually don't), using
asyncParameters will normally result in better perceived performance.

SNMPManagerPlugin

SNMPManagerPlugin is simply the type of the this object in the context of an SNMP manager
plug-in initialization script.

Property/Method Description

alarm References a GSMAlarm used to represent the status of the current plug-in. It's name
and path will be the ones specified by the user in the SNMP script dialog. This field is
read-only but can be used to modify the status of the plug-in as required.

alarms References an Array of all the alarms (as GSMAlarms that have been created by the
script, indexed by alarm URIs. This field is read-only.

host References the host name or IP address of the target SNMP agent as a String, as it
was entered by the user in the SNMP script dialog.

poller References an SNMPPoller object that automatically connects to the plug-in's target
agent host when you add specific object IDs to its list of SNMP variables to poll (read-
only).

snmp References an SNMPAgent object that automatically references the plug-in's target
agent host for SNMP operations (read-only).

onInit() The JavaScript function that initialized this plug-in instance, as specified by the user
in the SNMP script dialog.

NORMAL A possible value for alarm statuses, here for convenience.

WARNING A possible value for alarm statuses, here for convenience.

ERROR A possible value for alarm statuses, here for convenience.

UNKNOWN A possible value for alarm statuses, here for convenience.

DISABLED A possible value for alarm statuses, here for convenience.

NON_EXISTENT A possible value for alarm statuses, here for convenience.

SNMPAgent

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (9 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 9

iControl GSM Scripting Manual

The SNMPAgent object allows you to communicate with a single SNMP agent on a specific host.

Some parameters are used for many methods. The OID parameter is a String that looks
like ".1.3.6.1.2.1.1.3.0". The MIB parameter is a String representing the logical name of a
MIB as it is specified in the MIB file itself, for instance "RFC1213-MIB". The variable parameter is
a String representing the name of a MIB variable within the MIB, for instance "sysName". The
index parameter is a String that references a specific instance of a MIB variable on the target
host. For most variables, this is the default ".0"; however, for SNMP tables the index can be a
longer String with multiple keys. Finally the value parameter is a String represents the new
value of a given variable on the target host, and it should conform to the type described in the
MIB for that variable.

Property/Method Description

targetHost References the hostname or IP address of the target SNMP agent's host (read/
write String).

targetPort References the IP port of the SNMP agent host (read/write int).

retries References the maximum number of times a failed SNMP operation should be
retried before it fails (read/write number, default is no retry).

timeout References the maximum time (in seconds) to wait for a reply before the
attempt is considered a failure (read/write number, default is 5 seconds).

readCommunity The value of the read community string that will be used for read operations
on the remote agent. The default value is "public"

writeCommunity The value of the write community string that will be used when set() is
called. The default value is "private". When set to null, the value of
readCommunity will be used in place of writeCommunity. Agents typically use
the default value of "private" for the write community string.

get() Gets the value of an SNMP variable on the target host. There are three
variations:

�● get(OID)
�● get(MIB, variable)
�● get(MIB, variable, index)

getVB() Gets the variable binding (SNMPVarbind) representing an SNMP variable on
the target host. There are three variations:

�● getVB(OID)
�● getVB(MIB, variable)
�● getVB(MIB, variable, index)

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (10 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 10

iControl GSM Scripting Manual

getNext() Gets the value of the next SNMP variable on the target host. There are three
variations:

�● getNext(OID)
�● getNext(MIB, variable)
�● getNext(MIB, variable, index)

getNextVB() Gets the variable binding (SNMPVarbind) representing the next SNMP variable
on the target host. There are three variations:

�● getNextVB(OID)
�● getNextVB(MIB, variable)
�● getNextVB(MIB, variable, index)

getOID() Looks up a OID in an SNMP MIB. There are three variations:

�● getOID(OID)
�● getOID(MIB, variable)
�● getOID(MIB, variable, index)

set() Sets the value of an SNMP variable on the target host. There are three
variations:

�● set(OID, value)
�● set(MIB, variable, value)
�● set(MIB, variable, index, value)

Note that this requires that the MIB containing the variable definition be
loaded for this SNMPAgent already, even for the version that takes only the OID.
This is achieved by having performed any previous name look-up using the
MIB. The MIB is required to know what the data type of the variable is. In the
future, another version of the method will enable you to explicitely specify the
data type, for times when the MIB cannot be referenced.

sendNotification() This method is used to send an SNMP version 2c notification to the target
host. This method takes three parameters: the up time of the sending agent
(which is probably the localhost), the trap OID (as a string), and the variable
bindings.

