

PN: 399G130 Revision A

DOCUMENT REFERENCE

Eclipse Logic Instruction Manual

Part Number: 399G130 Revision A

LEGAL DISCLAIMERS
Copyright © 2014 HME Clear-Com

Ltd. All rights reserved.

Eclipse® 9.1
Logic

Programming
Guide

Part Number: 399G234 Rev. A

Date: 07 August, 2017

Logic

Logic | User Guide

Page 2

Document Reference

Eclipse Logic Programming Guide

Part Number: 399G234 Rev. A

Legal Disclaimers

Copyright © 2017 HME Clear-Com Ltd.

All rights reserved.

Clear-Com, the Clear-Com logo, and Clear-Com Concert are trademarks or
registered trademarks of HM Electronics, Inc.

The software described in this document is furnished under a license agreement
and may be used only in accordance with the terms of the agreement.

The product described in this document is distributed under licenses restricting its

use, copying, distribution, and decompilation / reverse engineering. No part of
this document may be reproduced in any form by any means without prior written

authorization of Clear-Com, an HME Company.

Clear-Com Offices are located in California, USA; Cambridge, UK; Dubai, UAE;
Montreal, Canada; and Beijing, China. Specific addresses and contact information

can be found on Clear-Com’s corporate website:

www.clearcom.com

Clear-Com Contacts

Americas and Asia-Pacific Headquarters

California, United States
Tel: +1 510 337 6600

Email: CustomerServicesUS@clearcom.com

Europe, Middle East, and Africa Headquarters

Cambridge, United Kingdom
Tel: +44 1223 815000

Email: CustomerServicesEMEA@clearcom.com

China Office

Beijing Representative Office
Beijing, P.R.China

Tel: +8610 65811360/65815577

http://www.clearcom.com/
mailto:CustomerServicesUS@clearcom.com
mailto:CustomerServicesEMEA@clearcom.com

Logic | User Guide

Page 3

SOFTWARE LICENSE AGREEMENT

IMPORTANT–THIS IS A LEGAL AGREEMENT BETWEEN YOU AND CLEAR-COM.
BEFORE DOWNLOADING, ACCESSING, OR USING ANY PART OF THE SOFTWARE,
YOU SHOULD READ CAREFULLY THE FOLLOWING TERMS AND CONDITIONS

CONTAINED IN THIS SOFTWARE LICENSE AGREEMENT ("AGREEMENT") AS THEY
GOVERN YOUR ACCESS TO AND USE OF THE SOFTWARE. CLEAR-COM IS

WILLING TO LICENSE AND ALLOW THE USE OF THIS SOFTWARE ONLY ON THE
CONDITION THAT YOU ACCEPT AND AGREE TO ALL OF THE TERMS AND
CONDITIONS CONTAINED IN THIS AGREEMENT. IF YOU DO NOT AGREE WITH

THIS AGREEMENT, YOU ARE NOT GRANTED PERMISSION TO ACCESS OR
OTHERWISE USE THE SOFTWARE.

This Agreement applies to any computer program and related files (the
“Software”) offered to you by either Clear-Com LLC or HME Clear-Com Ltd. (each

of whom is referred to herein as “Clear-Com”) and whether the software is
delivered in the form of a diskette, DVD, USB storage device or CD-ROM (the

“Storage Media”), over the Internet or through an on-line network. Your use of
the Software constitutes your acceptance of the following terms and conditions.

TERMS AND CONDITIONS

1) License Grant. The Software is provided by Clear-Com, and this
Agreement provides to you a personal, revocable, limited, non-

exclusive, royalty-free, non-transferable license to use the Software
conditioned on your continued compliance with the terms and

conditions of this Agreement. This Agreement permits you to use and
access for personal or business purposes the Software only at a single
physical location in connection with the use of Clear-Com products.

You may also load information from the Software into your laptop,
workstation, or computer temporary memory (RAM) and print and

download materials and information from the Software solely for your
personal or business use, provided that all hard copies contain all
copyright and other applicable notices contained in such materials and

information. If you are using the Software on behalf of a company or
other form of entity, please note that such a company or entity may

have a separate agreement with Clear-Com regarding access and
usage privileges for the Software. Nevertheless, your use of the
Software will be subject to the obligations and restrictions regarding

use of the Software as set forth in this Agreement.

2) Restrictions. The license granted under this Agreement is limited.
You may not use, copy, store, reproduce, transmit, distribute, display,

rent, lease, sell, modify, alter, license, sublicense, or commercially

Logic | User Guide

Page 4

exploit any data provided by Clear-Com through the Software in any

manner not expressly permitted by this Agreement. In addition, you
may not modify, translate, decompile, create any derivative work(s)

of, copy, distribute, disassemble, broadcast, transmit, publish, remove
or alter any proprietary notices or labels, license, sublicense, transfer,

sell, mirror, frame, exploit, rent, lease, private label, grant a security
interest in, or otherwise use the Software in any manner not expressly
permitted herein.

3) User Obligations. By downloading, accessing, or using the Software in
order to view our information and materials or submit information of
any kind, you represent that you are at least 18 years of age and will,

at all times, provide true, accurate, current, and complete information
when submitting information or materials on the software including,
without limitation, when you provide information via a software

registration or submission form. In addition, you agree to abide by all
applicable local, state, national, and international laws and regulations

with respect to your use of the software. This Agreement is also
expressly made subject to any applicable export laws, orders,
restrictions, or regulations.

4) Proprietary Rights. This Agreement provides only a limited license to
access and use the Software. Accordingly, you expressly acknowledge
and agree that Clear-Com transfers no ownership or intellectual

property interest or title in and to the Software to you or anyone else.
All text, graphics, user interfaces, visual interfaces, photographs,

sounds, artwork, computer code (including html code), programs,
software, products, information, and documentation as well as the
design, structure, selection, coordination, expression, "look and feel,"

and arrangement of any content contained on or available through the
Software, unless otherwise indicated, are owned, controlled, and

licensed by Clear-Com and its successors and assigns and are
protected by law including, but not limited to, United States copyright,
trade secret, patent, and trademark law, as well as other state,

national, and international laws and regulations. Except as expressly
provided herein, Clear-Com does not grant any express or implied

right to you or any other person under any intellectual or proprietary
rights. Accordingly, your unauthorized use of the Software may
violate intellectual property or other proprietary rights laws as well as

other laws, regulations, and statutes. The name of the Software, the
Clear-Com logo, and all other names, logos, and icons identifying

Clear-Com and its programs, products, and services are proprietary
trademarks of Clear-Com, and any use of such marks, including,
without limitation, as domain names, without the express written

permission of Clear-Com is strictly prohibited. Other service and

Logic | User Guide

Page 5

entity names mentioned herein may be the trademarks and/or service
marks of their respective owners.

5) Feedback and Submissions. Clear-Com welcomes your feedback and
suggestions about Clear-Com’s products or services or the Software.
By transmitting any suggestions, information, material, or other
content (collectively, "feedback") to Clear-Com, you represent and

warrant that such feedback does not infringe or violate the intellectual
property or proprietary rights of any third party (including, without

limitation, patents, copyrights, or trademark rights) and that you have
all rights necessary to convey to Clear-Com and enable Clear-Com to
use such feedback. In addition, any feedback received will be deemed

to include a royalty-free, perpetual, irrevocable, transferable, non-
exclusive right and license for Clear-Com to adopt, publish, reproduce,

disseminate, transmit, distribute, copy, use, create derivative works,
and display (in whole or in part) worldwide, or act on such feedback

without additional approval or consideration, in any form, media, or
technology now known or later developed for the full term of any
rights that may exist in such content, and you hereby waive any claim

to the contrary.

6) Limited Warranty.

6.1 Clear-Com warrants that any Storage Media on which the Software is

stored will be free from defects in materials and workmanship for 90 days

from the date you acquire it. If a defect in the Storage Media occurs,

return the Storage Media to Clear-Com and Clear-Com will replace it at no

cost to you. This remedy is your exclusive remedy for breach of this

warranty. This limited warranty is void if the damage or defect has

resulted from accident, abuse or misapplication.

