

TECHNICAL DOCUMENTATION PACKAGE

MODEL 864XR CHASSIS FRAME TECHNICAL MANUAL

Manual 81-9059-0595-0 Rev B December, 2007

Thank You !! for purchasing your new video router from QuStream Corporation. We appreciate your confidence in our products. QuStream produces quality, state-of-the-art equipment designed to deliver our users the highest degree of performance, dependability and versatility available anywhere. We want you to know that if you ever have a concern or problem with a QuStream product, we have a team of engineers, technicians and customer service professionals available 24/7/365 to help resolve the issue.

Our commitment is to continue earning the trust and confidence of our customers throughout the industry by incorporating cutting-edge technology into the highest quality, most cost effective products on the market. And we would like to invite you to tell us how we're doing. If you have any comments or suggestions concerning your QuStream equipment, please contact our Customer Service Department.

Again thank you for choosing a QuStream product. All of us at QuStream look forward to a long-term partnership with you and your facility.

SERVICE AND ORDERING ASSISTANCE QuStream Group of Companies 103 Quality Circle Suite 210 Huntsville AL 35806 USA www.qustream.com

MAIN OFFICE Tel: 256.726.9200 Fax: 256.726.9271

<u>SERVICE DEPARTMENT</u> Tel: 256.726.9222 (24/7) Toll Free: 800.323.7372 Fax: 256.726.9268 Email: service@qustream.com

© 2007 QuStream Corporation, All Rights Reserved.

Cheetah is a trademark of PESA Switching Systems, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

No part of this publication (including text, illustrations, tables, and charts) may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, including but not limited to electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of QuStream Corporation.

All information, illustrations, and specifications contained in this publication are based on the latest product information available at the time of publication approval. The right is reserved to make changes at any time without notice.

Printed in the United States of America.

As of publication, this product had not completed FCC compliance testing.December, 2007

TABLE OF CONTENTS

Chapter 1: About This Manual	
1.1 Documentation and Safety Overview	
1.2 Warnings, Cautions, and Notes	
1.2.1 WARNING	
1.2.2 CAUTION	
1.2.3 NOTE	
Chapter 2: Introduction	
2.1 Cheetah 864 XR Product Overview	
2.2 Review of Core System Components	
2.2.1 Input Circuit Card Assembly	
2.2.2 Matrix Circuit Card Assembly	
2.2.3 Output Circuit Card Assembly	
2.2.4 Power Supply Module	
2.2.5 Control System	
2.2.6 Backplanes	
2.3 864 XR Frame Specifications	
Chapter 3: Installation	
3.1 Unpacking and Inspection	
3.2 General Chassis Installation Overview	
3.3 Choosing a Location	
3.4 Mounting The 864XR Chassis in an Equipment Rack	
3.4.1 Cheetah Chassis Mounting Procedure	
3.5 Connect Equipment Cables	
3.6 Cheetah Chassis Supply Power Connections (US Models)	
3.6.1 864XR Frame Primary Power	
3.7 International Power Requirements For Cheetah Chassis	
3.8 Video Input/Output Connections	
3.9 Rear Panel System Connections	
3.9.1 RS-232 Control Connectors COM 1 and COM 2	
3.9.2 RS-422 Control Connectors COM3/PRC and COM4	
3.9.3 System Control Alarm Connector	
3.9.4 PRC Loop Connector	
3.9.5 RCP Panel Port Connectors	
3.9.6 Network Connectors	
3.9.7 Frame Alarm Connector	
3.9.8 Auxiliary Frame Control Connector	
3.9.9 House Synchronization Input Connectors	
3.9.10 Output Monitor Connectors	
Chapter 4: Frame And Control Verification	
4.1 System Pre-start Verification Checklist	
4.2 System Startup	
4.3 Frame Control Verification	
4.3.1 Frame Control Verification Overview	
4.3.2 Frame Strobe Setting Verification	
4.3.3 Frame Control Verification Procedure	
4.4 System Control	
4.4.1 System Control Overview	

4.4.2	System Control Verification Procedure	
Chapte	r 5: Reference Data	
5.1	Reference Data Introduction	5-1
5.2	DIP Switch/Rotary Switch Settings for the 864XR Frame	
5.2.1	Chassis Level Codes (Strobes) Rotary Switch Settings	
5.2.2	Chassis Power Supply Backplane DIP Switch Settings	
5.2.3	Chassis Input/Output CCA Backplane DIP Switch Settings	
5.2.4	Chassis Matrix Backplane Rotary Switch Settings	5-3

LIST OF FIGURES

Figure 2-1 - 864XR Chassis – Front View	
Figure 2-2 - 864XR Chassis – Rear View	2-3
Figure 3-1 - Cables Attached To Supports	
Figure 3-2 - Power Supply Configuration (US Models)	
Figure 3-3 - Phase Relationships	
Figure 3-4 - Pigtail Cabling Conductors	3-7
Figure 3-5 - International Power Supplies Configuration	3-8
Figure 3-6 – 864XR Chassis – Rear View	
Figure 3-7 - Channel Assignments – I/O Card Slots 1 - 16	3-11
Figure 3-8 - Channel Assignments - I/O Card Slots 17 - 64	
Figure 3-9 - Channel Assignments - I/O Card Slots 65 - 112	
Figure 3-10 - RS-232 Control Connectors	
Figure 3-11 - RS-422 COM 3/PRC and COM 4 Control Connectors	
Figure 3-12 - System Control Alarm Connector	3-17
Figure 3-13 - System Alarm Cable Set and Associated Schematic	3-18
Figure 3-14 - PRC Loop Connector	
Figure 3-15 - RS-422 System Expansion Cable	
Figure 3-16 - RCP Panel Port Connectors	
Figure 3-17 - RS-485 Cable Construction	
Figure 3-18 - Network Connectors	
Figure 3-19 - Ethernet Connector	3-21
Figure 3-20 - Matrix Frame Controller and System Controller Card Locations, Slot A And Slot B	3-22
Figure 3-21 - Frame Alarm Connector	
Figure 3-22 - Frame Control Alarm Cable Connection and Circuit Schematic	3-24
Figure 3-23 - Auxiliary Frame Control Connector	3-24
Figure 3-24 - House Sync Input Connectors	
Figure 4-1 - PC to Frame Controller Connection	4-4
Figure 4-2 - 3500 Series Card DIP Switch Locations (Set For 9,600 Baud Rate)	4-6
Figure 5-1 - 144x144 Matrix Crosspoint CCA I/O Channel Assignments	5-2
Figure 5-2 - 864 XR Chassis And Level Code Switch Settings	5-4
Figure 5-3 - 864XR Power Supply Backplane DIP Switch Locations And Settings	
Figure 5-4 - Input/Output Backplane DIP Switch Settings	
Figure 5-5 - Matrix Backplane Rotary Switch Locations	5-7

LIST OF TABLES

Table 3-1 - Pigtail Cabling Conductor Power Connections	
Table 3-2 - AC Power Filter Assembly	
Table 3-3 – COM 1 and COM 2 Pin Assignments	
Table 3-4 - CPU Link Protocols	
Table 3-5 - Com 3/PRC Pin Assignments	
Table 3-6 – COM 4 Pin Assignments	
Table 3-7 - Ethernet LED Indicators	
Table 3-8 - Auxiliary Frame Control Pin Assignments	
Table 4-1 - 3500 Series Card S1 DIP Switch Settings	
Table 5-1 - Matrix Backplane Rotary Switch Settings	

Chapter 1: About This Manual

1.1 DOCUMENTATION AND SAFETY OVERVIEW

It is the responsibility of all personnel involved in the installation, operation, and maintenance of the equipment to know all the applicable safety regulations for the areas they will be working in. Under no circumstances should any person perform any procedure or sequence in this manual if the procedural sequence will directly conflict with local Safe Practices. Local Safe Practices shall remain as the sole determining factor for performing any procedure or sequence outlined in this document.

1.2 WARNINGS, CAUTIONS, AND NOTES

Throughout this document, you should notice various Warnings, Cautions, and Notes. These addendum statements supply invaluable information pertaining to the text that they address. It is imperative that audiences read and understand the statements to avoid possible loss of life, personal injury, destruction/damage to the equipment, and/or added information that could enhance the operating characteristics of the equipment (i.e., Notes). The following subsections represent a description of the Warnings, Cautions, and Notes statements contained in this manual:

1.2.1 WARNING

Warning statements identify conditions or practices that can result in loss of life or permanent personal injury if the instructions contained in the statement are not complied with.

1.2.2 CAUTION

Caution statements identify conditions or practices that can result in personal injury and/or damage to equipment if the instructions contained in the statement are not complied with.

1.2.3 NOTE

Notes are for information purposes only. However, they may contain invaluable information important to the correct installation, operation, and/or maintenance of the equipment.

Chapter 2: Introduction

2.1 CHEETAH 864 XR PRODUCT OVERVIEW

QuStream's Cheetah Series Video Matrix Switcher products are manufactured using a "building block" architecture of *core components* installed in a chassis frame that provides the infrastructure requirements of circuit card capacity, power, cooling and system control I/O connections. There are several different types of chassis frames in the Cheetah family, of which the 864XR is a member. Each frame is designed for a specific purpose – but most are built with a degree of flexibility to accommodate as wide a range of customer needs as possible. Circuit cards and modules identified as core components of all Cheetah switchers are introduced and discussed in the Core Components Technical Manual volume, supplied in the documentation suite.

While all frames do indeed serve the same basic purpose – to house the switcher "building block" components and provide the system infrastructure – component layout, internal signal routing through backplanes and mid-planes and frame-specific power supply components vary greatly between the frames. For this reason each frame type in the Cheetah family has its own Technical Manual Volume. All frame-specific data such as the items just mentioned plus connector locations, pin-outs and other pertinent information peculiar to the 864XR frame is contained in this Technical Manual.

Using the 864 XR frame and the Cheetah 144X144 Matrix CCA a routing switcher with the capacity of up to 864 inputs and 864 outputs can be configured in a single 41 rack unit (RU) frame. Table 2-1 indicates the maximum number of each core component type that can be installed in the 864XR frame. Figure 2-1 is a front view of the chassis layout with the access door open. Figure 2-2 is a rear view of the 864XR frame.

CORE COMPONENT MAXIMUM QUANTITIES FOR THE 864XR CHASSIS FRAME					
Input Buffer CCA ¹	Matrix CCA ¹	Output Combiner CCA ¹	Matrix Frame Controller CCA	System Controller CCA	Power Supply Module
54	36	54	2	2	8
¹ Indicated quantities are maximum number of cards each frame can support. Quantities of each CCA type will vary by matrix configuration.					