The variable bindings parameter should be a JavaScript Array containing zero
or more instances of SNMPVarbind.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (11 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 11

iControl GSM Scripting Manual

sendTrap() This method is used to send an SNMP version 1 trap to the target host. The
method takes five parameters: the up time of the sending agent (which is
probably the localhost), the generic trap type (use the trapType constants
from SNMPTrapEvent), the specific trap type (a number defined by your
application), the enterprise OID (as a String) and finally the variable bindings.

The variable bindings parameter should be a JavaScript Array containing zero
or more instances of SNMPVarbind.

SNMPVarbind

The SNMPVarbind object is used to encapsulate SNMP variable bindings, essentially typed key/
value pairs. Variable bindings are commonly used, for instance, to send extra information in
the payload of an SNMP trap or notification.

Property/Method Description

constructor The constructor for SNMPVarbind takes up to three parameters: an OID (as a String),
a value (as a String, which will be converted appropriately depending on the value
of type) and a type (one of the available type constants, STRING being the default if
left unspecified).

oid The OID for this variable binding, as a read/write String.

value The value associated to the OID in this variable binding, as a read/write String. The
value will be appropriately converted to the correct SNMP type for types other than
STRING.

type The SNMP type of the variable, as one of the constants defined in SNMPVarbind. This
is a read/write property.

typeAsString A read-only String representation of the SNMP type of the variable.

BITSTRING A possible value for type.

COUNTER A possible value for type.

COUNTER64 A possible value for type.

GAUGE A possible value for type.

INTEGER A possible value for type.

IPADDRESS A possible value for type.

NSAP A possible value for type.

NULLOBJ A possible value for type.

OBJID A possible value for type.

OPAQUE A possible value for type.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (12 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 12

iControl GSM Scripting Manual

STRING The default value for type.

TIMETICKS A possible value for type.

UINTEGER32 A possible value for type.

UNSIGNED32 A possible value for type.

SNMPPoller

The SNMPPoller object is used to poll SNMP variables from an SNMP agent.

Property/Method Description

autoActive Normally, the poller will automatically start polling as soon as it has enough
information as to what needs to be polled from where. This property allows you
to override that behavior and not start polling until restartPolling() is called
explicitely. This is a read/write property.

debug This boolean field can be used to log all the SNMP PDUs received from the
remote agent. This is only useful to help diagnose problems with devices that
send PDUs that are not handled properly. This is a read/write property.

objectID References the SNMP object ID to poll, when there is only one. This is a read/
write property. See also objectIDs[].

objectIDs[] An Array referencing all the SNMP object IDs to poll. This is a read/write
property. See also objectID.

plugin If this poller was created by a plug-in, the plugin field refers to that plug-in.
This can be extremely useful when you need to have script variables that are
visible both to the plug-in initialization script and to the poller result handler.

pollInterval This references the interval (in seconds) between each polling attempt. This is a
read/write property. The default value is one (1) second, which in most cases is
probably too aggressive. Poller users should therefore normally always set a
value explicitely.

readCommunity The value of the read community string that will be used for read operations on
the remote agent. The default value is "public"

retries References the maximum number of times a failed SNMP operation should be
retried before it fails (read/write number, default is no retry).

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (13 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 13

iControl GSM Scripting Manual

sendTimeoutEvents A read/write boolean property specifying whether we should be notified of
timeout events, in order to handle errors explicitely. This option is enabled
(true) by default.

The events will be delivered via the onResult() event handler, just like polling
result. Use the event.success property in order to determine whether the
event is a polled value or an error report.

targetHost This references the target's host name or IP address, as a String. This is a read/
write property.

targetPort References the IP port of the SNMP agent host (read/write int).

timeout References the maximum time (in seconds) to wait for a reply before the
attempt is considered a failure (read/write number, default is 5 seconds).

addObjectID() This adds a single SNMP object ID (the String parameter) to the list of polled
objects.

removeObjectID() This removes a single SNMP object ID (the String parameter) from the list of
polled objects.

destroy() This method should be called when the poller is no longer required, in order to
release resources that it might be holding. In general, do not destroy a poller
unless you have created it or you have inherited its management explicitely.

restartPolling() This method is used to start the polling if it was stopped or never started (see
autoActive property).

NORMAL A possible value for alarm statuses, here for convenience.

WARNING A possible value for alarm statuses, here for convenience.

ERROR A possible value for alarm statuses, here for convenience.

UNKNOWN A possible value for alarm statuses, here for convenience.

DISABLED A possible value for alarm statuses, here for convenience.

NON_EXISTENT A possible value for alarm statuses, here for convenience.

onResult() The event handler that is invoked with poll results. It takes a single parameter,
of type SNMPResultEvent.

SNMPResultEvent

The SNMPResultEvent object represents a polling result obtained from an SNMPPoller object,
and passed as a parameter to its onResult() event handler.

Property/Method Description

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (14 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 14

iControl GSM Scripting Manual

error In case of a failure (success == false), this references a read-only error message
String.