6.2 WHILE CLEAR-COM ENDEAVORS TO PROVIDE RELIABLE

INFORMATION, SERVICES, PROGRAMS, SOFTWARE, AND MATERIALS,

EXCEPT AS SPECIFICALLY PROVIDED IN SECTION 6.1, THE SOFTWARE IS

PROVIDED ON AN "AS-IS" AND "AS AVAILABLE" BASIS AND MAY

INCLUDE ERRORS, OMISSIONS, OR OTHER INACCURACIES. YOU

ASSUME THE SOLE RISK OF MAKING USE OF THE SOFTWARE. CLEAR-

COM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE

RESULTS THAT CAN BE ACHIEVED FROM OR THE SUITABILITY,

COMPLETENESS, TIMELINESS, RELIABILITY, LEGALITY, OR ACCURACY OF

THE SOFTWARE FOR ANY PURPOSE, AND EXPRESSLY DISCLAIMS ALL

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,

ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT OR ANY OTHER IMPLIED WARRANTY

UNDER THE UNIFORM COMPUTER INFORMATION TRANSACTIONS ACT AS

ENACTED BY ANY STATE. CLEAR-COM ALSO MAKES NO

Logic | User Guide

Page 6

REPRESENTATION OR WARRANTY THAT THE SOFTWARE WILL OPERATE

ERROR FREE OR IN AN UNINTERRUPTED FASHION OR THAT ANY

DOWNLOADABLE FILES OR INFORMATION WILL BE FREE OF VIRUSES OR

CONTAMINATION OR DESTRUCTIVE FEATURES.

7) Limitation of Liability. You expressly absolve and release Clear-Com
from any claim of harm resulting from a cause beyond Clear-Com’s

control, including, but not limited to, failure of electronic or
mechanical equipment or communication lines, telephone or other

connection problems, computer viruses, unauthorized access, theft,
operator errors, severe weather, earthquakes, or natural disasters,
strikes, or other labor problems, wars, or governmental restrictions.

MOREOVER, IN NO EVENT SHALL CLEAR-COM BE LIABLE FOR ANY
INDIRECT, PUNITIVE, INCIDENTAL, SPECIAL, EXEMPLARY, MULTIPLE,

INDIRECT OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN
ANY WAY CONNECTED WITH THE USE OF THE SOFTWARE, WITH ANY

DELAY OR INABILITY TO USE THE SOFTWARE, OR FOR ANY
INFORMATION, SERVICES, PROGRAMS, PRODUCTS, AND MATERIALS
AVAILABLE THROUGH THE SOFTWARE, WHETHER BASED IN

CONTRACT, TORT, STRICT LIABILITY, OR OTHERWISE, EVEN IF
CLEAR-COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY.

NOTWITHSTANDING THE FOREGOING, TOTAL LIABILITY OF CLEAR-
COM FOR ANY REASON WHATSOEVER RELATED TO USE OF THE

SOFTWARE SHALL NOT EXCEED THE TOTAL AMOUNT PAID BY YOU TO
CLEAR-COM TO PURCHASE THE SOFTWARE.

8) Indemnity. You agree to protect, defend, indemnify, and hold
harmless Clear-Com and its affiliates and all of their respective

employees, agents, directors, officers, shareholders, attorneys,
successors, and assigns from and against any and all claims,

proceedings, damages, injuries, liabilities, losses, costs, and expenses
(including reasonable attorneys’ fees and litigation expenses) relating
to or arising from any breach by you of this Agreement.

9) Legal Matters.

9.1 If you are resident or domiciled anywhere other than Europe, the

Middle East or Africa, this Agreement will be construed and enforced solely

in accordance with the laws of the State of California, U.S.A., and courts

in California shall have exclusive subject matter jurisdiction, personal

jurisdiction, and venue to adjudicate any dispute arising out of this

Agreement.

Logic | User Guide

Page 7

9.2 If you are resident or domiciled in Europe, the Middle East or Africa

(the “EMEA”), this Agreement will be construed and enforced solely in

accordance with English law and English Courts shall have exclusive

subject matter jurisdiction, personal jurisdiction and venue to adjudicate

any dispute arising out of this Agreement.

9.3 You agree to waive any right to a jury trial in connection with any

action or litigation in any way arising out of or related to this Agreement

and acknowledge that either party may seek attorney's fees in any

proceeding. Any claim you might have against Clear-Com must be

brought within two (2) years after the cause of action arises, or such claim

or cause of action will be barred. You also acknowledge and agree that

any applicable state law implementation of the Uniform Computer

Information Transactions Act (including any available remedies or laws)

shall not apply to this Agreement and is hereby disclaimed.

9.4 Clear-Com makes no representation that the Software is appropriate

or available for use in locations outside the State of California or the EMEA

and access to or use of the Software from states, territories, or nations

where any aspect of the Software is illegal is prohibited. You access or

use the Software on your own volition and are responsible for compliance

with all applicable local laws with respect to your access and use of the

Software.

9.5 A printed version of this Agreement and of any related notice given in

electronic form shall be admissible in judicial or administrative

proceedings based upon or relating to this Agreement to the same extent

and subject to the same conditions as other business documents and

records originally generated and maintained in printed form.

9.6 Clear-Com has no obligation to provide free updates to or upgrades of

the Software or to provide support of any kind with respect to the

Software.

9.7 If you are acquiring the Software for an agency of the United States

Government, the provisions of Federal Acquisition Regulations Section

12.212 or Department of Defense FAR Supplement Section 227.7202-3,

as applicable, apply to such acquisition.

10) Term and Termination. This Agreement and your right to use the
Software will take effect at the moment you click "I ACCEPT" or you

install, access, or use the Software and is effective until terminated as
set forth below. This Agreement will terminate automatically if you
click "I REJECT." In addition, Clear-Com reserves the right at any

time and on reasonable grounds, which shall include, without
limitation, any reasonable belief of fraudulent or unlawful activity or

Logic | User Guide

Page 8

actions or omissions that violate any term or condition of this

Agreement, to deny your access to the Software or to any portion
thereof in order to protect its name and goodwill, its business, or other

authorized users, and this Agreement will also terminate automatically
if you fail to comply with this Agreement, subject to the survival rights

of certain provisions identified below. Termination will be effective
without notice. You may also terminate this Agreement at any time
by ceasing to use the Software, but all applicable provisions of this

Agreement will survive termination, as identified below. Upon
termination, you must destroy all copies of any aspect of the Software

in your possession. In addition to the miscellaneous section below,
the provisions concerning Clear-Com’s proprietary rights, feedback,
indemnity, disclaimers of warranty, limitation of liability, and

governing law will survive the termination of this Agreement for any
reason.

11) Miscellaneous. You acknowledge that any breach, threatened or
actual, of this Agreement will cause irreparable injury to Clear-Com,
such injury would not be quantifiable in monetary damages, and
Clear-Com would not have an adequate remedy at law. You therefore

agree that Clear-Com shall be entitled, in addition to other available
remedies, to seek and be awarded an injunction or other appropriate

equitable relief from a court of competent jurisdiction restraining any
breach, threatened or actual, of your obligations under any provision
of this Agreement. Accordingly, you hereby waive any requirement

that Clear-Com post any bond or other security in the event any
injunctive or equitable relief is sought by or awarded to Clear-Com to

enforce any provision of this Agreement. The parties agree that this
Agreement is for the benefit of the parties hereto as well as Clear-

Com's licensors. Accordingly, this Agreement is personal to you, and
you may not assign your rights or obligations to any other person or
entity without Clear-Com's prior written consent. Failure by Clear-

Com to insist on strict performance of any of the terms and conditions
of this Agreement will not operate as a waiver by Clear-Com of that or

any subsequent default or failure of performance. If any provision (or
part thereof) contained in this Agreement is determined to be void,
invalid, or otherwise unenforceable by a court of competent

jurisdiction or on account of a conflict with an applicable government
regulation, such determination shall not affect the remaining

provisions (or parts thereof) contained herein and the illegal, invalid,
or unenforceable clause shall be modified in compliance with
applicable law in a manner that most closely matches the intent of the

original language. No joint venture, partnership, employment, or
agency relationship exists between you and Clear-Com as a result of

this Agreement or your utilization of the Software. Headings herein
are for convenience only. This Agreement represents the entire

Logic | User Guide

Page 9

agreement between you and Clear-Com with respect to use of the
Software, and it supersedes all prior or contemporaneous

communications and proposals, whether electronic, oral, or written
between you and Clear-Com with respect to the Software.