 Table 2-1
 Cheetah Series Active Components Matrix

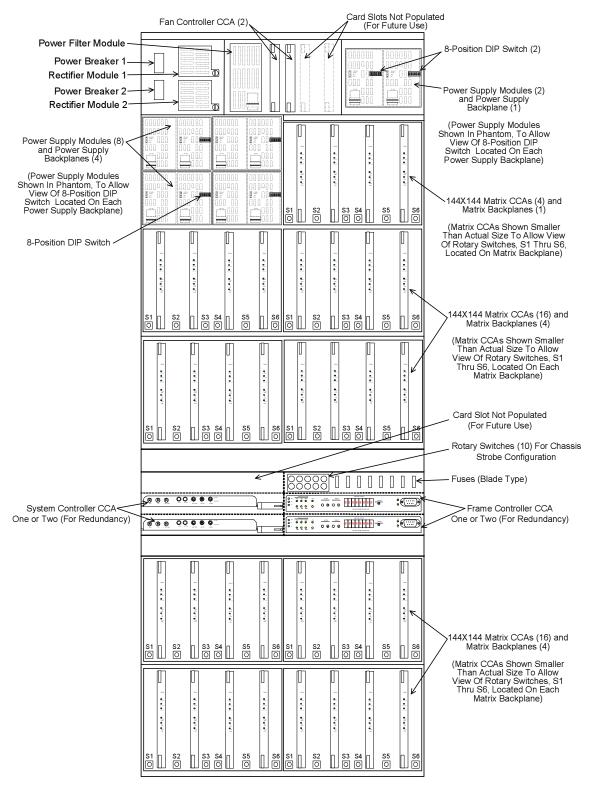


Figure 2-1 - 864XR Chasssis - Front View

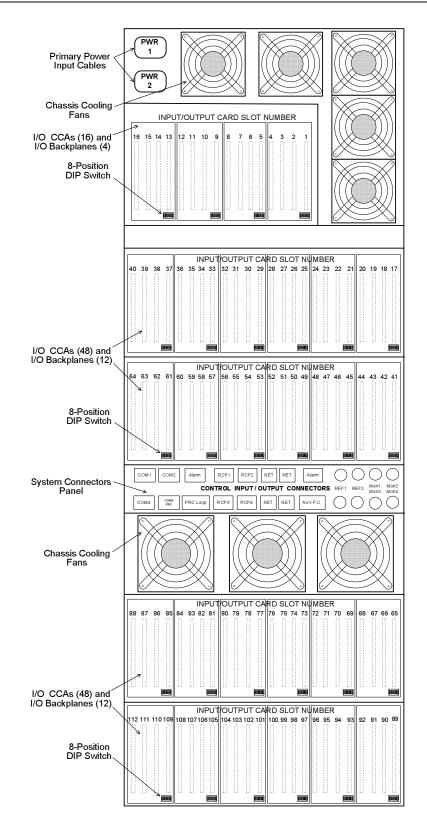


Figure 2-2 - 864XR Chassis - Rear View

2.2 **REVIEW OF CORE SYSTEM COMPONENTS**

The 864XR Frame is configured using combinations of the following Core System Components:

Input Circuit Card Assembly

Matrix Circuit Card Assembly

Output Circuit Card Assembly

Power Supply Module

Control System (System Controller CCA and Frame Controller CCA)

Each core component is identified and a very brief look at the function of each is provided in the following paragraphs.

2.2.1 INPUT CIRCUIT CARD ASSEMBLY

As the name implies, the Input Circuit Card Assembly (CCA), often referred to simply as the input card, is the entry point for video signals into the routing switcher matrix. Each input card accepts up to 16 video input signals from various sources. There are six input card variations in the Cheetah Series product line, to accommodate different input signal types.

Each input card, regardless of signal type, contains the cable equalization circuitry, buffer amplifiers and signal drivers used to condition the incoming signal prior to entering the switching matrix. Each input card also contains circuitry to monitor the status of the input channels, power rails and other operational functions.

Input cards are physically attached to the rear panel of the chassis frame and provide the input connectors for attaching signals to the switcher. Each card is equipped with two status LEDs on the edge of the assembly close to the bottom input connectors. The user can very quickly perform a visual assessment of the status of the input cards by observing the state of the LEDs.

2.2.2 MATRIX CIRCUIT CARD ASSEMBLY

Each Matrix Card is where the actual crosspoint switching function takes place. In all Cheetah variations, the matrix cards are installed inside the chassis frame and are accessible by opening the front access door. Each card is equipped with LEDs on the assembly edge so that the user can quickly assess the status of each matrix card in the system with a visual inspection.

2.2.3 OUTPUT CIRCUIT CARD ASSEMBLY

The Output Card is the exit point for video signals leaving the routing switcher and each card provides up to 16 video output channels. There are seven output card variations to accommodate different signal output types.

Each output card contains the necessary channel combiner circuitry, buffer amplifiers, re-clocking circuitry and driver amplifiers to generate the signal output for each channel. Voltage comparators monitor the status of the power rails. On-board programmed logic circuitry interprets data from the comparators along with data relevant to the status of the output channels and other card operational functions to provide a real-time status monitor as to the health of each output card.

Output cards are physically attached to the rear panel of the chassis frame and provide the connectors for accessing the signal outputs from the switcher. Each card is equipped with two status LEDs on the edge of the assembly close to the bottom connectors. The user can very quickly perform a visual assessment of the status of the output cards by observing the state of the LEDs.

2.2.4 **POWER SUPPLY MODULE**

Cheetah video routing switchers use common 600 Watt power supply modules that provide a fully regulated source of ± 28 VDC @ 22A for powering system components. The number of power supply modules used in a frame is dependent on several factors including the number of input, matrix and output cards required for system capacity and whether or not power redundancy is desired. Up to 8 Power Supply Modules may be installed in the 864XR Frame.

All of the power supply modules are physically and electrically identical. Each module is "hotswappable" for easy removal and replacement without any disruption of switcher outputs. Circuitry internal to the power supply continuously monitors the operational parameters, output voltage and current level and the module operating temperature. Three LED display devices on the front panel of each module allow the user to quickly perform a visual assessment of the status of each supply module by observing the state of the LEDs.

2.2.5 CONTROL SYSTEM

Every switcher configuration requires a Control System. In the Cheetah family there are two core components of the control system that reside within the chassis frame: the System Controller Card and the Frame Controller Card.

The System Controller Card resides in the matrix switcher frame, however the term System Controller refers collectively to the System Controller CCA and its associated board-resident firmware and a software application that runs on a Microsoft Windows based PC platform. In the Cheetah product line there are two variations of System Controllers: the 3500PRO and the PERC2000. Regardless of which control system is used (3500 or PERC), at least one system controller card must be installed in the chassis frame. Each chassis frame can support up to two system controller cards although only one controller card is required. A second system controller card may be installed for redundancy capability.

The Frame Controller Card also resides in the matrix switcher frame. Just as with the system controller card, each chassis frame can support up to two frame controller cards, although only one is required. A second frame controller card may be installed for redundancy capability.

Consider the System Controller to be the master overseer of the entire system. The system controller card communicates bi-directionally with the frame controller circuitry. Think of the Frame Controller as a slave that is subservient to its master – the System Controller. The Frame Controller circuitry orchestrates all system switching commands and all other control functions for the entire switcher frame. It is the job of the System Controller to keep the entire system running as it is programmed to do. The System Controller provides programming functions and interface functions to various types of control panels that may be used by facility operators to control operations of the entire switching system. Also, the system may be operated from a Windows based PC interfaced to the system controller and running the controller software application.

2.2.6 BACKPLANES

Note in Figure 2-1 that there are two power supply modules residing on each power supply backplane along with an 8-position DIP switch; and four matrix cards residing on each matrix backplane along with six rotary switches (S1 thru S6). In addition to the switches on the backplanes, also note the ten rotary switches used for chassis strobe configuration.

Figure 2-2 illustrates the rear panel of the chassis frame where the input and output cards are installed. Note in this figure that up to four input or output cards may reside on each I/O Backplane and that each backplane contains an 8-position DIP switch.

The DIP switches and rotary switches on the various backplanes and in the chassis frame are factory set to assign operational parameters to the system components. The switch settings assign such things as what channel numbers a bank of input or output cards will service, frame type, number of cooling fans, etc. Although the switches are set at the factory for every system, a guide to the proper settings for each switch peculiar to the 864XR Frame is included in Chapter 5 of this manual. This scheme of assigning identification to the backplane and interface ports allows full interchangeability between like CCAs in the system.

In every frame variation the input cards and the output cards are loaded through the rear panel card chassis into mating connectors located on an I/O backplane. Each card chassis is configured using I/O backplanes with four cards installed to each. All slots may or may not be used in a particular system dependent on the number of input and output channels and whether or not the output cards are fitted with option cards. When option cards are used, each output card will occupy two slots in the card chassis. In a typical Cheetah system, the input cards and output cards will be co-resident in the card chassis. Be aware that although input cards and output cards can be co-resident in the card chassis, they CAN NOT be co-resident on the same backplane. Each I/O backplane in the chassis is designated as either an input or an output backplane.

2.3 864 XR FRAME SPECIFICATIONS

Physical

i nysicai	
RUs	
Height	
Width	
Depth	
Weight	
	(May weigh less depending on configuration)
Supply Power Requirements	
Operating voltage	
Power consumption	
Power Supplies	
DC Input (from the source rectification	filter/breaker assy.)
DC Output	
Maximum Output Watts	
Digital Electrical Signals for Inputs	
Standards:	High Definition video conforming to SMPTE 292M
Connector Type:	
Impedance:	
Cable Equalization:	HD Automatic up to 100 meters, Belden 8281
	SD Automatic up to 300 meters, Belden 8281

Continued

Electrical Signals for Outputs

Connector Type:			
Signal Level:			
Signal Polarity:	Non-inverting with respect to input ports		
Impedance:			
Return Loss:	HD $>$ 15 dB from 5MHz to 1.5 GHz		
	\dots SD >15 dB from 5MHz to 540 MHz		
Optical Signals (Fiber Optics) for Inputs (Receivers)			
Connector Type:	SFP modules w/LC-type (fiber card)		
Data Rates:			
Optical Input Wavelength	Single Mode, 1200 to 1600 nm		
Input Power	20 dBm (minimum)		
Optical Signals (Fiber Optics) for Outputs (Transmitters)			

Connector Type	SFP modules w/LC-type (fiber card)
Data Rates:	
Optical Output Wavelength	Single Mode, 1310 nm, ±20 nm
Output Power	11 dBm

Optical Loss Budget

Signal Operational Specifications

Polarity:	
Re-clocking SD:	Automatic selection of 143 Mb/s, 177 Mb/s, 270Mb/s,
Re-clocking HD:	Automatic selection of 143 Mb/s, 177 Mb/s, 270 Mb/s, 360 Mb/s,

Reference (Sync) Inputs

No. of Inputs:	
Connector:	
Return Loss:	
Signal Formats:	NTSC, PAL (Black Burst), or HD Tri-Level
	Sync per SMPTE 274, SMPTE 276 M
Signal Level:	Nominal 1.0 V p-p ±6dB
	Continued

DAC Card Specifications

Connector Type:	
Connection/Card:	
Conversion:	
Over sampling:	
Output:	NTSC/PAL

Cooling

Internal cooling fans with auto sensing speed adjustments

Control

Panel Com:	
Control Com:	RS-232 or PESA PRC for 3500 Series System
Connector Type:	