OIDs[] An Array object referencing the list of SNMP object IDs (as Strings) for the variable
bindings in the result.

success Indicate whether the request succeeded (true) or failed (false). Timeouts and other
failure events are generated if the sendTimeoutEvents parameter is set to true in
the SNMPPoller.

values[] An Array object referencing the list of SNMP values (as Strings) for the variable
bindings in the result.

variables[] A JavaScript Array representing the SNMP variable bindings from the response PDU.
The array is indexed by the OID of the variables (as Strings), and the values in the
array are Strings.

SNMPTrapReceiver

The SNMPTrapReceiver object is used to receive traps from an SNMP agent host.

Property/Method Description

community References the SNMP community for this trap receiver, which is a read/write
String. The default value is null.

communityEnabled Indicates whether community name authentication should be enabled or not for
SNMP v1/v2 traps. This is a read/write boolean value with a default value of true.

debug This boolean field can be used to log all the SNMP PDUs received from the
remote agent. This is only useful to help diagnose problems with devices that
send PDUs that are not handled properly. This is a write-only property.

port References the local IP port to bind on to receive SNMP traps, as a read/write int.
The default value is 162. This will throw an exception if the port is already in use.

destroy() This method should be called when the trap receiver is no longer required, in
order to release resources that it might be holding. In general, do not destroy a
trap receiver unless you have created it or you have inherited its management
explicitely.

stop() Stops the reception of traps. Use start() to start receiving traps again.

start() This method is used to restart the trap reception after a call to stop().

onTrap() This is the event handler that is invoked when a trap is received. It takes a single
parameter of type SNMPTrapEvent.

SNMPTrapEvent

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (15 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 15

iControl GSM Scripting Manual

The SNMPTrapEvent object represents a trap that is received by an SNMPTrapReceiver object,
and passed as a parameter to its onTrap() event handler.

Property/Method Description

agentAddress References the host name or IP address of the agent host, as a String
(read-only).

community The SNMP community the trap was sent to, as a read-only String (typically
"public").

enterprise The trap enterprise OID, as a read-only String.

remoteHost The host name or IP address of the remote agent host, as a read-only
String.

remotePort The IP port of the remote agent host, as a read-only int.

specificType The specific type number for the trap received, as a read-only int.

trapOID References the trap OID present (as a variable binding) in an SNMPv2 trap,
as a read-only String. The value will be null for traps that are not
SNMPv2. As the information is sent as a variable binding, this is equivalent
to variables['.1.3.6.1.6.3.1.1.4.1.0'].

trapType The trap type of the received trap, as a read-only int. The value will be one
of the generic trap types (coldStart, warmStart, linkDown, linkUp,
authenticationFailure or egpNeighbourLoss), or enterpriseSpecific,
in which case the specificType field becomes relevant.

coldStart A possible value for trapType.

warmStart A possible value for trapType.

linkDown A possible value for trapType.

linkUp A possible value for trapType.

authenticationFailure A possible value for trapType.

egpNeighbourLoss A possible value for trapType.

enterpriseSpecific A possible value for trapType.

upTime The uptime value for a trap, as a read-only long.

variables[] A JavaScript Array representing the SNMP variable bindings from the trap
PDU. The array is indexed by the OID of the variables (as Strings), and the
values in the array are Strings.

version The SNMP version number from the trap PDU, as a read-only int.

ScriptedAlarmConsumerPlugin

The ScriptedAlarmConsumerPlugin represents the equivalent GSM plug-in and is the this

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (16 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 16

iControl GSM Scripting Manual

object within a script in the plug-in.

Property/Method Description

NORMAL A possible value for alarm.status.

WARNING A possible value for alarm.status.

ERROR A possible value for alarm.status.

UNKNOWN A possible value for alarm.status.

DISABLED A possible value for alarm.status.

NON_EXISTENT A possible value for alarm.status.

PENDING A possible value for alarm.status.

onAlarm() Event handler that is called when one of the alarms this plug-in is attached to
changes. The method has a single parameter, the alarm object (a GSMAlarm).

includeJS(script) This function is used to load an external JavaScript file into the context of the
scripted plug-in object. By using this method you can create reusable
JavaScript libraries. The parameter is an absolute URL to load the script from, as
a string.

Router

The Router represents an A/V router (or switcher) that has been discovered on the network.

Property/Method Description

name A read-only string property containing the router name.

type A read-only string property describing the type of router.

numLevels A read-only number property indicating the number of levels defined for
the router.

numInputs A read-only number property indicating the number of inputs/sources
defined for the router.

numOutputs A read-only number property indicating the number of outputs/
destinations defined for the router.

service Provides direct access to the router service.

connectCrosspoint() This method switches a single router cross point. It takes three number
parameters: the level, the source and the destination to connect (as
numbers).