Logic | User Guide

Page 10

Eclipse® 9.1 Logic Programming User Guide ...1

1 LOGIC PROGRAMMING .. 13

1.1 INTRODUCTION .. 13

1.2 OPERATION .. 13

1.2.1 CONTROL SEQUENCE PROPERTIES .. 15

1.2.2 FUNCTION BUTTONS ... 16

1.3 LOGIC PROGRAMMING .. 20

1.3.1 MODULE LIBRARY .. 23

1.3.2 LOGIC ELEMENTS .. 52

2 APPENDIX A CONTROL MACRO EDITOR ... 65

2.1 INTRODUCTION TO CONTROL MACRO EDITOR 65

2.2 CONTROL MACRO LANGUAGE ... 66

2.2.1 EXAMPLE CONTROL MACRO .. 66

2.3 CONTROL MACRO EDITOR ... 67

2.3.1 CONTROL MACRO EDITOR WINDOW .. 67

2.3.2 OBJECT BROWSER ... 68

2.3.3 MESSAGE WINDOW ... 68

2.3.4 RUNNING CONTROL MACROS ... 68

2.3.5 STARTING THE CONTROL MACRO EDITOR 68

2.4 CONFIGURATION ENTITIES .. 70

2.5 AVAILABLE MODULES .. 72

2.5.1 CLEARCOM ... 72

2.5.2 SHARED ... 83

2.6 CREATING A NEW PROJECT ... 83

2.7 ELEMENTS OF A CONTROL MACRO .. 88

2.8 MACRO REFERENCE .. 89

2.8.1 ATTACHMENTOBJECT MACROS .. 90

2.9 CONTROL OBJECT MACROS .. 92

2.9.1 PORT OBJECT MACROS .. 96

2.9.2 CONDITION MACROS ... 100

2.9.3 CONTROL ACTIONS MACRO .. 102

2.9.4 CONTROL ATTACHMENT MACROS .. 107

Logic | User Guide

Page 11

2.9.5 CONTROL LATCH MACROS .. 108

2.9.6 CONTROL MACROS .. 111

2.9.7 CROSSPOINT CONTROL ... 116

2.9.8 CURRENT MACROS .. 117

2.9.9 LOGGING MACROS .. 118

3 APPENDIX B EXAMPLE CONTROL MACROS 122

3.1 ACTIVATE SPECIFIC KEY LED ... 122

3.2 ACTIVATE LED ON ALL KEYS TO DESTINATION 123

3.3 TRIGGER ACTION WHEN BOTH A AND B ARE SET 123

3.4 TRIGGER ACTION WHEN ALL OF A AND B AND C ARE SET 124

3.5 CUT TALK TO STUDIO ... 125

3.6 CUT TALK TO STUDIO, EXCLUDING SOME PANELS 126

3.7 TRIGGER ACTION WHEN BOTH A IS SET AND A CROSSPOINT IS MADE 127

3.8 TRIGGER ACTION WHEN GROUP 1 MEMBER TALKS TO GROUP 2 MEMBER
 128

3.9 HEADSET-SELECT ON .. 130

3.10 HEADSET-SELECT ON ALWAYS .. 130

3.11 LOUDSPEAKER-CUT ON .. 131

3.12 IFB CONTROL MACROS ... 132

3.12.1 ADD CALLER (IFB CHECKBOX ENABLED) 132

3.12.2 ADD CALLER (IFB CHECKBOX NOT ENABLED) 132

3.12.3 ADD DESTINATION ... 132

3.12.4 ADD RETURN ... 132

3.12.5 ADD SOURCE (IFB CHECKBOX ENABLED) 133

3.12.6 ADD SOURCE (IFB CHECKBOX NOT ENABLED) 133

3.12.7 EXAMPLE OF USING IFB CONTROL MACROS............................. 133

4 APPENDIX C KEY NUMBERING ON PANELS 135

5 GLOSSARY ... 142

6 LIMITED WARRANTY ... 147

6.1 WARRANTY PERIOD .. 147

6.2 TECHNICAL SUPPORT .. 147

Logic | User Guide

Page 12

6.3 WARRANTY REPAIRS AND RETURNS .. 148

6.4 NON-WARRANTY REPAIRS AND RETURNS .. 148

6.5 EXTENDED WARRANTY .. 148

6.6 LIABILITY .. 149

7 TECHNICAL SUPPORT & REPAIR POLICY NOVEMBER 1, 2008 150

Logic | User Guide

Page 13

1 LOGIC PROGRAMMING

1.1 INTRODUCTION

The Logic facility in EHX is a separately licensable option which allows control

sequences to be generated using the Logic visual programming interface. The

facility to create and edit control sequence scripts directly is also available in the

option via the Control Macro editor (see appendices in section 2 A and B).

Control sequences allow the configuration that controls matrix operation to be

directly modified to carry out specific actions when triggered. Each control

sequence contains a series of commands with each defined command

representing an action carried out on an object in the configuration. An object

may be a port, an input or output device or label.

The main use of control sequences is to select controls which have already been

configured using EHX and modify the actions that they trigger when activated.

Each defined control sequence is named and can have multiple inputs and outputs

and combination logic. These sequences take the form of actions to be associated

with inputs, and the Logic editor will assist the author by providing an overview of

available actions and the parameters each requires to perform the required

function.

Logic elements are available (e.g. AND, NAND, OR, NOR), with tooltips supplied

by the Logic editor.

It is possible that more than one control sequence in a configuration generated

using Logic or the Control Macros editor may target the same action such as

loudspeaker cut on a panel. This may result in one control overriding the effect

of another control. For example, if two controls request loudspeaker cut on a

panel, if one of the controls cancels the action it will be cancelled for both

regardless of whether the other control has cancelled the action. Care should be

taken to ensure that multiple controls do not target the same action to avoid

unexpected results when multiple control sequences operate on the same action.

1.2 OPERATION

To start Logic, click on the Logic link in the Configuration menu.

Logic | User Guide

Page 14

Figure 1-1: EHX Configuration Menu

The Logic design window will be opened displaying the initial command window

with a list of known logic design. The logic design properties are displayed in

seven columns.

Figure 1-2: Logic Control Sequence List

At the bottom of the list of control sequences there are five buttons to access

functions to create, delete, import, export and clone control sequences.

Logic | User Guide

Page 15

1.2.1 CONTROL SEQUENCE PROPERTIES

Enabled Checkbox

The checkbox in the leftmost column of the control sequence list determines

whether the Logic control sequence is saved with the system configuration in the

database. If the box is checked the control sequence will be saved with the

configuration; if it is not checked it will not be saved with the configuration and

therefore will not be downloaded to the matrix with the configuration.

Edit Logic Column

The ‘Edit Logic’ column contains links to the source for the selected control

sequence. Clicking on the link will open the logic design window and display the

selected control sequence in the design pane.

Figure 1-3: Control Sequence Display

Edit Properties Column

The ‘Edit Properties’ column contains links to the information for the selected

control sequence. Clicking on this link allows the control sequence name, project

name, author and description to be modified.

Logic | User Guide

Page 16

Figure 1-4: Control Sequence Properties

Name

The ‘Name’ column lists the names of the known control sequence designs. The

control sequence design name is edited by selecting the ‘Edit Properties’ link for

the required control sequence design.

Project

The ‘Project’ column lists the project names associated with the control sequences.

These project names are optional and are simply to assist in grouping control

sequences together.

Author

The ‘Author’ column lists the names of authors associated with the control

sequences. These author names are optional and are simply for information.

Description

The ‘Description’ column lists the descriptions associated with the control

sequences. These descriptions are optional and are simply for information.

1.2.2 FUNCTION BUTTONS

The buttons at the bottom of the logic design window allow control sequences to

be created, deleted, imported from files, exported to files and cloned.

Logic | User Guide

Page 17

New

Clicking the ‘New’ button requests the initial information for a new control

sequence design, allowing the design type, design name, project name, author

and a description to be input.

Figure 1-5: New Control Sequence Dialog

The ‘Type’ is selected from a drop-down menu and may be either ‘Logic

Diagram’ or ‘Control Macro’. Normally ‘Logic Diagram’ is selected and the control

sequence created using the interactive design editor.