Environmental

Operating Temperature:	.0-40 °C
Operating Humidity:	ndensing

Standard Analog Video Input Characteristics

Level:	1.0V P-P nominal, 2.0V P-P max.
Impedance:	
Return Loss:	
Coupling:	Direct (DC)
Туре:	Balanced
Connector:	BNC

Standard Analog Video Output Characteristics

Level:	1.0V P-P nominal, 2.0V P-P max.
	(Without obvious distortion)
Impedance:	
Return Loss:	> 40 dB to 5.0 MHz
	> 15 dB to 50 MHz
Coupling:	Direct (DC)
DC on Out:	
Connector:	BNC
Number:	One (Two Optional)

Continued

Standard Analog Video Gain Characteristics	
Gain:	Unity
Gain Stability:	<±0.1 dB max.
Gain Adjust Range:	±0.5 dB
Standard Analog Video Linear Distortion	
Frequency Response:	
Vertical Tilt:	
Horizontal Tilt:	
Low Frequency:	
Standard Analog Video Pulse and Bar Responses	
Factor (2T) Bar Slope:	
Pulse/Bar Ratio:	
Pulse Sharp:	
*	
Standard Analog Video Chrominance/Luminanc	
Gain Inequity:	
Delay Inequity:	±1.0 ns
Standard Analog Video Non-Linear Distortions	
Note : All tests: 10 to 90% @ 3.58MHz of	or 12.5 to 87.5% @ 4.43Mhz.
Differential Gain:	0.25% @ 4.43 MHz
Envelope Delay:	<2.0ns, 50MHz to 85 MHz
Differential Phase:	0.25° @ 4.43 MHz
Line Time Non-Linearity:	
Transient Gain:	1.0% (Luminance, Chrominance, or Sync)
Video o Video Crosstalk:≤ -60 dB	
Standard Analog Video Switching Characteristic	'S
Switching Time:	≤ 1.0 µs
Switching Transient:	
Differential Delay (any Input to any Output)	**
	13.5° @4.43 MHz
Standard Analog Video Signal to Noise	
Video Filter:	70 dB RMS Noise to P-P Signal to 5.0 MHz
	Contin

High-Level Analog Video Input Characteristics

Level:	±5.0 V, Referred to Ground
Impedance:	
Return Loss:	
	> 15 dB to 50 MHz
Coupling:	Direct (DC)
Туре:	
Connector:	BNC

High-Level Analog Video Output Characteristics

Level:	
Impedance:	
Return Loss:	
Coupling:	Direct (DC)
DC on Out:	
Connector:	BNC
Number:	

High-Level Analog Video Gain Characteristics

Gain:	Unity
Gain Stability:	<±0.1 dB
Gain Adjust Range:	±0.5 dB

High-Level Analog Video Linear Distortion

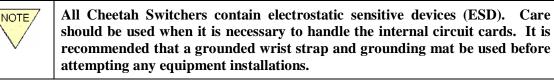
Frequency Response:	
	$\pm 0.5 \text{ dB to } 35 \text{ MHz}$
	-3.0 dB @50 MHz
Vertical Tilt:	
Horizontal Tilt:	
Crosstalk:) dB to 5.0 MHz (All Inputs and Outputs Hostile)
High-Level Analog Video Signal to Noise	
Signal to Noise:	70 dB, RMS Noise to P-P Signal to 5.0 MHZ

All Cheetah video matrix switchers offer alarm support, switch confirmation, block checking, and power-out-of-range indicators. Features include:

- Full feature control system using either standard PESA PRC Control or PESA Network Control
- Video and data signal from 3Mb/s to 1.5 GB/s
- Conforms to SMPTE 259M and 292M
- Input EQ to 300M SD, 100M HD
- Bypass mode for non-standard data signals
- Full redundant controllers available
- N+1 redundant internal DC power; full redundant AC power
- All modules are hot-swappable for on-air maintenance

Chapter 3: Installation

3.1 UNPACKING AND INSPECTION



This equipment contains electrostatic sensitive devices (ESD). Use a grounded wrist strap, grounding mat, and/or comply with local established ESD procedures when handling the internal circuit cards to prevent destruction from electrostatic discharge.

Immediately upon receipt, inspect all shipping containers. Carefully unpack the equipment and compare the parts received against the packing list. If any parts appear to be missing or damaged, please contact QuStream immediately.

3.2 GENERAL CHASSIS INSTALLATION OVERVIEW

The physical size of each Cheetah Series Switcher chassis is determined by the chassis input/output capabilities. If specified when ordered, each Cheetah Switcher will be configured for the intended system at the factory. Before attempting to install any frame, matrix card, controller card, or power supply, carefully read and understand this section.

3.3 CHOOSING A LOCATION

For local electrical compliance, this equipment should be located near the primary power disconnect/breaker so that the AC supply disconnect is easily accessible.

This equipment is designed for installation in a standard 19" equipment rack located in an environment conforming to the specifications for each chassis. Locate each unit as close as possible to its associated equipment to minimize cable runs.

Consider the connection from this equipment to the supply circuit, and the effect that possible overloading can have on overcurrent protection circuits and supply wiring. Refer to nameplate ratings when addressing this concern.

3.4 MOUNTING THE 864XR CHASSIS IN AN EQUIPMENT RACK

The weight of a fully loaded 864XR chassis frame exceeds 650 lbs nominal. Installation or removal of this equipment requires at least four persons in order to avoid possible personal injury or equipment damage. Install this equipment in such a manner as to avoid any tipping hazard from uneven loading of the equipment.

Make sure that all power is disconnected and the chassis breakers are in the OFF position before installing the specific frame into the rack.

Fans mounted on this equipment provide forced-air cooling. Do not block airflow around these fans. Replace all service panels and blank filler plates. Keep the front access door closed during normal operation.

This equipment is designed for installation in a standard 19" equipment rack. Provide sufficient space behind the equipment racks to allow for control, signal, and power cables. Use all chassis mounting holes, and tighten mounting hardware securely by using the rack equipment manufacturer's suggested torque settings.

This unit is extremely heavy. Maneuvering and installation of this unit requires caution, planning, and adequate resources in order to prevent injury to personnel and/or damage to the equipment. It is strongly suggested to implement as many persons, jacks, blocks, etc., as possible to eliminate any unsafe condition that could result during the chassis mounting phase of installation.

3.4.1 CHEETAH CHASSIS MOUNTING PROCEDURE

The following steps should be performed to reduce the weight of the system thus making it slightly easier to maneuver.

- 1. Have the wooden shipping crate standing upright before opening the crate.
- 2. Remove all the lag bolts from the top and sides of the wooden crate.
- 3. Using ESD precautions, remove the power supply modules from the top of the unit.

Prior to performing the next sequence, careful measurements should be completed to insure the proper location and alignment of equipment rack's screw holes to the Cheetah chassis.

- 4. Using a pallet jack or similar equipment, align and place the 864XR Chassis as close as possible to the equipment rack opening where it will be installed.
- 5. Using as much manpower as necessary, CAREFULLY move the 864XR chassis from the wooden pallet to the equipment rack and slide the chassis into position in the rack.
- 6. With the chassis installed in the equipment rack, install the rack screws in the chassis ensuring that the unit is firmly and adequately secured to the equipment rack.

3.5 CONNECT EQUIPMENT CABLES

Once the Cheetah Video Matrix Frame is installed in the equipment rack, the associated system connections can be completed. The order of completion of installation steps is not critical, however, DO NOT apply power to a frame until all of the video signal, sync and control cables have been installed and their connections verified for proper placement and accuracy. Use the following guide to insure that all connections are made properly and that power, system interconnect and video signal cables are correctly installed.

Use the following guidelines when connecting equipment cables:

Install the equipment in the rack before connecting cables.

Relieve strain on all cables to prevent connector separation.

To the greatest extent possible, separate control, signal, and power cables to minimize any possible crosstalk or interference.

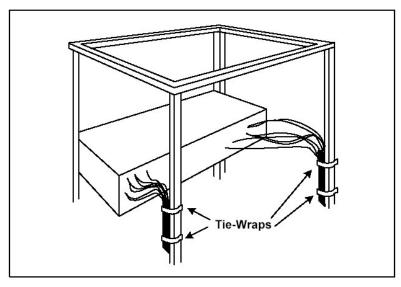


Figure 3-1 - Cables Attached To Supports

Use as many cable ties as necessary to secure cables to the rack, as shown in Figure 3-1. This will provide cable strain relief and help route cables away from hazardous areas.

Route cables away from physical traffic areas to avoid creating a safety hazard (trip or shock).

3.6 CHEETAH CHASSIS SUPPLY POWER CONNECTIONS (US MODELS)

The 864XR chassis frame has two AC (or DC) primary power input cables. As shown in Figure 3-2, each AC power input is rectified and routed to the filter assembly.

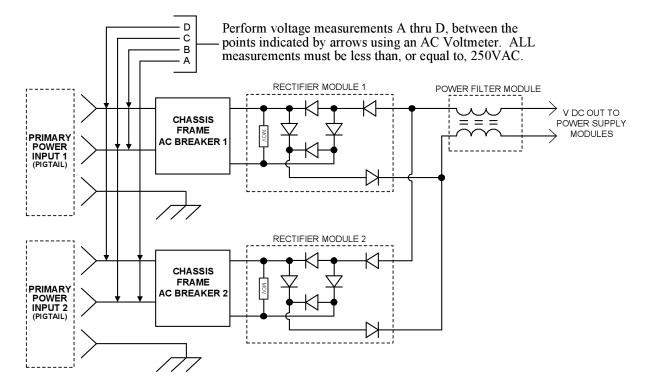
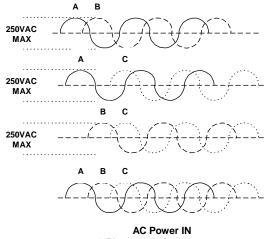
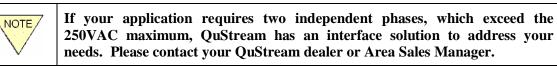
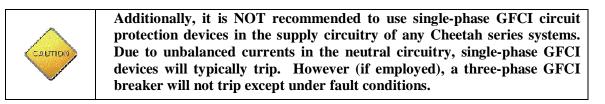



Figure 3-2 - Power Supply Configuration (US Models)

WARNING: The maximum applied voltage to either of the AC power inputs must not exceed 250VAC. In addition, the maximum applied voltage across both AC power inputs must not exceed 250VAC at any time. Whenever two phases of a three-phase power source are applied using different phases on each power input, the voltage between the phases must not exceed 250VAC. Failure to heed this warning will result in serious equipment damage.

Figure 3-3 depicts a typical two-phase and three-phase AC line-phasing scenario. Note that in the three-phase line voltage, each voltage phase is 120 degrees out of phase with the other two voltage phases.





3 Phase; 120 degrees apart MAX 250VAC between any two phases

Figure 3-3 - Phase Relationships

Additionally, systems with one AC power input supplied from a normal, "in-house" AC line and the other AC power input supplied from an external generator *must insure* that, regardless of the voltage-phase relationship between the external generator and the "in house" AC line, the maximum applied voltage between the two AC power inputs *does not exceed 250VAC*.