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (17 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 17

iControl GSM Scripting Manual

getConnectedSource() This method returns (as a number) the currently connected source for a
given combination of level and destination (the two number parameters to
this method).

getSourceLabel() This method returns (as a string) the label of the specified source on a
given level. It takes two number parameters: the level index and the source
index.

getSourceIndex() This method returns (as a int) the one-based index of the specified source
label on a given level. It returns -1 if the label is not found. It takes two
parameters: the level index and the source label.

getDestinationLabel() This method returns (as a string) the label of the specified destination on
a given level. It takes two number parameters: the level index and the
destination index.

getDestinationIndex() This method returns (as a int) the one-based index of the specified
destination on a given level. It returns -1 if the label is not found. It takes
two parameters: the level index and the destination label.

lockCrosspoints() Locks a router destination at a given level. It takes three parameters: the
level and the destination (as numbers) and the lock message.

unlockCrosspoints() Unlocks a router destination at a given level. It takes two parameters: the
level and the destination.

isLocked() Tells whether a router destination at a given level is locked. It takes two
numeric parameters: the level and the destination.

takeSalvo() Execute salvo. It takes only one parameter: the salvo name as defined in
the salvo editor. If at least one crosspoint cannot be taken, none is taken.

KaleidoX

The KaleidoX object is used to communicate with a Kaleido X multi-image display device
from Miranda. The user is responsible for creating instances of this class, using the
constructor explicitly. The constructor requires a single argument string, representing the
host name or IP address of the Kaleido X you wish to talk to.

Property/Method Description

constructor The KaleidoX() constructor is used to specify the host name or IP address of the
remote Kaleido X unit to control. It takes a single string parameter representing
this address.

room This is the name of the room currently selected, or null when in the global
context.

rooms[] This Array contains the list of all rooms available on the KX, each one represented
as a string object containing the name of the room.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (18 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 18

iControl GSM Scripting Manual

audioOut A read/write property which can take four types of values:

null
To indicate that no audio source is currently being routed to the audio output on the
Kaleido.

a number
To indicate which audio card input is routed to the audio output on the Kaleido.

an object with input, group and aes properties
To indicate that an embedded audio is routed to the audio output on the Kaleido. The
object has three numeric properties named input, group (from 1 to 4) and aes (either
1 or 2) to indicate which embedded audio is used.

an object with host and feed properties
To indicate that an audio stream on the network is routed to the audio output on the
Kaleido. The object has two string properties named host (an IP address) and feed
(the ID of the feed to use from the specified host).

layout This is the name of the layout currently being displayed for the current room on
the KX, without the layout file extension (.kg2). Accordingly, it will only work in
the context of a specific room, i.e. when room is not null. It is a read/write string
value which can also be used to load a different layout for the current on the KX.

layouts[] This Array contains the list of all layouts available for the current room on the KX,
each one represented as a string object containing the name of the layout
without its extension. When in the global context, this will list all layouts in all
rooms using the following format: room/layout.

open() This method is used to open the connection with the KX gateway whose IP
address was specified in the constructor.

closeID() This method is used to close the connection with the KX gateway.

setText() This method is used to set any dynamic text component on the KX display. It takes
two string arguments representing the address or ID of the text component and
the value to be set.

setStatus() This method is used to set any status component on the KX display. It takes three
arguments representing the ID of the status component (as a string), the status
("OK", "DISABLE", "WARNING", "ERROR", or one of the GSMAlarm status constants)
and a status message (as a string).

setAssignment() This method is used to assign a channel to a monitor on the KX display. It only
works in the context of a specific room, i.e. when room is not null. It takes two
string arguments representing the full path to the channel (ex.: /Input A/
Channel 1) and the monitor name (which is available in the XEdit layout under
Properties | Assignments | Name).

KaleidoK2

The KaleidoK2 object is used to communicate with a Kaleido K2 multi-image display device
from Miranda. The user is responsible for creating instances of this class, using the

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (19 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 19

iControl GSM Scripting Manual

constructor explicitly. The constructor requires a single argument string, representing the
host name or IP address of the Kaleido K2 you wish to talk to.