After entering the required information click on the ‘OK’ button to enter the Logic

design environment.

Delete

The ‘Delete’ button provides the facility to delete selected control sequences.

Control sequences are selected for deletion by clicking on the entry to highlight

it and clicking on the delete button. Multiple control sequences can be selected

for deletion by pressing the ‘Shift’ key while selecting control sequences. A

dialog is displayed to confirm the action.

Logic | User Guide

Page 18

Figure 1-7: Control Sequence Delete Confirmation

Click on the ‘OK’ button to delete the control sequence.

Import

The ‘Import’ button opens a dialogue screen to import a control sequence file

(default file extension.ccm) into Logic.

Figure 1-8: Control Sequence Import Dialogue

Multiple control sequences can be selected for import by holding down the ’Shift’

key while selecting the control sequences to be imported.

Logic | User Guide

Page 19

Export

The ‘Export’ button opens the dialogue screen to export a control sequence as a

control sequence file. These files have a default file extension of ‘.ccm’. It is

recommended that this default file extension is used.

Figure 1-9: Control Sequence Export Dialogue

Multiple control sequences can be selected for export to a single file by holding

down the ’Shift’ key while selecting the control sequences to be exported.

Clone

Select the control sequence to be cloned and click on the ‘Clone’ button to open

the control sequence clone dialog.

Figure 1-10: Project Clone Dialogue

Logic | User Guide

Page 20

Enter a new name for the cloned control sequence, and optionally enter or

change the project name, author name and description. Click on ‘OK’ to create

the new control sequence.

Multiple control sequences can be selected for cloning by holding down the ’Shift’

key while selecting the control sequences to be cloned.

1.3 LOGIC PROGRAMMING

Logic allows control sequences to be created and edited by dragging and

dropping logic elements and library modules onto a layout and connecting them.

Configuration elements are then added to the module library elements by

dragging and dropping them onto the appropriate areas of the module library

elements to define the items that are to be used in the control sequence.

The toolbar allows the user to Undo and Redo changes, zoom in or out of the

view, expand/collapse dropdowns, simulate inputs to the logic design, vary the

speed of simulation and refresh the view.

To start a new project, click on the ‘New’ tab and enter the project information

into the dialogue screen and click on ‘OK’. The control logic layout screen is then

opened.

Figure 1-11: Logic Interface

Configuration elements are devices present in the target configuration (the

configuration that the control sequence will be part of). These are divided into

Control Inputs, Control Outputs, Directs/Interfaces, Fixed Groups, Panels and

IFBs. To select a configuration element, click on the group the required

configuration element belongs to and a list of all the elements in that category

will be displayed in the configuration element pane.

Toolbar

Logic
elements

Module
library

Design
window

Elements
from target

configuraton

Information and
error window

Logic | User Guide

Page 21

Comments can be added to the control sequence design in two ways:

Placing the mouse pointer over the design pane but not over a design element

and right clicking will create a free-floating comment box that can be edited with

the text of the comment. Double click on the comment box to highlight and edit

the comment text. Free floating comments can be moved around the design

panel using the mouse.

Placing the mouse pointer over the title of a library module or over a logic

element and right clicking will open a drop-down menu of

options. Selecting ‘Add Comment’ will create a comment attached to the module

or logic element. Double click on the comment box to highlight and edit the

comment text. Attached comments can be moved around the design panel using

the mouse but will always remain connected to the target item.

Figure 1-12: List of Configuration Elements

Note: If the configuration changes label names the Configuration elements
already used in the logic diagram will show red for error. To prevent this

set up fixed groups in EHX with the configuration element you need to
remain static and use these for the logic diagram. The fixed group
member(s) can then change names without breaking the logic.

In the case of devices with talk and listen labels both labels are displayed in

the list in the format ‘talk label’, ’listen label’. Devices that do not have talk

and listen labels are identified by name.

Logic | User Guide

Page 22

Logic elements can be dragged into the design pane and placed for connection

to other elements.

To connect a control input to a logic element simply place the mouse pointer

over the connection point on the control input, left click and hold, and drag the

connection to the required connection point on the logic element and release

the mouse button. The same process is used to connect the output from a

logic element to a control output.

Figure 1-13: Example Control Sequence

Click on the ‘Simulate’ button on the toolbar to test the logic for errors. When

simulation mode is active double clicking with the left mouse button on a logic

input will invert the current state of the input unless it is an enable or disable

logic element. When an element in the design is off it is colored dark grey, when

on it is white. Setting an input to true allows the result of the logic design to be

checked.

The speed of the simulation can be set to normal, divided by ten or divided by

forty by clicking on the ‘Speed’ button on the toolbar and selecting the required

speed from the menu. The slower speeds allow the design to be checked for race

Logic | User Guide

Page 23

conditions that might occur if there are multiple paths between elements with

different time delays in them.

Right clicking on a control sequence element will open a drop-down menu

allowing the element to be deleted, cut or copied. A comment can also be

added. In the case of logic elements, the type of logic element can also be

changed.

1.3.1 MODULE LIBRARY

The module library provides control items which can be programmed with

physical devices such as panel keys, direct interfaces and control labels. The

physical items are then acted upon by the control items to create logic inputs

and outputs, create audio paths or change the state of panel hardware.

Control Input

Control inputs are used to provide inputs to the control sequence when a control

is active. The control inputs are triggered by controls set up in EHX by the

Control Manager and are usually General Purpose Inputs (GPIs). These may be

attached to devices such as footswitches. Controls set up in EHX using the

Control Manager may also be assigned to keys under Panel Programming. In this

case activating the panel key will act as a control input.

To set up a control input drag and drop a ‘Control I/P’ module from the ‘Module

Library’ onto the design pane.

Figure 1-14: Control Input Module

To add a control, click on the ‘Controls’ menu to open it and display the ‘Add

control’ item.

Figure 1-15: Control Input Menu

Logic | User Guide

Page 24

Drag and drop an item from the list of control labels onto the ‘Add control’ item

to add it to the list of controls that will trigger the Control Input function.

Figure 1-16: Adding a Control to the Control Input List

Alternatively control labels can be dragged and dropped directly onto the

unexpanded ‘Controls’ menu and they will be added to the controls list.

Multiple control labels can be added to the control input module to create a list

of control labels that will activate the logic input from the control input module.

Figure 1-17: Added Further Controls to a Control Input

Dragging and dropping a control label on top of a label already in the controls

list will replace that item with the new control label.

Items on the control list can be selected by left clicking on the items; multiple

items can be selected by holding down the shift key while left clicking on the

items to select them. Right clicking on the selected control item or items will

open a menu giving the options to Copy, Cut Delete or Use Alt Text.

Alternatively, the entire list can be copied by right-clicking on the unexpanded

controls menu and selecting ‘’Copy this Control list’.

Logic | User Guide

Page 25

Figure 1-18: Control List Editing

Note: Note: If the control label has alternative text (Alt Text) specified in the EHX

software, you can choose whether to display the label text (default) or the
alternative text. Select Use Alt Text to change the text.

If items from the list of controls are cut or copied they may be pasted directly

into the control list of another control input by right clicking on the unexpanded

controls menu and selecting ‘Add selection’.

To enter a description into the control input double

left click on the word ‘Description’ and the

description text box is displayed with the current

content highlighted for overtyping.

Figure 1-19: Control Input Description

Enter the required description in the text box and then left click outside the text

box to close the text box. The description is then displayed on the control input.

A control input can be copied, cut, deleted or have a comment added by right

clicking on the ‘Control I/P’ title to open the options menu.

Figure 1-20: Copying a Control Input

If a control input is copied or cut it can be pasted back into the design window

complete with the list of assigned controls and the description. Deletion will

remove the control input and ‘Add Comment’ will add an attached comment as

described previously. To paste a copy of a control input, place the mouse pointer

over a free space in the design window and right click to open the menu.

Logic | User Guide

Page 26

Figure 1-21: Pasting a Control Input

Click on ‘Insert Comment’ to add a free-floating comment as described previously.

Control Input Operation

If any of the controls on the list are activated, then the control input module will

be set to an active output. The same effect can be created by using multiple

control inputs and combining them using ‘OR’ gates but whereas ‘OR’ gates

introduce a 25ms processing delay combining multiple controls in a list does not

introduce a processing delay.