3.6.1 864XR FRAME PRIMARY POWER

STOP	Make sure that all power is disconnected and the chassis breakers are in the OFF position before completing the specific power connections.
CAUTION	 To prevent damage to the equipment: Read all instructions for proper input voltage ranges. Use only a power circuit with the specified current capacity. Follow static prevention precautions prior to handling equipment.

3.6.1.1 Power Cabling and Circuit Breakers

The 864XR chassis is supplied with a power cabling assembly (see Figure 3-4) that meets and/or exceeds the requirements for dedicated input service lines rated for 200-240VAC at 30 amps minimum. Two main circuit breakers are mounted on the front side of the 864XR frame in the upper left corner. Table 3-1 describes the power connections for the associated pigtail cabling conductors.

Color Code	200-240V
Green/Yellow Stripe	Safety Ground
Blue	AC Line
Brown	AC Line

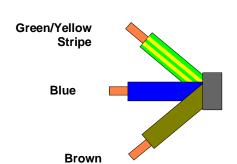
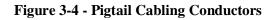
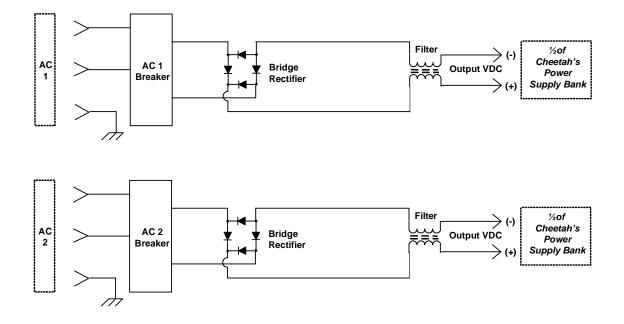



 Table 3-1 - Pigtail Cabling Conductor Power Connections

3.6.1.2 External AC Power Requirements

Each 864XR chassis is supplied with pigtail cabling (see Figure 3-4 and refer to Tables 3-1) rated for 200-240VAC at 30 amps. The router is to be connected only to a dedicated service line capable of providing the power source specified in Table 3-2.


 Table 3-2 - AC Power Filter Assembly

AC Power Cable	Minimum Amps Required	Service Drops
200-240V Attached Power Cable Pigtails	30A Service	1-Standard 1-Redundant

3.7 INTERNATIONAL POWER REQUIREMENTS FOR CHEETAH CHASSIS

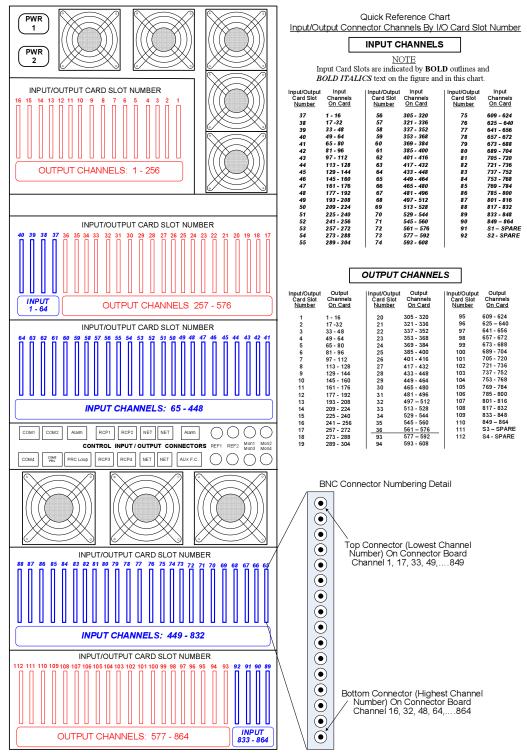
All 864XR frames have two AC (or DC) main power feeds. For international use only, these power feeds are isolated from each another through a special wiring configuration that is completed at the factory (Figure 3-5).

Figure 3-5 - International Power Supplies Configuration

In each Cheetah assembly, the entire power supply backplane is divided in half and each half is powered and isolated separately. The following apply to the Cheetah international supply power inputs:

- Two banks of power supplies are required in each Cheetah switcher assembly and each bank must be capable of supplying ALL of the power that is required by the specific Cheetah switcher.
- Both banks must be powered under normal conditions.
- Loss of either AC supply power feed is considered a fault condition.
- When experiencing a loss of one AC supply power feed (fault condition), the remaining supplies will typically operate at 100% of their rated load. An increase in chassis operating temperature is normal as the supplies are typically changing from approximately 50% load to approximately 100% of their rated load.

WARNING: The maximum applied voltage between any leg of either of the isolated AC power inputs must not exceed 250VAC. In addition, the maximum applied voltage between any leg of one AC input and any leg of the other AC power input must not exceed 380VAC nominal at any time. That is, whenever two phases of a three-phase power source is applied using different phases on each power input, the voltage between the phases must not exceed 380VAC nominal. Failure to heed this warning will result in serious equipment damage.



3.8 VIDEO INPUT/OUTPUT CONNECTIONS

Once the rack frame is mounted and primary power connections have been completed, connecting the video input and output signals is the next step. Figure 3-6 illustrates the entire rear panel of the router and features a quick reference guide to the input and output connector configuration. Figures 3-7, 3-8 and 3-9 provide a closer and more detailed view of the rear panel input and output connectors divided into sections from the top of the switcher to the bottom. Use these references when making video I/O connections to the 864XR router.

QuStream recommends that you make a layout plan and connection drawing to document I/O connections to the router and follow this drawing when attaching video connectors to the input and output cards. Retain this documentation in a safe place in the event that service to the router should ever be needed. QuStream also recommends that you label each video cable to identify its source or destination.

CHEETAH 864XR FRAME - REAR VIEW

Figure 3-6 – 864XR Chassis – Rear View

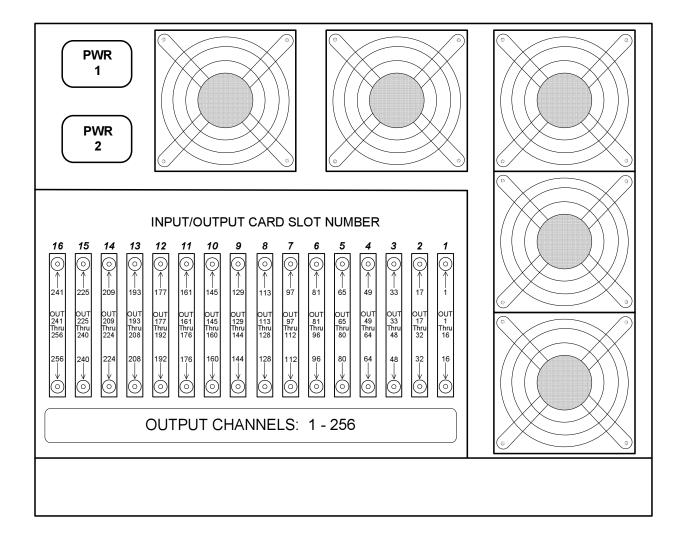


Figure 3-7 - Channel Assignments – I/O Card Slots 1 - 16

	INPUT/OUTPUT CARD SLOT NUMBER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
IN IN IN IN OU 49 33 17 18 767 767 767 56 764 48 32 16 57 64 48 32 16 57 9 9 9 9 9	6 560 544 528 512 496 480 464 448 432 416 400 384 368 352 336 320 304 288 27
INPUT 1 - 64	OUTPUT CHANNELS: 257 - 576
	INPUT/OUTPUT CARD SLOT NUMBER
64 63 62 61 6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
448 432 416 400 38 V O O O O O O O O O O O O O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	14 368 352 336 320 304 288 272 2.00 240 244 243 752 773 763 744 75 772 50 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Figure 3-8 - Channel Assignments - I/O Card Slots 17 - 64

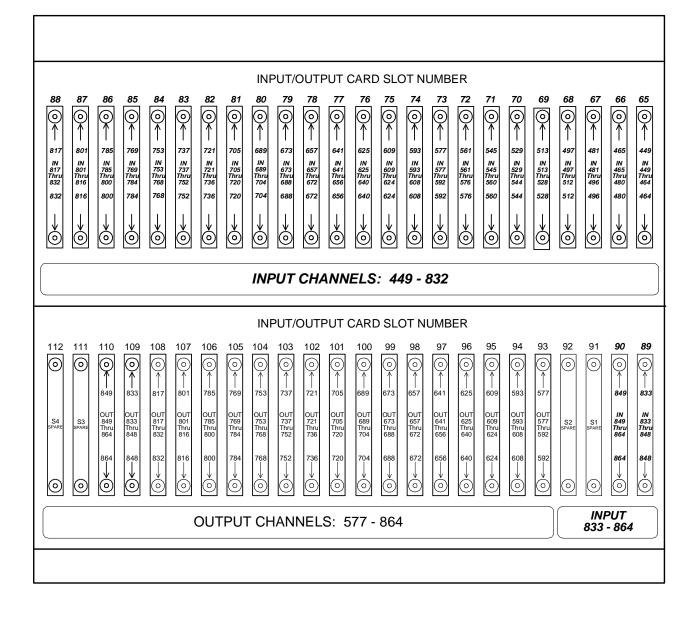


Figure 3-9 - Channel Assignments - I/O Card Slots 65 - 112

3.9 REAR PANEL SYSTEM CONNECTIONS

When the video I/O connections are completed, connecting the various system control and operational signals is the next step. The following paragraphs identify and define the operational and control connection points. Follow the information contained in each paragraph carefully when making control and system I/O connections to the 864XR router.

QuStream recommends that you make a layout plan and connection drawing to document system connections to the router and follow this drawing when attaching cabling to the rear panel connectors of the router. Retain this documentation in a safe place in the event that service to the router should ever be needed. QuStream also recommends that you label each cable to identify its source or destination.

3.9.1 RS-232 CONTROL CONNECTORS COM 1 AND COM 2

Connectors COM 1 and COM 2 (see Figure 3-10) are DB-9 male connectors that provide RS-232 serial communication interface points. Pin-outs are shown in Table 3-3.

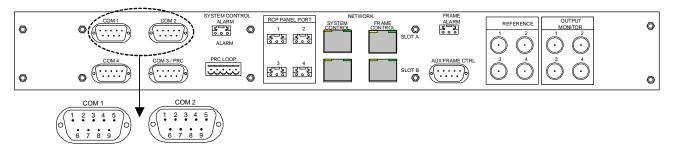


Figure 3-10 - RS-232 Control Connectors

Pin	Signal	In/Out
1	CD	Input
2	RX	Input
3	TX	Output
4	DTR	Output
5	Ground	
6	DSR	Input
7	RTS	Output
8	CTS	Input
9	RI	No Connect

Table 3-3 – COM 1 and COM 2 Pin Assignments

• COM 1 is the primary RS-232 CPU Link and may be connected to a PC running the Cheetah Control System software, such as PERC2000, with a null modem cable (Part No. 81-9028-0393-0). Alternatively, COM 1 may be connected to an external control device.