Property/Method Description

constructor The KaleidoK2() constructor is used to specify the host name or IP
address of the remote K2 unit to control. It takes a single string
parameter representing this address.

audioOut A read/write property which can take four types of values:

null
To indicate that no audio source is currently being routed to the audio output
on the Kaleido.

a number
To indicate which audio card input is routed to the audio output on the Kaleido.

an object with input, group and aes properties
To indicate that an embedded audio is routed to the audio output on the
Kaleido. The object has three numeric properties named input, group (from 1
to 4) and aes (either 1 or 2) to indicate which embedded audio is used.

an object with host and feed properties
To indicate that an audio stream on the network is routed to the audio output
on the Kaleido. The object has two string properties named host (an IP
address) and feed (the ID of the feed to use from the specified host).

audioOutMode A read/write property specifying the current audio output mode. Valid
values are NORMAL, MUTE and -20dB.

audioOutVolume The audio monitoring volume, as a read/write numeric property ranging
between -90dB and 0dB.

layout This is the name of the layout currently being displayed on the K2, without
the layout file extension (.kg2). It is a read/write string value which can
be used to load a different layout on the K2.

This replaces the old getLayout() and loadLayout() methods, which
remain for backwards compatibility.

layouts[] This Array contains the list of all layouts available on the K2, each one
represented as a string object containing the name of the layout without
its extension.

This is also accessible using the getLayouts() method for backwards
compatibility.

openID() This method is used to open the connection with the K2 gateway. It takes
one single string argument representing the IP address of the K2.

closeID() This method is used to close the connection with the K2 gateway. It takes a
single string argument representing the IP address of the K2.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (20 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 20

iControl GSM Scripting Manual

getMetadata() This method takes a single parameter, the name (as a string) of a
multidata component configured with metadata (for instance XDS data)
on the K2. It returns an XML object representing the metadata published by
the component, as documented in the K2 gateway manual. The object can
be accessed using the E4X syntax. For example, to read the network name
of the station on input #5, you can write:

var metadata = k2.getMetadata(dataName);
var networkName = metadata.input.(@id==5).@networkName;

saveLayout() This method saves the current layout being displayed on disk. It takes a
single string parameter representing the name of the saved layout (no
extension).

setText() This method is used to set any dynamic text component on the K2 display.
It takes two string arguments representing the address or ID of the text
component and the value to be set.

setStatus() This method is used to set any status component on the K2 display. It takes
three arguments representing the ID of the status component (as a
string), the status ("OK", "DISABLE", "WARNING", "ERROR", or one of the
GSMAlarm status constants) and a status message (as a string).

setAssignment() This method is used to assign a channel to a monitor on the K2 display. It
takes two string arguments representing the channel name and the
monitor name.

setCountdownTimer() This method is used to configure countdown timers on the K2 display. It
takes four arguments representing the timer ID (as a string), the preset
time (a string in the "HH:MM:SS" format), the direction (a boolean value
of true for "DOWN" or false for "UP"), and the loop (a boolean value of
true for "ON" or false for "OFF").

resetCountdownTimer() This method is used to reset a countdown timer on the K2 display to its
original state. It takes a single string argument, representing the ID of the
countdown timer to reset.

startCountdownTimer() This method is used to start a countdown timer on the K2 display. It takes a
single string argument, representing the ID of the countdown timer to
start.

stopCountdownTimer() This method is used to stop countdown timers on the K2 display. It takes a
single string argument, representing the ID of the countdown timer to
stop.

fireAction() This method is used to fire any programmed actions on the K2. It takes a
single string argument representing the action name saved on the K2.

enableAlarmGroup() This method is used to enable any alarm group programmed on the K2. It
takes a single string argument representing the alarm group name saved
on the K2.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (21 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 21

iControl GSM Scripting Manual

disableAlarmGroup() This method is used to disable any alarm group programmed on the K2. It
takes a single string argument representing the alarm group name saved
on the K2.

KaleidoAlto

The KaleidoAlto object is used to communicate with a Kaleido Alto or Quad multi-image
display device from Miranda. The user is responsible for creating instances of this class, using
the constructor explicitly. The constructor requires a single argument string, representing the
host name or IP address of the Kaleido Alto or Quad you wish to talk to.

Property/Method Description

constructor The KaleidoAlto() constructor is used to specify the host name or IP
address of the remote Alto unit to control. It takes a single string
parameter representing this address.

audioOut A read/write property which can take three types of values:

null
To indicate that no audio source is currently being routed to the audio output
on the Kaleido.

a number
To indicate which audio card input is routed to the audio output on the Kaleido.

an object
To indicate that an embedded audio is routed to the audio output on the
Kaleido. The object has three numeric properties named input, group (from 1
to 4) and aes (either 1 or 2) to indicate which embedded audio is used.

Note that this requires version 3.01 or above of the Alto software.

audioOutMode A read/write property specifying the current audio output mode. Valid
values are NORMAL, MUTE and -20dB.

audioOutVolume The audio monitoring volume, as a read/write numeric property ranging
between -90dB and 0dB.

layout This is the name of the layout currently being displayed on the Kaleido,
without the layout file extension. It is a read/write string value which can
be used to load a different layout on the Kaleido.