Control Output

Control outputs are used to activate outputs when the input state is true. To set

up a control output drag and drop a ‘Control O/P’ module from the ‘Module

Library’ onto the design pane.

Figure 1-22: Control Output Module

To add a control, click on the ‘Controls’ menu to open it and display the ‘Add

control’ item.

Figure 1-23: Control Output Menu

Drag and drop an item from the list of control labels onto the ‘Add control’ item to
add it to the list of controls that will be triggered by the Control Output. The

output control labels are set up in EHX by the Control Manager and are usually
General Purpose Outputs (GPOs).

These may be attaches to external devices such as relays to control devices such

as lights or door switches.

Logic | User Guide

Page 27

Figure 1-24: Adding a Control to the Control Output List

Alternatively control labels can be dragged and dropped directly onto the

unexpanded ‘Controls’ menu and they will be added to the controls list.

Multiple control labels can be added to the control output module to create a list

of control labels that will be activated by the Control Output module when it

receives an active input.

Figure 1-25: Adding Further Controls to a Control Output

Dragging and dropping a control label on top of a label already in the controls

list will replace that item with the new control label.

Items on the control list can be selected by left clicking on the items; multiple

items can be selected by holding down the shift key while left clicking on the

items to select them. Right clicking on the selected control item or items will

open a menu giving the options to Copy, Cut or Delete the items. Alternatively,

the entire list can be copied by

right-clicking on the unexpanded controls menu and selecting ‘’Copy this Control

list’.

Figure 1-26: Control List Editing

Logic | User Guide

Page 28

If items from the list of controls are cut or copied they may be pasted directly

into the control list of another control output by right clicking on the unexpanded

controls menu and selecting ‘Add selection’.

To enter a description into the control output double left click on the word
‘Description’ and the description text box is displayed with the current content

highlighted for overtyping.

Figure 1-27: Control Output Description

Enter the required description in the text box and then left click outside the text

box to close the text box. The description is then displayed on the control output.

A control output can be copied, cut, deleted or have a comment added by right

clicking on the ‘Control O/P’ title to open the options menu.

Figure 1-28: Copying a Control Output

If a control output is copied or cut it can be pasted back into the design window

complete with the list of assigned controls and the description. Deletion will
remove the control output and ‘Add Comment’ will add an attached comment as

described previously. To paste a copy of a control output place the mouse pointer
over a free space in the design window and right click to open the menu.

Figure 1-29: Pasting a Control Output

Click on ‘Insert Comment’ to add a free-floating comment as described previously.

Some examples of the use of input and output controls are shown in Figure 1-30

below.

Logic | User Guide

Page 29

Figure 1-30: Examples of Controls

Panel Control

The Panel Control module allows logic to be set up to control actions on panels

and keys when the logic input is active. To set up a control output drag and

drop a ‘Panel Control’ module from the ‘Module Library’ onto the design pane.

The default for a panel control is for panel loudspeaker cut.

Logic | User Guide

Page 30

Figure 1-31: Default Control Panel Module

The panel control module offers the following options:

• Cut the panel loudspeaker

• Dim the panel loudspeaker

• Select the panel headset

• Mute the panel microphone

• Set the key signalization to red when active

• Set the key signalization to green when active

• Set the key signalization to amber when active

• Unlatch all talk keys

o All V-Series panels, expansion panels and I-Series panels

o All local and centrally assigned latched talk keys on panels and shift

pages.

o Active talk keys in interlocked groups

o Latched keys configured as Talk, Talk & Listen and Talk & Forced

Listen

o All latched talk keys with controls or stacked assignments

o Latched Reply keys

Note: The Unlatch all talk keys option does not apply to panel logic inputs.

To select a different option open the action menu (‘Loudspeaker Cut’) and right

click on the current option to display the options list.

Logic | User Guide

Page 31

Figure 1-32: Panel Control Options

Select the panel control option required from the list by left clicking on it. The

list will be closed and the panel control module display will be updated according

to the option selected.

If a key signalization is selected red, green, amber) the key indication on the

label can be set to one of the options:

• Indication Off

• Indication 1Hz

• Indication 2Hz

• Indication 4Hz

• Indication On

Logic | User Guide

Page 32

Figure 1-33: Key Signalization Options

The panel override options for key signalization are:

• Activate to Override Local

• Permanent Override of Local

• Advanced Override of Local

Figure 1-34: Panel Override Options for Key Signalization

Drag and drop one or more panels onto the ‘Add Panel’ menu to configure the

panels that will be the subject of the controls. If key signalizations are required

drag and drop the required control labels, Directs/Interfaces, Fixed Groups or

Panels onto the ‘Add Label’ menu.

If a panel loudspeaker, headset or microphone action is selected the ‘Labels’

menu is not available. It is only available when a key signalization panel action

is selected.

If loudspeaker cut, loudspeaker dim, select panel headset or panel microphone

mute are set as the action the options menu for these actions are:

Logic | User Guide

Page 33

• Activate to Override Local. Overrides the current setting of the device if it

is currently active. If it is not active the control has no effect.

Figure 1-35: Panel Override IF Active Example

• Permanent Override of Local. Always overrides the current setting of the

device regardless of whether it is active or not.

Figure 1-36: Permanent Override of Local Example

Advanced Override of Local. In this case there are two control inputs to

the panel. The first control input must be active for the second control

input to take over the panel function.

Logic | User Guide

Page 34

Figure 1-37: Advanced Override of Local Example

Crosspoint Trigger

Crosspoint triggers allow audio crosspoints to be used to generate a control

output to another action which may be a control output or a crosspoint action.

Crosspoint triggers are configured with sources and destinations selected from

the lists of fixed groups and panels that define the crosspoints.

To set a crosspoint trigger drag and drop an ‘Xpt Trigger’ from the ‘Module

Library’ pane onto the design pane.

Figure 1-38: Crosspoint Trigger

Trigger Crosspoint Type

Open the crosspoint type menu and right click on the current type to display the
menu of trigger types.

Logic | User Guide

Page 35

Figure 1-39: Crosspoint Trigger Type Menu

The crosspoint trigger can be set to operate when either source to destination

crosspoints are made or bidirectional crosspoints are made between any of the

sources and destinations configured. Right click on the menu item to select the

crosspoint trigger type.

Crosspoint Trigger Sources

Crosspoint trigger sources can be added to the list by dragging and dropping

devices from the Direct/Interfaces, Fixed Groups and Panels lists onto the source

list whether or not it is open. If the source list is opened then dropping a new

source onto an existing source will replace it. If there are no items already

assigned to the source list then the list name will be highlighted in red. If there

are items already assigned the list will not be highlighted but instead will be

surrounded by a green box.

Note: With Eclipse 8.7, you cannot add sources to a virtual IFB by creating a
crosspoint from a source to a destination. To modify the contents of a

virtual IFB, you must use a control that fires a route.

Figure 1-40: Menu Selected

When the menu name is highlighted in yellow the item can be dropped onto the

menu.

Figure 1-41: New Item Added

Right-clicking on ‘Add source...’ will display a menu allowing all the ports or all

the panels in the configuration to be added to the source list.

Logic | User Guide

Page 36

Figure 1-42: Adding All Ports or Panels to Crosspoint Trigger

Sources in the list can be copied, cut, deleted or excluded by selecting the required
items from the list and right clicking to display the options list. Multiple items on
the list can be selected by holding down the Shift key while selecting items.

Figure 1-43: Crosspoint Trigger Source Options

Items that are cut or copied can be pasted into other source or destination lists.

Deleting an item removes it from the list while the ‘Change to Excluded’ option

allows a source to be excluded from consideration when triggering an output. If

a source is excluded it will be displayed in red. If ‘All Ports’ is present in the

source list this cannot be excluded.

Crosspoint Trigger Destinations

Crosspoint trigger destinations can be added to the list by dragging and

dropping devices from the Direct/Interfaces, Fixed Groups and Panels lists onto

the destination list whether or not it is open. If the destination list is opened

then dropping a new destination onto an existing destination will replace it. If

there are no items already assigned to the destination list then the list name will

be highlighted in red. If there are items already assigned the list will not be

highlighted but instead will be surrounded by a green box.