COM 1 may only be used with the P1E protocol at either 9600 or 38,400 baud. Set the baud rate with a switch on the controller board. Make sure the communication rate for COM 1 in the software matches the baud rate selected on the circuit card (in the software, select **System** > **Communications**).

• COM 2 is a secondary RS-232 CPU Link, which may also be connected to a PC or an external control device. COM 2 may be used with either of the protocols shown in Table 3-4 and may operate at either 9600 or 38,400 baud. Set the baud rate with a switch on the controller board. Make sure the communication rate for COM 2 in the system control software matches the baud rate selected on the circuit card (in the software, select **System > Communications**).

PROTOCOL	QuStream DOCUMENT #
CPU Link Protocol No. 1 Extensions (P1E)	81-9062-0408-0
Unsolicited Status Protocol (USP)	81-9062-0409-0

Table 3-4 - CPU Link Protocols

3.9.2 RS-422 CONTROL CONNECTORS COM3/PRC AND COM4

Connectors COM 3/PRC and COM 4 (see Figure 3-11) are DB-9 male connectors that provide RS-422 serial communication interface points. Pin-outs are shown in Tables 3-5 and 3-6.

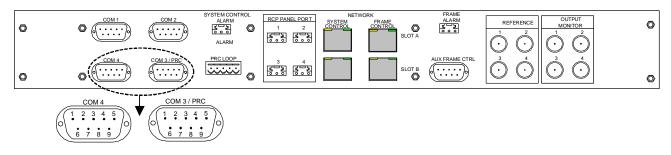


Figure 3-11 - RS-422 COM 3/PRC and COM 4 Control Connectors

COM 3/PRC is the system control communications interface with other PESA routing switchers within the facility using the PESA Router Control (PRC) control protocol and is connected between PRC routers using a serial control cable. Refer to Table 3-5 for pin assignments.

Pin	Signal	In/Out
1	CTS+	Input (not used)
2	MATRIX+	Bi-directional
3	CTLR-	Output
4	RTS-	Output (not used)
5	Ground	
6	CTS-	Input (not used)
7	MATRIX-	Bi-directional
8	CTLR+	Output
9	RTS+	Output (not used)

Table 3-5 - Com 3/PRC Pin Assignments

COM 4 is an RS-422 CPU Link similar to the RS-232 CPU Link, except the interconnect cable may be up to and including 4,000 feet in length. When using this communication protocol an RS-422 interface card must be installed in the computer chassis used for system control. COM 4 may be used with either of the protocols listed in the previous Table 3-4. Refer to Table 3-6 for pin assignments)

Table 3-6 –	COM 4 Pin Assignments
-------------	-----------------------

Pin	Signal	In/Out
1	CTS+	Input
2	RX+	Input
3	TX-	Output
4	RTS-	Output
5	Ground	
6	CTS-	Input
7	RX-	Input
8	TX+	Output
9	RTS+	Output

3.9.3 SYSTEM CONTROL ALARM CONNECTOR

The three-pin System Control Alarm Connector, illustrated in Figure 3-12, provides an interface for an external, customer-supplied system control alarm notification device. An alarm condition is initiated by the system controller and is declared when the controller is in reset and when the standby controller is gathering configuration information from the primary controller. During an alarm condition, an optically isolated, electronically closed circuit exists between contacts 2 and 1 as shown in Figure 3-13. This circuit acts as a switch to trigger an optional external alarm in the event of a controller fault or failure. The controller alarm circuit supplies an electronic contact closure, but does not provide a voltage to the external alarm. **The customer-supplied circuitry must not exceed 12VDC @ 10mA**.

The alarm is activated if the control system detects any of the following conditions:

- Encounters an interrupt that it does not expect or can not process
- Is unable to synchronize with the redundant system controller (dual controller installations)
- Does not receive configuration data from the redundant system controller (dual controller installations)

The customer supplied external alarm circuit is connected with a cable constructed as shown in Figure 3-13.

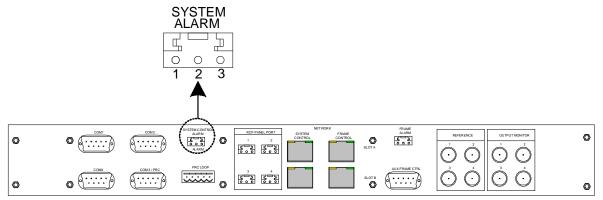


Figure 3-12 - System Control Alarm Connector

The Customer-supplied alarm circuit voltage to this connector must not exceed 12VDC or 10mA.

Connections to connector terminals 1 and 2 are polarity sensitive.

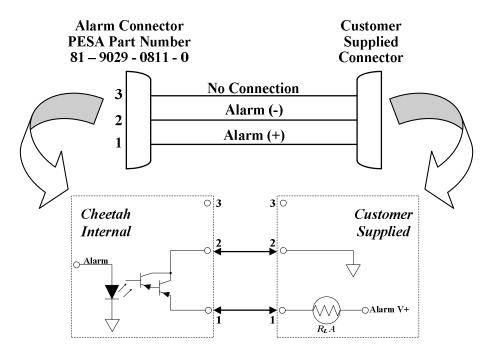


Figure 3-13 - System Alarm Cable Set and Associated Schematic

3.9.4 PRC LOOP CONNECTOR

The five-contact PESA Router Control (PRC) Loop Connector, located on the rear of the unit (Figure 3-14), is a loop-through connector that provides an RS-422 serial communication interface. This interface provides a system control link between the 864XR frame and other QuStream and PESA routing switchers within the facility using the PRC Protocol as defined by QuStream Document No. 81-9062-0316-0. It is wired in parallel with the DB-9-Male PRC Loop connector. Either connector may be used for frame-to-frame interface communications. Contact locations are illustrated in Figure 3-15. PRC Loop may be connected to PESA PRC compliant routers with a cable assembly (PESA part number 81-9028-0395-0) constructed as shown in Figure 3-15.

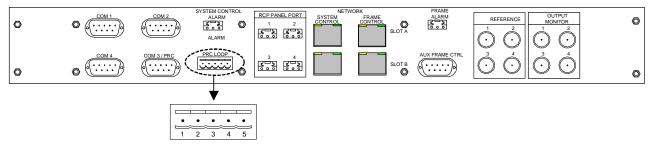
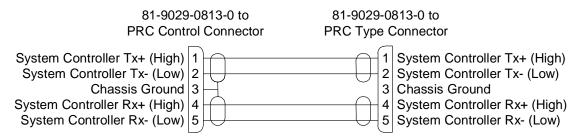



Figure 3-14 - PRC Loop Connector

3.9.5 RCP PANEL PORT CONNECTORS

There are four Remote Control Panel (RCP) Panel Port Connectors, located on the rear of the unit and illustrated in Figure 3-16. These connectors interface the 864XR frame with external remote system control panels via an RS-485 compliant serial communication interface using the PESA proprietary RCP Protocol defined by PESA Document No. 81-9062-0300-0. External remote control panels can be daisy-chained between one another and the 864XR frame. Any, or all, of the four connectors may be used to form up to four separate system control branches.

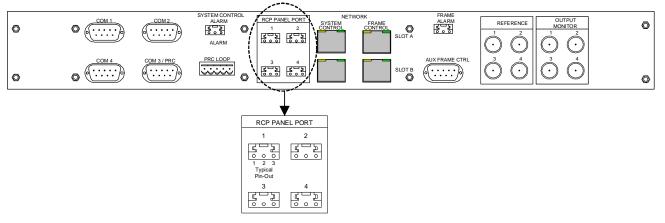


Figure 3-16 - RCP Panel Port Connectors

QuStream Remote Control Panels are connected to the RCP Port Connectors in a daisy-chain fashion using cables constructed with RCP connectors (PESA Part No. 81-9029-0780-0) and shielded, twisted-pair cable (PESA Part No. 81-9028-0043-2, Belden 8451, or equivalent) as shown in Figure 3-17. The connector body has an integral strain relief requiring the use of a nylon cable tie, included with the connector. If additional cable ties are required, use PESA Part No. 81-9021-0028-8.

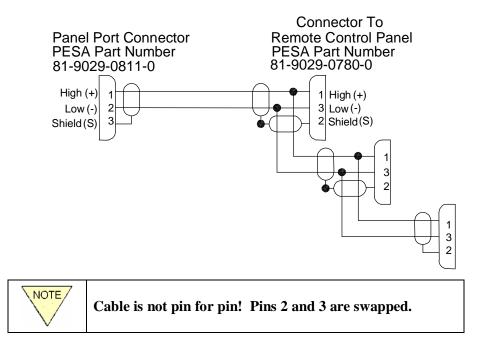


Figure 3-17 - RS-485 Cable Construction

3.9.6 NETWORK CONNECTORS

The rear panel RJ-45 Ethernet connectors, illustrated in Figure 3-18, interface the Matrix Frame Controller CCA(s) and the System Controller CCA(s) mounted in the 864XR chassis to external system components over a 10 or 100Mb/s TCP/IP network. You will notice there are two connectors for both Frame Control and System Control, one labeled Slot A and the other labeled Slot B. This nomenclature identifies which card is communicating through each connector. For example, the rear panel RJ-45 Connector labeled System Control, Slot A attaches to the system controller CCA installed in System Controller Slot A of the 864XR chassis, refer to Figure 3-20. Likewise, the rear panel connector labeled Frame Control, Slot B attaches to the Frame Controller CCA installed in Frame Controller Slot B, etc. Note that two frame or system controller CCAs may not be present in all chassis. Two CCAs of each type are used in systems equipped for control system redundancy. In systems where only one frame or system controller CCA is used, ensure that the Ethernet cable is attached to the rear panel connector corresponding to the chassis slot in which the card is installed.

Every frame in a Cheetah routing system requires a frame controller and a system controller. The network connectors allow a control network to be installed between PESA components such that, for example, a system controller CCA installed in an 864XR frame may also communicate with and control frame controllers in other Cheetah Video Matrix routers or a DRS Audio Router. Likewise, using the Frame Control Ethernet Connectors allows the frame controller CCA in the 864XR chassis to communicate with a system controller CCA installed in another Cheetah router, or a stand-alone rack-mount System Controller Chassis.

Frame Control connectors allow communication with the frame controller CCA in the 864XR chassis and System Control connectors allow communication with the system controller CCA in the 864XR chassis.

Two LED indicators associated with each rear-panel connector provide a visual status of link activity. Refer to Figure 3-19 and Table 3-7.

All communication activities between frame controller and system controller CCAs and other external components of a control system follow the standard Ethernet protocol. Ethernet configuration options are discussed in Appendix A of this manual.