This replaces the old loadLayout() method, which remains for backwards
compatibility.

layouts[] The (read-only) list of all layouts available on the Alto, as an Array of
strings (the names of the layouts without the extensions).

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (22 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 22

iControl GSM Scripting Manual

verticalOffset This write-only property specifies the number of lines (between 0 and 175)
to offset the graphics vertically on the display.

closeID() Closes the connection with the Alto gateway. It takes a single string
argument representing the IP address of the Alto.

fireAction() This method is used to fire any programmed actions on the Kaleido. It
takes a single string argument representing the action name saved on
the Kaleido.

ftpLayout() The ftpLayout() method is used to change the layout being displayed on
the Alto. It takes a single string parameter representing the name of the
layout as defined on the Alto. This uses the FTP interface on the Alto (not
the gateway). The other methods all use the gateway interface.

openID() Opens the connection with the Alto gateway. It takes a single string
argument representing the IP address of the Alto.

resetCountdownTimer() This method is used to reset a countdown timer on the Kaleido display to
its original state. It takes a single string argument, representing the ID of
the countdown timer to reset.

saveLayout() This method saves the current layout being displayed to disk. It takes a
single string parameter representing the name of the saved layout
(without an extension).

setAssignment() This method is used to assign a channel to a monitor on the Kaleido
display. It takes two string arguments representing the channel name
and the monitor name.

setCountdownTimer() This method is used to configure countdown timers on the Kaleido display.
It takes four arguments representing: the timer ID (as a string), the preset
time (a string in the "HH:MM:SS" format), the direction (a boolean value
of true for "DOWN" or false for "UP"), and the loop (a boolean value of
true for "ON" or false for "OFF").

setStatus() This method is used to set any status component on the Kaleido display. It
takes three arguments representing the ID of the status component (as a
string), the status ("OK", "DISABLE", "WARNING", "ERROR", or one of the
GSMAlarm status constants) and a status message (as a string).

setText() This method is used to set any dynamic text component on the Kaleido
display. It takes two string arguments representing the address or ID of
the text component and the value to be set.

startCountdownTimer() This method is used to start a countdown timer on the Kaleido display. It
takes a single string argument, representing the ID of the countdown
timer to start.

stopCountdownTimer() This method is used to stop countdown timers on the Kaleido display. It
takes a single string argument, representing the ID of the countdown
timer to stop.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (23 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 23

iControl GSM Scripting Manual

RCP100

The RCP100 object is used to communicate by an iControl RCP-100 control panel from Miranda.
The user is responsible for creating instances of this class, using the constructor explicitly. Note
that the RCP-100 unit must be placed in Router Follow mode for this to work.

Property/Method Description

constructor The RCP100() constructor is used to specify the host name or IP address of the
remote RCP-100 unit to control. It takes a single string parameter representating this
address.

close() The close() method is used to place the RCP-100 in a mode where no card is
selected and it is awaiting another command. It will normally show NO CARD
ASSIGNED on the LCD.

quit() The quit() method is used to release resources (sockets) that are used by this
object, when it is not required anymore.

show() The show() method is used to change the card currently under control in the RCP-
100. It takes a single string parameter representing the longID of the card to load.

showGroup() The showGroup() method is used to change the set of cards currently under control
in the RCP-100. The first argument to this method is an Array of longIDs (as
Strings) of the cards to load for selection. If a second String argument is added to
the method, it will be the longID of the card that should be pre-selected from the set
defined in the first argument.

Gateway

The Gateway object represents an iControl XML Gateway, which is used to communicate
with remote gateway-enabled processes using an XML-based protocol.

Property/Method Description

constructor The constructor takes up to two arguments: a string representing the host name or
IP address of the remote gateway you wish to control, and an optional port number
as a number (the default port is 14000).

sendCommand() Sends an XML command to the gateway (as a string). An exception will be thrown
if the gateway sends a NACK reply.

XMLHttpRequest

XMLHttpRequest is a JavaScript object that was initially created by Microsoft and later adopted

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (24 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 24

iControl GSM Scripting Manual

by Mozilla. You can use it to easily retrieve data via HTTP. Despite its name, it can be used for
more than just XML documents.

Property/Method Description

pollInterval This read/write numeric field indicates the interval (in milliseconds) to
use between successive requests for the HTTP page when using the
asynchronous mode of operation. If set to a positive non-zero value
prior to calling send(), the page will be requested repeatedly at the
specified interval until the value is set back to zero. The default value is
0, and if not modified it will result in a single HTTP request.

readyState Represents the state of the request. Read-only. The following values are
defined:

0 (UNINITIALIZED)
The object has been created, but not initialized (the open method has not
been called).

1 (LOADING)
The object has been created, but the send method has not been called.

2 (LOADED)
The send method has been called, but the status and headers are not yet
available.