Note: With Eclipse 8.7, you cannot set a virtual IFB as the destination of a
crosspoint action. You must either use a route, or add the IFB to a fixed

group, and add that group as the destination of the crosspoint action.

Logic | User Guide

Page 37

Figure 1-44: Destination Menu Selected

When the list name is highlighted in yellow the item can be dropped into the list.

Figure 1-45: New Item Added

Right-clicking on ‘Add destination...’ will display a menu allowing all the ports or

all the panels in the configuration to be added to the destination list.

Figure 1-46: Adding All Ports or Panels to Crosspoint Trigger

Destinations in the list can be copied, cut, deleted or excluded by selecting the

required items from the list and right clicking to display the options list. Multiple

items on the list can be selected by holding down the Shift key while selecting

items.

Logic | User Guide

Page 38

Figure 1-47: Crosspoint Trigger Source Options

Items that are cut or copied can be pasted into other source or destination lists.

Deleting an item removes it from the list while the ‘Change to Excluded’ option

allows a destination to be excluded from consideration when triggering an

output. Any destination that has been excluded is shown in red. If ‘All Ports’ is

present in the destination list this cannot be excluded. To re-include a

destination that has been excluded select it and right click to open the actions

menu and select ‘Change to Included’.

Figure 1-48: Pin to Source List Destination Option

Selecting the ‘Pin to Source List’ option replaces the ‘Destinations’ menu with

‘Dests => Sources’.

To reinstate the ‘Destinations’ menu right click on ‘Dests => Sources’ and select

‘Detach from Source List’.

Logic | User Guide

Page 39

Figure 1-49: Delete Pin to Source List Option

The ‘Dests => Sources’ option replaces the destination list with a matrix of

crosspoints between all the sources in the source list. This is shown by the

crosspoint options menu being replaced by a new ‘All Xpts’ menu. Right-clicking

on the ‘All Xpts’ menu will display a list of options allowing the crosspoint matrix

to be modified.

Figure 1-50: Cross Points Options

The crosspoint options for Pin to Source are:

• All Xpts - triggers on every crosspoint between sources in the source list.

The example below shows the table for sources 1 - 6.

Figure 1-51: All Possible Crosspoints Set as Trigger

Logic | User Guide

Page 40

• Mix-Minus - triggers on every crosspoint between sources on the source

list except loopback crosspoints that form the diagonal on the crosspoint

matrix. The example below shows the table for sources 1 - 6.

Figure 1-52: Mix-Minus Crosspoints

• Diagonal - triggers on all loopback crosspoints .i.e. where sources on the

source list are looped back to themselves. The example below shows the

table for sources 1 - 6.

Figure 1-53: Diagonal Crosspoints

Crosspoint Trigger Examples

Examples of the use of crosspoint triggers and actions are shown below.

Logic | User Guide

Page 41

Figure 1-54: Crosspoint Trigger for Crosspoint Action

In example Figure 1-54 when source ‘P1’ establishes an audio path to

destination ‘P3’ the crosspoint trigger will be activated to provide an input to the

crosspoint action. The crosspoint action will enable crosspoints between the

same source ‘P1’ and two other destinations ‘P6’ and ‘P7’ at priority 4.

The effect would be that whenever the panel operator ‘P1’ talks to ‘P3’ the audio

will also be routed to ‘P6’ and ‘P7’.

Examples of crosspoint triggers used to trigger control outputs are shown in

Figure 1-55.

Logic | User Guide

Page 42

Figure 1-55: Crosspoints Triggering Control Outputs

Crosspoints triggers can be used to enable other crosspoints so that a single key

could enable audio feeds from a number of sources to a number of destinations

as shown in Figure 1-56.

Logic | User Guide

Page 43

Figure 1-56: Crosspoint Triggering Many Actions

There is a constraint on the maximum number of possible actions by crosspoint

triggers and crosspoint actions imposed by system resources. In general the

number of possible triggers times the number of possible actions should not

exceed 4095. So if there are 16 possible triggers specified in an Xpt Trigger and

16 possible crosspoint actions specified in a Xpt Action the number of actions

would be:

16 triggers x 16 actions = 256 events

which would be acceptable. If the result of setting up a system of crosspoint

triggers and crosspoint actions created more than 4095 possible actions an error

would be reported when the configuration was downloaded.

In this case a buffer logic element should be placed between the crosspoint

trigger and crosspoint action. In this way the number of actions the trigger

crosspoint has to make is limited to the number of trigger crosspoints, which

only have to trigger the buffer. The buffer will then act on the crosspoints in the

crosspoint action. An example of this is shown in Figure 1-57.

Logic | User Guide

Page 44

Figure 1-57: Many to Many Action with Buffer

Crosspoint actions can also be triggered from control inputs either directly or

through other logic elements.

Crosspoint Action

Crosspoint actions allow crosspoint triggers or control inputs to act on audio
crosspoints in various ways depending on how the crosspoint action is set up.
Crosspoint actions are configured with sources and destinations selected from the

lists of fixed groups and panels that define the crosspoints.

To set a crosspoint action drag and drop an ‘Xpt Action’ from the ‘Module Library’

pane onto the design pane.

Figure 1-58: Crosspoint Action

Action Type

The action type menu allows the type of action (enable, inhibit, isolate) to be

specified, together with the two crosspoints to be acted on (source to

destination, bidirectional) and the crosspoint priority. There is also the IFB

action, specifying the source port, the destination IFB and the type of action (call,

destination, source, return).

Logic | User Guide

Page 45

Open the action type menu and right click on the current action to display the

menu of crosspoint actions.

Figure 1-59: Crosspoint Actions List

The available crosspoint actions are:

• Enable Action - enable all the crosspoints between the sources and

destinations that satisfy the crosspoint type and priority criteria except

where sources or destinations are marked as excluded.

• Inhibit Action - inhibit all the crosspoints between the sources and

destinations that satisfy the crosspoint type and priority criteria except

where sources or destinations are marked as excluded.

• Isolate Action - isolate all the crosspoints between the sources and

destinations that satisfy the crosspoint type and priority criteria except

where sources or destinations are marked as excluded. When isolate

actions are applied to bidirectional crosspoints it will only isolate the

source to destination part of the audio path, not the destination to source

part.

• IFB Action – Enables an IFB as a crosspoint action.

If you select IFB Action, you can right-click Source Action to select the type of IFB
Action you require:

Logic | User Guide

Page 46

Figure 1-60 IFB Source Action list

Choose from the following source actions:

Call Action – Temporarily adds a caller to the IFB. If deleted, the caller is not

reapplied when the action is removed.

Source Action – Temporarily adds a source to the IFB.

Destination Action - Temporarily adds a destination to the IFB.

Return Action - Temporarily adds a return to the IFB.

Monitor Destination Action - Temporarily adds a monitor destination to the

IFB. This is also known as a destination listen.

Monitor Return Action - Temporarily adds a monitor return to the IFB. This is

also known as an IFB listen.

Crosspoint Type

Open the crosspoint action menu and right click on the current crosspoint type to

display the menu of crosspoint types.

Figure 1-61: Crosspoint Type List

The crosspoint action can be set to operate when either source to destination

crosspoints are made or bidirectional crosspoints are made between any of the

sources and destinations configured. Right click on the menu item to select the

crosspoint type.

Crosspoint Priority

The crosspoint priority defines the priority at which the action is applied to the

crosspoints. For a crosspoint action to change the state of a crosspoint it must

be set to a priority higher than the crosspoint.

Logic | User Guide

Page 47

Figure 1-62: Crosspoint Action Priority

For example, to override panel talk crosspoints at priority two with a crosspoint
action the action priority must be set to three or higher.

Crosspoint Action Sources

Crosspoint action sources can be added to the list by dragging and dropping

devices from the Direct/Interfaces, Fixed Groups and Panels lists onto the source

list whether or not it is open. If the source list is opened then dropping a new

source onto an existing source will replace it. If there are no items already

assigned to the source list then the list name will be highlighted in red. If there

are items already assigned the list will not be highlighted but instead will be

surrounded by a green box.

Figure 1-63: Crosspoint Action Source List

When the menu name is highlighted in yellow the item can be dropped onto the
list.