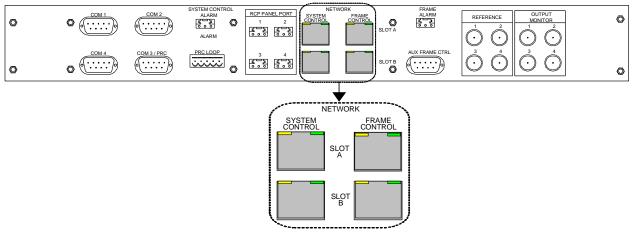


Figure 3-18 - Network Connectors

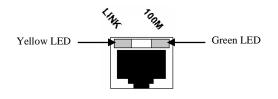


Figure 3-19 - Ethernet Connector

LNK	ON = Ethernet LINK established	
100M	ON = The Ethernet connection speed is 100Mb/s	
	OFF = The Ethernet connection speed is 10Mb/s	

To connect the cards to the network, do the following:

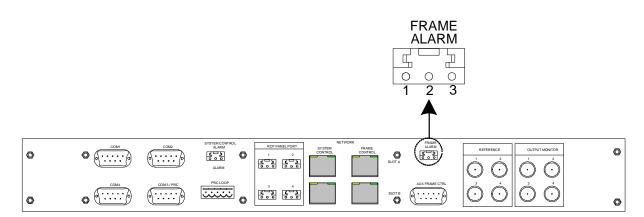
- 1. Set the IP address, Subnet mask, Gateway address, and Trap address on Matrix Frame Controller to addresses approved by the Network Administrator.
- 2. Using a straight through RJ-45 Ethernet cable, connect the Ethernet jacks to a 10/100BASE-T hub or switch on the TCP/IP network.

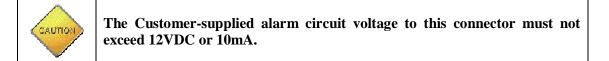
3.9.7 FRAME ALARM CONNECTOR

The three-pin Frame Alarm Connector, illustrated in Figure 3-21, provides an interface for an external, customer-supplied frame control alarm notification device. The Matrix Frame Controller determines when a frame alarm condition is declared. This circuit acts as a switch to trigger an optional external alarm device in the event of a controller fault or failure. The controller alarm circuit supplies an electronic contact closure, but does not provide a voltage to the external alarm. The customer-supplied external alarm circuit is connected with a cable constructed as shown in Figure 3-22.

The Customer-supplied power input to this connector must not exceed 12VDC and the associated amperage must not exceed 10mA.

Connections to connector terminals 1 and 3 are not polarity sensitive.




Figure 3-21 - Frame Alarm Connector

The alarm is activated if any of the following matrix frame controller conditions exist:

- Finds a card (input, output, matrix, output monitor, power supply, or matrix frame controller) with a temperature out of range (above 114 °F)
- Finds a fan's voltage out of range
- Finds a power supply's voltage or current out of range

The voltage or current must be out of range for three consecutive status poll events before the Matrix Frame Controller will indicate an alarm.

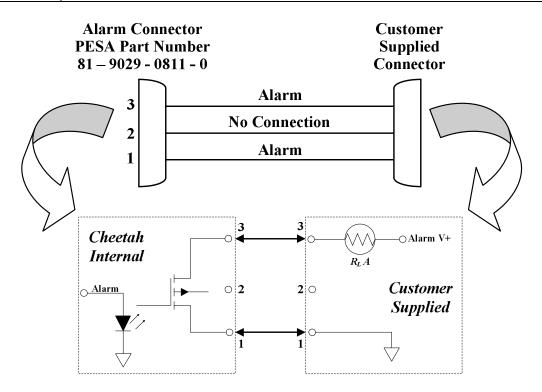


Figure 3-22 - Frame Control Alarm Cable Connection and Circuit Schematic

3.9.8 AUXILIARY FRAME CONTROL CONNECTOR

The Auxiliary Frame Control Connector (see Figure 3-23 and refer to Table 3-8) is used for Simple Network Management Protocol (SNMP) management of additional Cheetah switchers. Configuration and operation of the embedded SNMP agent is detailed in Appendix B of this manual.

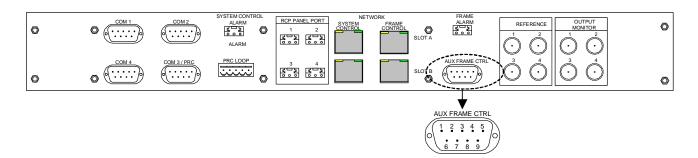


Figure 3-23 - Auxiliary Frame Control Connector

Pin	Signal	In/Out
1	CTS+	Input
2	RX+	Input
3	TX-	Output
4	RTS-	Output
5	Ground	
6	CTS-	Input
7	RX-	Input
8	TX+	Output
9	RTS+	Output

3.9.9 HOUSE SYNCHRONIZATION INPUT CONNECTORS

Two pair of loop-thru BNC coaxial connectors, illustrated in Figure 3-24, provide interface for two, sources of house synchronization signals (Analog Only - i.e. NTSC, PAL, 1080i, 1080P, and 720P). Each house sync input is a pair of BNC connectors wired in parallel (1 and 3 are a pair; 2 and 4 are a pair) allowing the external synchronization signal to be daisy-chained through the 864XR frame.

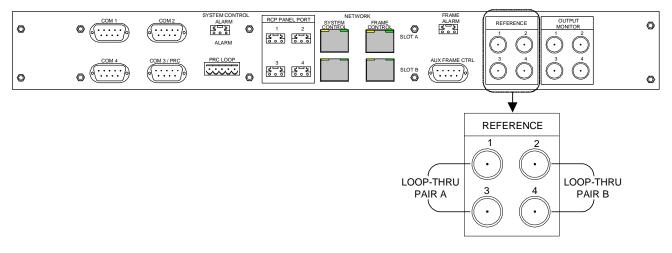


Figure 3-24 - House Sync Input Connectors

Using the system control software, such as PERC2000, the user can assign a specific reference signal for the system or individual chassis that is used as a synchronization signal for specific output synchronized switching. Once the output has been switched, the output signal remains synchronized to the initial reference assignment until it is switched again with a new reference assignment. An example of a sync assignment would be as follows:

Reference 1 is connected to an NTSC sync signal source and Reference 2 is connected to a PAL sync signal source. Using control system software the user assigns Reference 1 to outputs 6 through 10 and Reference 2 to outputs 11 through 16 for a specific chassis.

Reference connections 1 and 2 should be connected to the house sync source with coaxial cable and standard BNC connectors.

Install 75Ω terminators on all unused connectors. Do not allow these connectors to float un-terminated.

3.9.10 OUTPUT MONITOR CONNECTORS

These connectors are not used on the 864XR Frame.

Chapter 4: Frame And Control Verification

This section addresses the system components, frame, and control verification sequences that should be performed prior to energizing the system and placing the system in service. Attention to this section will minimize system startup and in-service malfunctions.

4.1 SYSTEM PRE-START VERIFICATION CHECKLIST

A system pre-start verification checklist includes a visual inspection to account for basic setup functions that, if incorrect, could result in immediate system startup malfunctions. The following basic checks should be performed prior to energizing any Cheetah chassis:

- 1) Verify main power source is OFF (de-energized).
- 2) Verify chassis breakers are in the OFF position.
- 3) Verify all cards/modules are latched and secure.
- 4) Verify all blank covers are in place and secure (no open slots in the frame).
- 5) Verify power cables are properly connected to primary power distribution system.
- 6) Inspect for unusual items such as loose wiring, frayed cabling, loose connections or components, and missing cards/modules (basically, check for anything that seems out of place or could present a problem).
- 7) Proceed to System Startup.

4.2 SYSTEM STARTUP

Perform the system startup sequence as follows:

- 1) Energize main power source to chassis.
- 2) Place both chassis breakers in the ON position (handles should be in the UP position).

There is a 30 to 45 second delay prior to the system energizing frame components. Following this delay period the system will energize and the circuit cards and modules will perform initial self-diagnostics.

3) Verify the following LED conditions:

Should any status LED indicate an error on the card or module, perform troubleshooting sequences to correct the problem(s) prior to placing the system in service.

- a. Observe each Power Supply module and verify the Power OK LED is illuminated (green)
- b. Observe each 144x144 Matrix module and verify status of the following LEDs:

- +28 V (green)
- +2.5 V (green)
- +1.2 V (green)
- c. Observe the Matrix Frame Controller CCAs and verify status of the following LEDs and the LED display (single or dual CCAs):
 - Single CCAs: the Control Status display indicates ØSNGL OK (red)
 - Dual CCAs: the Control Status display of the active module indicates Active OK while the other module indicates Standby.
 - Active (green illuminated on single and Active modules only)
 - +28 (green)
 - +5 (green)
 - +3 (green)
- d. On the Output Monitor module (if present), the Power OK LED is illuminated (green).
- e. On each of the Input and Output modules, the Power LED is illuminated (green).
- f. If installed and on the 3500 Series System Controller module(s), the following conditions exist:
 - 1) Dual 3500 Series System Controller module configurations:
 - If both 3500 Series System Controller modules' active/standby switches are in the Standby or Active position, then Frame Slot A determines the active module. Otherwise, the active module is selected by the individual module's switch settings.
 - 2) Any 3500 Series System Controller configuration, the Active (amber on the active module) and Run (green) LEDs are illuminated.

At the end of this sequence, there should be no LED indicators that are blinking or any red LEDs illuminated on any of the I/O and Matrix modules/cards. If so, perform troubleshooting to correct the status before proceeding to the next section.

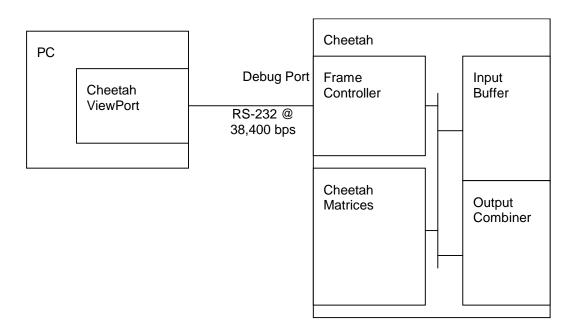
4.3 FRAME CONTROL VERIFICATION

4.3.1 FRAME CONTROL VERIFICATION OVERVIEW

Frame control verification is performed to verify proper operation of chassis components and isolate abnormalities prior to connecting peripheral equipment to the system. This verification sequence is performed using the ViewPort Diagnostic Software, supplied with your Cheetah 864XR Frame. The graphic user interface (GUI) provided by ViewPort provides a logical, straight-forward diagnostic tool for the user that communicates directly with the chassis Matrix Frame Controller (MFC). The following equipment/documentation is required:

- A Windows based PC loaded with QUSTREAM's ViewPort software.
- A null-modem serial cable (length determined by distance the PC will be from the chassis)
- ViewPort Technical Manual (P/N 81-9059-0558-0)
- Packing list or other specification sheet that accompanied shipment of the 864XR chassis.

4.3.2 FRAME STROBE SETTING VERIFICATION


While referring to the appropriate Chapter for the frame that is being verified, document and archive the frame's present strobe settings as follows: Using Figure 5-?? as a reference, locate the chassis strobe rotary switches. Verify that the switches are in the positions indicated by Figure 5-??. These switches are set at the factory and should never need to be changed. Proper setting of these switches is absolutely critical for proper operation of the video matrix.

4.3.3 FRAME CONTROL VERIFICATION PROCEDURE

Perform the following sequence:

- 1) If not already completed, perform the chassis pre-start verification checks and startup sequences as outlined in Paragraphs 4-1 and 4-2 of this manual.
- 2) Open the access door to gain access to the front of the 864XR chassis components.
- 3) With the chassis energized (ON), refer to Figure 4-1 and carefully connect the null-modem serial cable to the DB-9 serial connection port located on the Frame Controller card and the serial port of the PC running the ViewPort software.