3 (INTERACTIVE)
Some data has been received. Calling the responseText property at this
state to obtain partial results will return an error, because status and
response headers are not fully available.

4 (COMPLETED)
All the data has been received, and the complete data is available in the
responseText property.

responseText Represents the response entity body as a string. Read-only.

responseXML If you load an XML document, the responseXML property will contain
the document as an XMLDocument object that you can manipulate using
DOM methods. For loaded non-XML documents (whose Content-Type
header does not indicate XML content), the responseXML property is
null.

status Represents the HTTP status code returned by a request. Read-only.

statusText Represents the HTTP response line status. Read-only.

onreadystatechange() Specifies the event handler to be called when the readyState property
changes. Read/write.

abort() Cancels the current HTTP request.

getAllResponseHeaders() Retrieves the values of all the HTTP headers.

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (25 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 25

iControl GSM Scripting Manual

getResponseHeader() This method can be used to get an HTTP header from the server
response. It takes a single string parameter containing the case-
insensitive header name.

open() Initializes an HTTP request, and specifies the method, URL, and
authentication information for the request. It takes up to five
parameters, the last three of which are optional. The first parameter is
the HTTP method to use as a string, such as GET, POST, PUT, or
PROPFIND. The second argument represents the requested URL, either
relative or absolute. The third (optional) argument is a boolean
indicating whether the call is asynchronous, the default being true (the
method returns immediately). If set to true, attach an
onreadystatechange property callback so that you can tell when the
send() call has completed. The (optional) fourth and fifth arguments are
the username and password to use for authentication, if required.

send() Sends an HTTP request to the server and receives a response.

setRequestHeader() This method can be used to set an HTTP header on the request before
you send it.

WorkBook

The WorkBook object is used to represents an Excel workbook (file). Any of the sheets in
the workbook can be accessed as an array element with the spreadsheet index as an array index.

Property/Method Description

constructor The WorkBook constructor is used to build a parser on a given Excel (.xls) file. It
takes a single String parameter which represents the URL where the Excel file can
be found.

url References the URL of the currently loaded file.

Spreadsheet

The Spreadsheet object represents an Excel spreadsheet. Any of the rows can be accessed as
an array element with the row index as an array index.

Row

The Row object is used to represent a row in an Excel spreadsheet. Any of the cells can be accessed
as an array element with the cell column index as an array index.

Cell

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (26 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 26

iControl GSM Scripting Manual

The Cell object is used to represents a cell in an Excel spreadsheet.

Property/Method Description

value References the cell value. The value is read-only. The actual type of the value being
returned depends on the Excel cell format for that specific cell.

Quick reference

Connecting a router crosspoint:

navigator.connectCrosspoint("routerLongID", level, source, dest);

Performing different actions based on the alarm status when it changes (in a scripted action):

switch (alarm.status) {
 case alarm.NORMAL:
 // Handle normal status
 break;
 case alarm.WARNING:
 // Handle warning status
 break;
 case alarm.ERROR:
 // Handle error status
 break;
 case alarm.UNKNOWN:
 // Handle unknown status
 break;
 case alarm.DISABLED:
 // Handle disabled alarm
 break;
 case alarm.NON_EXISTENT:
 // Handle missing alarm
 break;
 default:
 // Some other (future?) value
 break;
}

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (27 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 27

iControl GSM Scripting Manual

To add a method to an object, you can use the following syntax:

myObject.myMethodName = function myMethodName() {
 java.lang.System.out.println("myMethodName called on object " + this);
}

Exception handling:

try {
 // This is where you put the code that could fail
} catch (exception) {
 // This is where you handle any exception that might occur
 // If no exception occurs, this code will be skipped
 java.lang.System.err.println("Exception caught: " + exception);
}

If your script fails in an unexpected way, where you didn't handle the generated exception, a default error message
will be shown. You can use explicit exception handling to show a different message or otherwise handle the
exception differently. It can also be used to gain more fine-grained control over the handling of exceptions in
your scripts. For instance, if your script needs to perform multiple actions, you can decide how the failure of the
first should affect the execution of the second. For instance, this will not attempt to execute action #2 if action #1 fails:

try {
 // Action #1
 // Action #2
} catch (exception) {
 java.lang.System.err.println("Exception caught in action #1 or #2: " +
exception);
}

Whereas this will attempt to execute action #2 whether action #1 fails or not:

try {
 // Action #1
} catch (exception) {
 java.lang.System.err.println("Exception caught in action #1: " + exception);
}
try {
 // Action #2
} catch (exception) {
 java.lang.System.err.println("Exception caught in action #2: " + exception);
}

A sample SNMP sysUpTime script:

this.sysUpTimeAlarm = gsm.addAlarm("snmp://" + host + "/RFC1213-MIB/sysUpTime",
 "Test SNMP poller",
 "SNMP/Pollers",