Logic | User Guide

Page 48

Figure 1-64: Adding a New Source

Right-clicking on ‘Add source...’ will display a menu allowing all the ports or all

the panels in the configuration to be added to the source list.

Figure 1-64: Adding All Ports or Panels to Crosspoint Action Source

Sources in the list can be copied, cut, deleted or excluded by selecting the required
items from the list and right clicking to display the options list. Multiple items on

the list can be selected by holding down the Shift key while selecting items.

Figure 1-65: Crosspoint Action Source Options

Items that are cut or copied can be pasted into other source or destination lists.

Deleting an item removes it from the list while the ‘Change to Excluded’ option

allows a source to be excluded from consideration when acting on crosspoints.

Any source that has been excluded is shown in red. If ‘All Ports’ is present in

the source list this cannot be excluded. To re-include a destination that has

been

Logic | User Guide

Page 49

excluded select it and right click to open the actions menu and select ‘Change to

Included’.

Crosspoint Action Destinations

Crosspoint action destinations can be added to the list by dragging and dropping

devices from the Direct/Interfaces, Fixed Groups and Panels lists onto the
destination list whether or not it is open. If the destination list is opened then

dropping a new destination onto an existing destination will replace it. If there are
no items already assigned to the destination list then the list name will be
highlighted in red. If there are items already assigned the list will not be

highlighted but instead will be surrounded by a green box. In the case of IFB
actions, IFBs and fixed groups, if a fixed group s added to an IFB crosspoint action

as a destination only the IFB in the group will be actioned.

Figure 1-66: Destination Menu Selected

When the list name is highlighted in yellow the

item can be dropped into the list.

Figure 1-67: New Destination Item Added

Right-clicking on ‘Add destination...’ will display a menu allowing all the ports or

all the panels in the configuration to be added to the destination list.

Logic | User Guide

Page 50

Figure 1-68: Adding All Ports or Panels to Crosspoint Action

Destinations in the list can be copied, cut, deleted or excluded by selecting the

required items from the list and right clicking to display the options list. Multiple

items on the list can be selected by holding down the Shift key while selecting

items.

Figure 1-69: Crosspoint Action Destination Options

Items that are cut or copied can be pasted into other source or destination lists.

Deleting an item removes it from the destination list while the ‘Change to

Excluded’ option allows a destination to be excluded from consideration when

triggering an output. Any destination that is excluded is shown in red. If ‘All

Ports’ is present in the destination list this cannot be excluded.

Right clicking on an empty destination list without expanding the list will display
an additional option of ‘Pin to Source List’.

Right clicking on an empty destination list without expanding the list will display

an additional option of ‘Pin to Source List’.

Figure 1-70: Pin to Source List Destination Option

Selecting the ‘Pin to Source List’ option replaces the ‘Destinations’ menu with

‘Dests => Sources’. To reinstate the ‘Destinations’ menu right click on ‘Dests =>
Sources’ and select ‘Detach from Source List’.

Logic | User Guide

Page 51

Figure 1-71: Delete Pin to Source List Option

The ‘Dests => Sources’ option replaces the destination list with a matrix of

crosspoints between all the sources in the source list. This is shown by the

crosspoint options menu being replaced by a new ‘All Xpts’ menu. Right-clicking

on the ‘All Xpts’ menu will display a list of options allowing the crosspoint matrix

to be modified.

Figure 1-72: Crosspoint Pin to Source Options

The crosspoint options for Pin to Source are:

• All Xpts - acts on every crosspoint between sources in the source list. The

example below shows the table for sources 1 - 6.

Figure 1-73: All Possible Crosspoints Set as Action

Logic | User Guide

Page 52

• Mix-Minus - acts on every crosspoint between sources on the source list

except loopback crosspoints that form the diagonal on the crosspoint

matrix. The example below shows the table for sources 1 - 6.

Figure 1-74: Mix-Minus Crosspoints

• Diagonal - triggers on all loopback crosspoints .i.e. where sources on the

source list are looped back to themselves. The example below shows the

table for sources 1 - 6.

Figure 1-75: Loopback Crosspoints

1.3.2 LOGIC ELEMENTS

Logic elements are used to perform logical operations on the outputs of control

sequence elements and pass the result to the input of other control sequence

elements. This allows complex sequences of actions depending on various

Logic | User Guide

Page 53

conditions to be built up and programmed into the matrix system. Right click on

the logic elements in the Logic Elements pane to display an options menu. This

menu allows the user to display a truth table for the logic element or copy the

logic element to the design window.

Logic elements can be inserted existing connections by right-clicking on the

connection to display the options menu and selecting ‘Insert Gate Type’. A list of

logic elements will be displayed for insertion into the connection.

Figure 1-76: Inserting a Logic Element into a Connection

The logic elements available are described below.

AND Gate

Combines two or more inputs to generate a single output. The default is two

inputs but by right clicking on the AND gate to display the options menu

additional inputs can be added. Unused inputs will default to the TRUE state.

The output is only true if all the inputs are true. The AND gate adds a 25ms

processing delay.

Input A Input B Output

False False False

False True False

True False False

True True True

Table 1-1: Truth Table for AND Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 54

Figure 1-77: Menu Options for AND Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Add Input - add an input to the logic element.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

NAND Gate

Combines two or more inputs to generate a single output. The default is two

inputs but by right clicking on a NAND gate to display the menu additional inputs
can be added. Unused inputs will default to the TRUE state. The output is only

true if at least one input is false. The NAND gate adds a 25ms processing delay.

Input A Input B Output

False False True

False True True

True False True

True True False

Table 1-2: Truth Table for NAND Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 55

Figure 1-78: Menu Options for NAND Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Add Input - add an input to the logic element.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

OR Gate

Combines two or more inputs to generate a single output. The default is two
inputs but by right clicking on an OR gate to display the menu additional inputs

can be added. Unused inputs will default to the TRUE state. The output is only
true if one or more inputs are true. The OR gate adds a 25ms processing delay.

Input A Input B Output

False False False

False True True

True False True

True True True

Table 1-3: Truth Table for OR Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 56

Figure 1-79: Menu Options for OR Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Add Input - add an input to the logic element.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

NOR Gate

Combines two or more inputs to generate a single output. The default is two

inputs but by right clicking on a NOR gate to display the menu additional inputs
can be added. Unused inputs will default to the TRUE state. The output is only

true if all inputs are false. The NOR gate adds a 25ms processing delay.

Input A Input B Output

False False True

False True False

True False False

True True False

Table 1-4: Truth Table for NOR Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 57

Figure 1-80: Menu Options for NOR Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Add Input - add an input to the logic element.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

BUFFER Element

Used between a crosspoint trigger and a crosspoint action to reduce the system
resource usage. There is a constraint on the maximum number of possible actions
by crosspoint triggers and crosspoint actions imposed by system resources. In

general the number of possible triggers times the number of possible actions
should not exceed 4095. So if there are 16 possible triggers specified in a

crosspoint trigger and 16 possible crosspoint actions specified in a crosspoint
action the number of actions would be:

16 triggers x 16 actions = 256 events

which would be acceptable. If the result of setting up a system of crosspoint
triggers and crosspoint actions created more than 4095 possible actions an error

would be reported when the configuration was downloaded.

In this case a buffer logic element should be placed between the crosspoint

trigger and crosspoint action. In this way the number of actions the trigger
crosspoint has to make is limited to the number of trigger crosspoints, which only
have to trigger the buffer. The buffer will then act on the crosspoints in the

crosspoint action.

The BUFFER element adds a 25ms processing delay.

Logic | User Guide

Page 58

Input A Output

False False

True True

Table 1-5: Truth Table for BUFFER Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Figure 1-81: Menu Options for BUFFER Logic Element

Add Comment - add a comment to the logic element.

Delete - delete logic element from design window.

Cut - cut logic element from design window.

Copy - copy logic element on design window.

Change Gate Type - replace the logic element with one selected from the

drop-down list.

NOT Element

A NOT element inverts the input so that when the input is OFF the output is ON;

when the input is ON the output is OFF. The NOT function adds a 25ms
processing delay.

Input A Output

False True

True False

Table 1-6: Truth Table for NOT Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 59

Figure 1-82: Menu Options for NOT Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

LATCH Element

The latch element creates a true or false output that can be set or cleared by

inputs to toggle, set or reset inputs. The latch element will maintain the state it

is set to until that state is changed via a set, reset or toggle.