Figure 4-1 - PC to Frame Controller Connection

If there are any errors noted while performing the following steps, perform troubleshooting sequences to correct the problem(s) prior to proceeding to the next step.

- 4) Refer to the ViewPort Software Technical Manual as needed when performing the following steps.
- 5) Access the ViewPort software program from the computer and establish communication with the Frame Controller card: the RX and TX LEDs on the circuit card will be flashing green and yellow, respectfully.
- 6) Using the ViewPort software GUI and referring to the packing list/specification sheet, verify the following:

Occasionally, there may be recorded errors during the initial startup sequence. However, they typically can easily be reset when the clear function is initiated.

- a) Under the Cheetah directory, click on Frame Controller Status. Verify there are no alarms and the MFC configuration (single or dual) is correct as per your specification.
- b) Under the Cheetah directory, click on Inputs. Verify there are no errors and the input module (card) configuration is correct as per your specification.

- c) Under the Cheetah directory, click on Outputs. Verify there are no errors and the output module (card) configuration is correct as per your specification.
- d) Under the Cheetah directory, click on Matrices. Verify there are no errors and the matrix module (card) configuration is correct as per your specification.
- e) Under the Cheetah directory, click on Power Supplies. Verify there are no errors and the power supply module configuration is correct as per your specification.
- f) Under the Cheetah directory, click on Output Monitor. Verify the output monitor module (card) configuration is correct as per your specification. For each module, verify the Power Status conditions are green and no other errors are present.
- g) Under the Cheetah directory, click on Communications Summary. (This display window is used as an overview of all system components.) Verify the status for each component (4) is indicating green and there are no errors being displayed.
- 7) Frame Control Verification is complete. Exit the ViewPort program and disconnect the serial cable from the PC and MFC. If your system includes the 3500 Series controller module(s), proceed to System Control, Section 10.4.

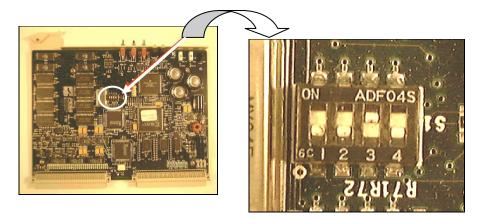
4.4 SYSTEM CONTROL

This subsection only applies to Cheetah Series systems that are equipped with 3500 Series card(s)/module(s).

4.4.1 SYSTEM CONTROL OVERVIEW

The 3500 Series System Controller is full-featured, microprocessor-based unit that is designed to interface with various configurations of QuStream and PESA video and audio routing switchers. The 3500 Series System Controller, working in conjunction with the 3500 Series Control System software, provides a Graphic User Interface (GUI) that enables users to configure and operate a routing switcher system from a standard IBM-compatible Personal Computer (PC). Both the 3500 Series System Controller and the 3500 Series Control System software are inherently flexible and easily configured. The 3500 Series LE has a smaller feature set and is designed for smaller systems.

This subsection addresses the initial user communication setup, the onboard firmware configuration, and initial settings for the specific Cheetah Series chassis system(s) that will be placed in service. Additional reference materials for this section are included in the following documents:


- 81-9059-0549-0 (Manual, 3500 Series System Controller and System Software)
- 81-9059-0432-0 A (03-99 3500Plus Dipswitch Setting Information Technical Bulletin)
- 81-9059-0551-0 (Technical Bulletin. 3500 Series Field Upgrade)
- 81-9059-0554-0 (Installation Guide, 3500Pro/3500 Series LE Software)

4.4.2 SYSTEM CONTROL VERIFICATION PROCEDURE

Perform the following sequence (hot-swap):

- 1) Perform the pre-start sequences as outlined in Sections 10.1, 10.2, and 10.3 of this Chapter.
- Remove the 3500 Series card(s) and verify the S1 dipswitch (see Figure 58) settings are correct for the baud rate that you are going to use. If necessary, refer to P/N 81-9059-0432-0 A (03-99 3500Plus Dipswitch Setting Information Technical Bulletin).

Figure 4-2 - 3500 Series Card DIP Switch Locations (Set For 9,600 Baud Rate)

The dipswitch should be set in accordance with Table 27 before the 3500Plus System Controller is installed. For normal operation at **9,600 Baud**, all four switches should be in the **OFF** position as shown in Figure 58. (However, the factory default is 38,400 Baud-rate with switch #3 in the ON position.)

POSITION	OFF	ON
1	Normal Operation Mode	Software Upgrade Mode
2	Use configuration stored in flash memory	Reboot and ignore configuration stored in flash memory (used to bypass a corrupt configuration).
3	COM1: 9600 Baud	COM1: 38400 Baud
4	Reserved for future use	Reserved for future use

	Table 4-1 -	3500 Series	Card S1	DIP Switch	Settings
--	-------------	-------------	---------	-------------------	----------

- 3) Return the card(s) to their proper chassis slot and secure.
- 4) Connect the Null modem cable to the chassis' COM1 port and the PC's (that has the 3500 Series software installed) serial port.

If any one of the following steps in this sequence cannot be verified and/or performed correctly, you must complete a troubleshooting sequence to correct the problem before proceeding to the next step.

- 5) Re-verify the card LEDs' status and Active/Standby switch position as follows:
 - Single 3500 Series card installed:
 - a) The Active/Standby switch is in the Active position.
 - b) The Run (green) LED is illuminated.
 - c) The Active (amber) LED is illuminated
 - Dual 3500 Series cards installed:
 - a) Verify one card's Active/Standby switch is in the Active position and the other card's switch is in the Standby position. (Note that with any other switch configuration, the active card will be system-selected by which card is in chassis' A slot.)
 - b) On the Active card, the Run (green) LED is illuminated and the Active (amber) LED is illuminated.
 - c) On the Standby card, the Run (green) LED is illuminated and the Active (amber) LED is extinguished.
- 6) Refer to the 3500 Series System Controller and System Software manual and perform the following:
 - a) Verify the 3500 Series controller is communicating (COM1) properly with the PC.
 - b) Verify the system configuration matrix is loaded on the 3500 Series controller card (firmware). If not, reload the system configuration in the controller firmware.
 - c) Verify the system confidence for the configuration matrix. That is, all system components in the system configuration matrix have communication capabilities (e.g., handshaking) with the 3500 Series System Controller.
 - d) Perform a routine diagonal, active test sequence as outlined in the 3500 Series System Controller and System Software manual's diagnostic tool.
- 7) System Control verification is complete.

Chapter 5: Reference Data

5.1 **REFERENCE DATA INTRODUCTION**

In the following paragraphs you will find information that will prove useful in the event that system maintenance or repair should ever be required. Included are a diagram (Figure 5-1) showing the input and output channel assignments of all 36 matrix crosspoint CCAs, plus setting information for all DIP and rotary switches used to configure the switcher.

5.2 DIP SWITCH/ROTARY SWITCH SETTINGS FOR THE 864XR FRAME

There are numerous switches used in configuring the 864XR Frame for any particular input/output matrix combination. Switch settings define the operational parameters for the various CCAs and modules used in the switcher and assign the "personality" to each group of backplanes and their associated CCAs. Using the switch configuration scheme prevents any "card specific" functions, settings or jumpers and allows any input, output, or matrix CCA or power supply module to be "hot swapped" on the fly with any other card or module, of the same type. These switches are all preset at the factory and should never need any maintenance or adjustment. This information is provided as a reference so that in the event any switch setting should inadvertently be changed, it can be restored to its correct setting.

Switches are of two type: rotary or DIP. A small screwdriver can be used to make adjustments to the rotary switches. The tip of a small screwdriver or other small pointed object may be used to select the ON or OFF position of the DIP switches. Please note that the DIP switches are very small and each switch section is very delicate and can easily be damaged. Use extreme care if it is ever necessary to change the position of any section of the DIP switches.

The following paragraphs discuss the configuration switch settings listed below:

- Chassis Level Codes (Strobes) Rotary Switch Settings (Paragraph 5.2.1)
- Chassis Power Supply Backplane DIP Switch Settings (Paragraph 5.2.2)
- Chassis Input/Output Backplane DIP Switch Settings (Paragraph 5.2.3)
- Chassis Matrix Backplane Rotary Switch Settings (Paragraph 5.2.4)

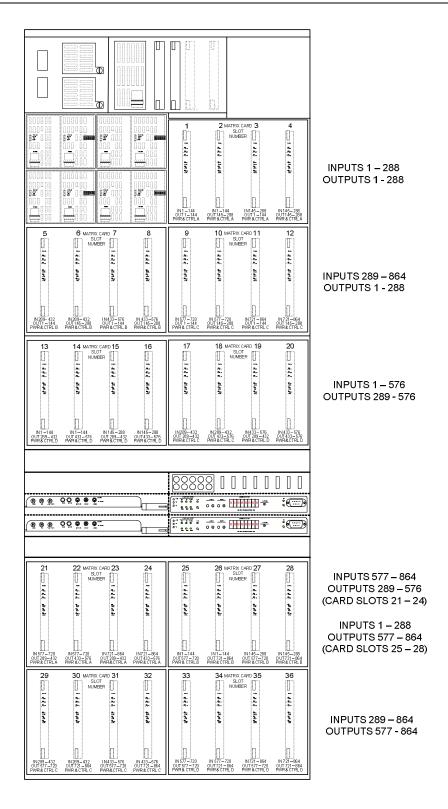


Figure 5-1 - 144x144 Matrix Crosspoint CCA I/O Channel Assignments

5.2.1 CHASSIS LEVEL CODES (STROBES) ROTARY SWITCH SETTINGS

Chassis Level Codes (Strobes) assign operational parameters to the switcher frame. There are ten rotary switches, located just above the frame controller card(s), used to set the chassis level code and other frame operational characteristics. Proper setting positions for these ten switches are shown in Figure 5-2.

5.2.2 CHASSIS POWER SUPPLY BACKPLANE DIP SWITCH SETTINGS

Each Power Supply Backplane provides slots for up to two power supply modules. Located on the right side of each backplane for power supplies 1 through 8 is an eight position DIP switch used to assign identity data to the power supply module(s) installed on the backplane. Removing the power supply module installed on the right-hand side of the backplane allows access to this DIP switch. There are two 8 position DIP switches located on the backplane for power supplies 9 and 10. Proper setting positions for each switch section in the DIP package are shown in Figure 5-3. In this figure, the power supply modules are shown in dotted lines in order for the switch locations to be visible.

5.2.3 CHASSIS INPUT/OUTPUT CCA BACKPLANE DIP SWITCH SETTINGS

Each Input/Output CCA Backplane provides slots for up to four input or output CCAs. An eight-position DIP switch, located on the lower right-hand side of each backplane, assigns a unique identity to each backplane card. Among other functions, this switch setting allows the controller circuitry to assign the input or output channel number range to each I/O CCA – thus allowing any I/O card on the rear panel to be "hot swapped" with a card of like type. Proper setting positions for each switch section in the DIP package are shown in Figure 5-4. I/O CCAs must be removed from the backplane to gain access to the DIP switch. Figure 5-4 illustrates switch location and card slots on the backplanes with no I/O CCAs installed.