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (28 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 28

iControl GSM Scripting Manual

 "Generic SNMP device",
 "snmp://" + host,

 "text");

poller.objectID = snmp.getOID('RFC1213-MIB','sysUpTime'); // '.1.3.6.1.2.1.1.3.0';

poller.pollInterval = 1; // second

poller.onResult = function onResult(event) {
 if (event.success) {
 alarm.status = alarm.NORMAL;

 this.plugin.sysUpTimeAlarm.text = event.values[0];
 } else {
 alarm.status = alarm.ERROR;

 this.plugin.sysUpTimeAlarm.text = event.error;
 java.lang.System.err.println('Error: ' + event.error);

 }
};

Setting up an SNMP trap receiver:

trapper = new SNMPTrapReceiver();
trapper.onTrap = function onTrap(event) {
 java.lang.System.err.println("TRAP! agent: " + event.agentAddress

 + " community: " + event.community

 + " enterprise: " + event.enterprise

 + " uptime: " + event.upTime

 + " remote host: " + event.remoteHost + ":" + event.

remotePort

 + " trap type: " + event.trapType + " (" + event.

specificType + ")"

 + " version: " + event.version);

 for (i in event.variables) {
 java.lang.System.err.println(" " + i + " = " + event.variables[i]);

 }
};

Attaching a scripted action to scripted alarms:

// Assume virtualAlarms is an Array of GSMAlarms. These could have

// been generated any number of ways, for instance using calls to
// GSM.addVirtualAlarm(...)

// Create the alarm consumer (action) plug-in
var action = new GSMPlugin("com.miranda.icontrol.gsm.server.plugins.consumers.
ScriptedAlarmConsumerPlugin");

// Define the alarm handler of the action plug-in
// Parameter alarm is a GSMAlarm

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (29 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 29

iControl GSM Scripting Manual

action.onAlarm = function onAlarm(alarm) {
 java.lang.System.err.println("Alarm received: " + alarm.name

 + "=" + alarm.text);

};

// Attach the action to each virtual alarm; function onAlarm() will
// be called every time the alarm changes
for (i in virtualAlarms) {
 virtualAlarms[i].addAction(action);

}

Example of a channel assignment where channel information is obtained by parsing an Excel spreadsheet. Note that
in this example, the Channel class is an application-specific class.

var wb = new WorkBook("http://10.2.0.254/MBEInfo_4.xls");
this.allChannels = new Array();

function cellValue(cell) {
 return (cell == undefined) ? "" : cell.value;
}

for (var i = 0; i < 256; i++) {
 var channel = new Channel();
 channel.receiverID = cellValue(wb[0][i][0]);
 channel.ptcID = cellValue(wb[0][i][1]);
 channel.callLetter = cellValue(wb[0][i][2]);
 channel.cityID = cellValue(wb[0][i][3]);
 channel.affID = cellValue(wb[0][i][4]);
 channel.channelNumber = cellValue(wb[0][i][5]);
 channel.controlPhoneNumber = cellValue(wb[0][i][6]);
 channel.enginerName = cellValue(wb[0][i][7]);
 channel.engineerPhoneNumber = cellValue(wb[0][i][8]);
 channel.stationPhoneNumber = cellValue(wb[0][i][9]);
}

XMLHttpRequest examples

Basic usage

Using XMLHttpRequest is very simple. You create an instance of the object, open a URL, and send
the request. The HTTP status code of the result, as well as the result document are available in
the request object afterwards.

Example

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (30 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 30

iControl GSM Scripting Manual

var req = new XMLHttpRequest();
req.open('GET', 'http://www.mozilla.org/', false);
req.send(null);
if (req.status == 200) {
 dump(req.responseText);

}

Note that this example works synchronously, so it will block the user interface if you call this
from your JavaScript. You should not use this in practice.

Asynchronous usage

If you intend to use XMLHttpRequest from an extension, you should let it load asynchronously.
In asynchronous usage, you get a callback when the data has been received, which lets
the application continue to work as normal while your request is happening.

Example

req = new XMLHttpRequest();
req.open('GET', 'http://www.mozilla.org/', true);
req.onreadystatechange = function () {
 if (req.readyState == 4) {
 if (req.status == 200) {
 dump(req.responseText);

 } else {
 dump("Error loading page\n");
 }
 }
};
req.send(null);

$Id: GSMScriptingManual.html,v 1.97 2008/08/25 17:13:12 mcormier Exp $

file:///Users/stevo/Documents/iContrelWebScriptingManual/GSMScriptingManual.html (31 of 31) [09/09/08 2:23:36 PM]

iControl GSM Scripting Manual

09/09/2008 31

	Local Disk
	iControl GSM Scripting Manual