5.2.4 CHASSIS MATRIX BACKPLANE ROTARY SWITCH SETTINGS

Each Matrix CCA Backplane provides slots for up to four 128X128 matrix crosspoint CCAs. There are six rotary switches located along the bottom edge of each backplane. Settings of these switches assign a unique identity to each matrix backplane and the set of matrix CCAs installed in it. These settings allow the controller circuitry to assign the input and output channel number range to each matrix backplane and each matrix CCA. Figure 5-5 shows the location of each of the six switches on each backplane board. The matrix card image used in this figure is smaller than actual size to allow the backplane components to be shown. Setting positions for each switch are provided in Table 5-1 and listed by individual backplane boards.

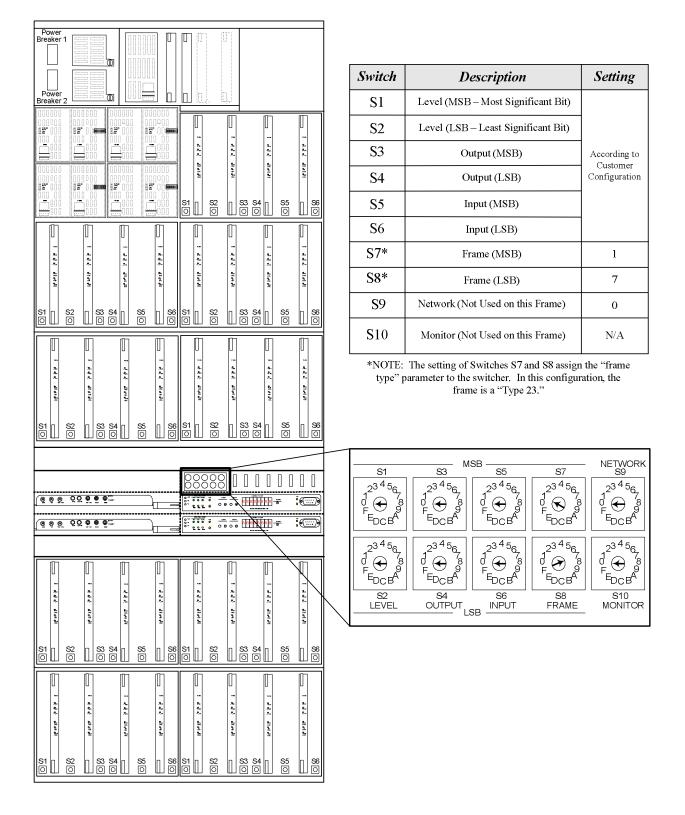


Figure 5-2 - 864 XR Chassis And Level Code Switch Settings

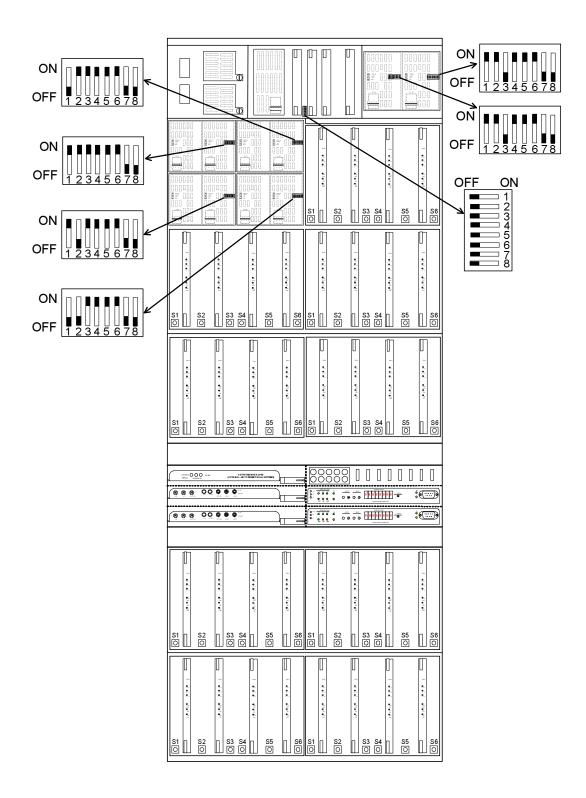


Figure 5-3 - 864XR Power Supply Backplane DIP Switch Locations And Settings

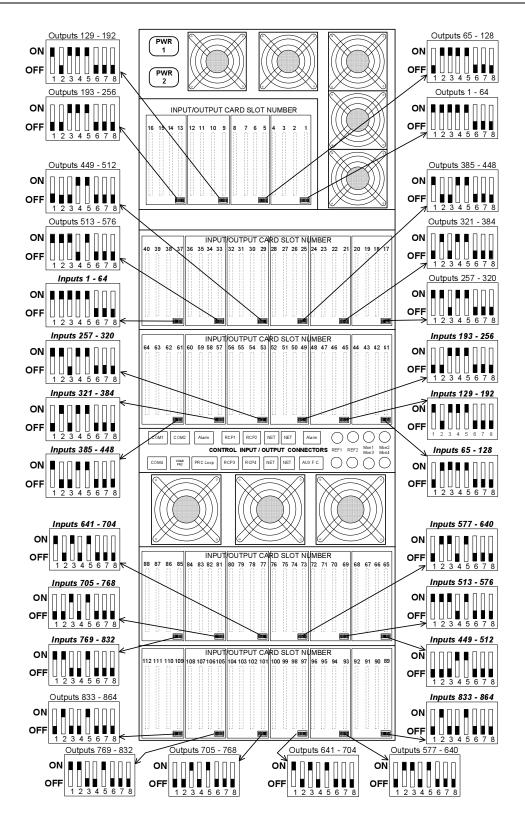


Figure 5-4 - Input/Output Backplane DIP Switch Settings

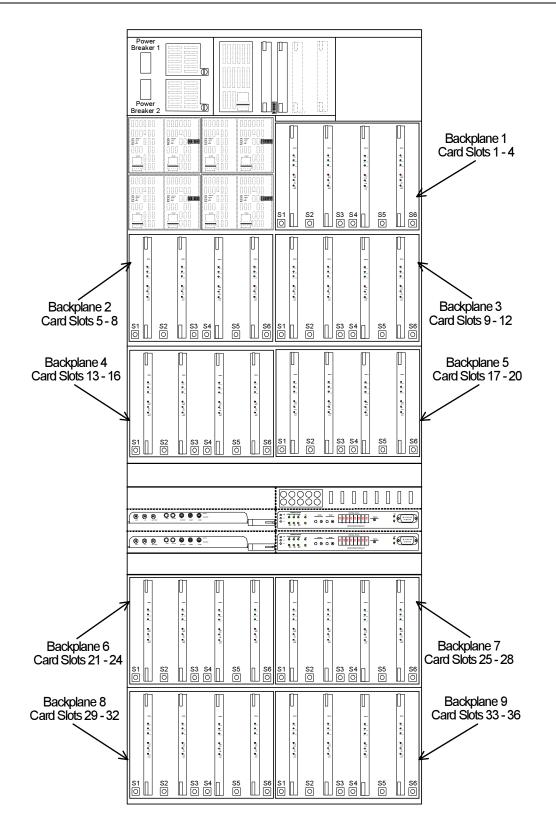


Figure 5-5 - Matrix Backplane Rotary Switch Locations

MATRIX BACKPLANE 1 CARD SLOTS 1 - 4			
SWITCH	Setting	I/O	
S 1	0	Outputs: 1 – 144	
S2	0	Inputs: 1 – 144	
S 3	1	Outputs: 145 – 288	
S4	0	Outputs: 1 – 144	
S5	1	Inputs: 145 – 288	
S6	1	Outputs: 145 - 288	

MATRIX BACKPLANE 2 CARD SLOTS 5 - 8		
SWITCH	Setting	I/O
S 1	0	Outputs: 1 – 144
S2	2	Inputs: 289 – 432
S 3	1	Outputs: 145 – 288
S4	0	Outputs: 1 – 144
S5	3	Inputs: 433 – 576
S 6	1	Outputs: 145 – 288

MATRIX BACKPLANE 3			
0	CARD SLOTS 9 – 12		
Switch	Setting	I/O	
S 1	0	Outputs: 1 – 144	
S2	4	Inputs: 577 – 720	
S 3	1	Outputs: 145 – 288	
S4	0	Outputs: 1 – 144	
S5	5	Inputs: 721 – 864	
S 6	1	Outputs: 145 - 288	

MATRIX BACKPLANE 4 CARD SLOTS 13 - 16		
SWITCH	Setting	I/O
S1	2	Outputs: 289 – 432
S2	0	Inputs: 1 – 144
S 3	3	Outputs: 433 – 576
S4	2	Outputs: 289 – 432
S5	1	Inputs: 145 – 288
S6	3	Outputs: 433 – 576

MATRIX BACKPLANE 5 CARD SLOTS 17 – 20			
SWITCH	Setting	I/O	
S 1	2	Outputs: 289 – 432	
S2	2	Inputs: 289 – 432	
S 3	3	Outputs: 433 – 576	
S4	2	Outputs: 289 – 432	
S5	3	Inputs: 433 – 576	
S 6	3	Outputs: 433 - 576	

S5

S6

MATRIX BACKPLANE 6				
CARD SLOTS 21 - 24				
SWITCH	Setting	I/O		
S 1	2	Outputs: 289 – 432		
S2	4	Inputs: 577 – 720		
S 3	3	Outputs: 433 – 576		
S4	2	Outputs: 289 – 432		
S5	5	Inputs: 721 – 864		
S6	3	Outputs: 433 – 576		

MATRIX BACKPLANE 7					
CARD SLOTS 25 - 28					
Switch	Setting	I/O			
S 1	4	Outputs: 577 – 720			
S 2	0	Inputs: 1 – 144			
S 3	5	Outputs: 721 – 864			
S 4	4	Outputs: 577 – 720			
S5	1	Inputs: 145 – 288			
S 6	5	Outputs: 721 - 864			

MATRIX BACKPLANE 8			
CARD SLOTS 29 - 32			
SWITCH	Setting	I/O	
S 1	4	Outputs: 577 – 720	
S2	2	Inputs: 289 – 432	
S 3	5	Outputs: 721 – 864	
S 4	4	Outputs: 577 – 720	

3

5

Inputs: 433 – 576

Outputs: 721 – 864

MATRIX BACKPLANE 9 CARD SLOTS 33 - 36			
SWITCH	Setting	I/O	
S 1	4	Outputs: 577 – 720	
S2	4	Inputs: 577 – 720	
S 3	5	Outputs: 721 – 864	
S 4	4	Outputs: 577 – 720	
S5	5	Inputs: 721 – 864	
S 6	5	Outputs: 721 - 864	

Table 5-1 -	Matrix	Backplane	Rotary	Switch	Settings	(Cont.)
-------------	--------	-----------	--------	--------	----------	---------