Reset Set Toggle Q /Q

True X X False True

False True X True False

False False F -> T /Q Q

X False T -> F Q /Q

Table 1-7: Truth Table for LATCH Logic Element

Right clicking on the logic element in the design window displays an options

menu.

Logic | User Guide

Page 60

Figure 1-83: Menu Options for LATCH Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

The latch element can be used with the toggle input only connected and the set

and reset inputs not connected. In this case the latch will change state when it

is toggled by an external input. The toggle operates on the rising edge of an

input so if the input goes to true the latch will toggle to the opposite to its

current state. When the toggle input goes false the latch will remain in its

current state until the toggle input goes true again.

Logic | User Guide

Page 61

Figure 1-84: Latch Sequence Using Toggle

This allows a toggle input to toggle normal and inverted outputs so that input

events will enable outputs which then remain enabled until the latch is toggled

again or reset.

An example of using the latch with toggle, set and reset connected is shown in

Figure 1-85.

Logic | User Guide

Page 62

Figure 1-85: Latch Example using All Inputs

The LATCH function adds a 25ms processing delay.

ENABLE Element

The ENABLE logic element allows a logic true or always on input to be placed in a

control sequence design. This allows control sequences to be created with

temporary external inputs or stubs which are known to be always on. This logic

element is useful for testing the logic design.

Figure 1-86: Menu Options for Enable Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

Logic | User Guide

Page 63

• Copy - copy logic element on design window.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

DISABLE Element

The DISABLE logic element allows a logic false or always off input to be placed in

a control sequence design. This allows control sequence designs to be created

with temporary external inputs or stubs which are known to be always off. This

logic element is useful for testing the logic design.

Figure 1-87: Menu Options for Disable Logic Element

• Add Comment - add a comment to the logic element.

• Delete - delete logic element from design window.

• Cut - cut logic element from design window.

• Copy - copy logic element on design window.

• Change Gate Type - replace the logic element with one selected from the

drop-down list.

Some Example of the use of logic elements are shown in Figure 1-88.

Logic | User Guide

Page 64

Figure 1-88: AND, NAND and BUFFER Logic Elements

Logic | User Guide

Page 65

2 APPENDIX A CONTROL MACRO EDITOR

2.1 INTRODUCTION TO CONTROL MACRO EDITOR

Control macros allow the configuration map that controls the matrix operation to
be directly modified via control macros. Each control macro contains a series of

commands with each defined command representing an action carried out on an
object in the configuration. An object may be a port, an input or output device or
label.

The main use of control macro scripts is to select controls which have already
been configured using the EHX client, and modify the actions that they trigger

when activated.

Each defined command is named and can have multiple inputs and outputs and

combination logic. These commands take the form of actions to be associated with
controls, and the control macro editor will assist the author by providing an
overview of available actions and the parameters each requires in order to

function.

Conditional logic is available (i.e. with AND, OR logic), with examples and code

hints supplied by the control macro editor environment.

Examples of the use of control macros when coupled with EHX Controls and port
configuration are:

• To enable or disable a route between any source and a named destination

which may be conditional on the status of other Controls, Route based

Controls or GPIs.

• To enable or disable a named panel’s loudspeaker (dimming/ muting)

• To remotely enable a named panel’s microphone muting

• To remotely enable a named panel’s headset/ microphone selection

• To remotely enable a named panel’s nominated Key LED signal activation

• To remotely enable a named panel’s nominated Relay control The control

macro editor enables the user to:

• Define control macros

• Reference control macros by name

• Assign named macro functions to controls

Note: Note: Control Macros are only available to ECS V4.0 or later. The Control

Macro Application is a stand-alone application requiring a license key. EHX
then imports the macros for use within the EHX environment.

http://www.ondotnet.com/pub/a/dotnet/2003/02/03/codedom.html?page=1)%20

Logic | User Guide

Page 66

2.2 CONTROL MACRO LANGUAGE

The Microsoft .NET Framework is used to provide the scripting facility through the

use of dynamic code generation (CodeDOM). This provides the facility to compile
control macro into a binary file (an Assembly) rather than the more traditional

‘interpreted’ control macro of other languages such as VBScript.

Using the .NET Framework as the scripting environment provides the stability

and support that the framework has, along with gaining from the .NET

Framework features of:

• Managed application environment

• Garbage collector memory management

• Control macros are written in C#

2.2.1 EXAMPLE CONTROL MACRO

The following is an example of a control macro created using the control macro

editor.

Control Macro ExampleScript

using System; //

automatically generated using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using

ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; namespace

CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// User Script entered here

Control redLightControl = ExistingControlFromLabel(“RDLT”);

// gets an already existing Control, set up from the Control Manager within the EHX client

and allows it to be programmed

redLightControl.Triggers(new InhibitRoute(5, 6));

// When the red light control is fired (studio moves into Live mode) the route between ports 5

and 6 is

// inhibited. The control editor prompts the script author for either a port number or port

name redLightControl.Triggers(new ChangeStatus(“DIR”, HardwareStatus.LoudspeakerCut);

// changes a large number of panel properties by selecting a panel by name and then triggering

a change

redLightControl.Triggers(new ChangeStatus(“DIR”, 5);

Logic | User Guide

Page 67

// Changes LED 5 on panel DIR

}

}

}

2.3 CONTROL MACRO EDITOR

To create and edit the Control Macro, a control macro editor is provided. This

consists of:

• A main control macro editor window

• An object browser

• A message window

An illustration of the control macro editor is shown below.

Figure A-1: Control Macro Editor Screen

2.3.1 CONTROL MACRO EDITOR WINDOW

The control macro editor window provides full access for editing the control

macro scripts while also providing assistance to the user in the form of coloured

syntax, ‘intellisense’ (offering context sensitive coding options) and code

completion.

Logic | User Guide

Page 68

2.3.2 OBJECT BROWSER

The Object Browser gives a complete display of the objects and logic available to

be used to construct control macros. This gives a detailed view of all the

contained objects, their constructors, methods and properties. This view will be

generated using the powerful reflection capability that is part of the .NET

Framework.

2.3.3 MESSAGE WINDOW

The Message Window will provide feedback to the user of any validation issues

when parsing the control macro. These issues will be flagged as either warnings

or errors.

2.3.4 RUNNING CONTROL MACROS

Control macros are run at download time and follow a two stage approach of

validation and building of the control macro.

The validation stage checks the control macro for warnings or errors which will be

reported back to the user. Any errors will prevent the control macro from being
compiled.

When the control macro has passed the validation stage, the control macro will

be compiled into an Assembly using the Microsoft .NET Framework code

compiler. This Assembly is then cached and will only be refreshed if the control

macro itself is changed. It is then run at download time, with the output (usually

the addition of rack-specific map objects) being sent to the frame together with

the EHX-derived configuration.

2.3.5 STARTING THE CONTROL MACRO EDITOR

The control macro editor is accessed from Logic by clicking on the ‘New’ button

and selecting ‘Control Macro’ from the drop-down ‘Type’ menu.

Logic | User Guide

Page 69

Figure A-2: Control Macro Editor from Logic

After entering the required fields click on the ‘OK’ button to open the control

macro editor.

Saved control macro files have the same file extension of .ccm as logic files and

will be listed with logic files. If the ‘Edit

Logic’ link is selected for a control macro file the control macro editor will be

started automatically rather than the logic diagram editor.

The control macro editor can also be started using a desktop shortcut to the

executable if required but this useage is not recommended.

The Eclipse Macro facility is a licensable option and a license key is required to use
the editor to create new control macros. When the editor is first started it will

request a license key if one has not already been input.

Figure A-3: License Key Request

Enter the license key obtained from the supplier or distributor and click on the

‘OK’ button to continue and start the control macro editor. If a valid license key

is not entered the control macro editor will exit immediately.

Note: Note: When running under Windows Vista the user must have
administrator rights in order to enter the control macro editor license key.

Logic | User Guide

Page 70

When the editor is started from Logic it will display the three windows ready to

start a new control macro (if started using the ‘New’ button) or load an existing

macro.

Figure A-4: Initial Macro Control Macro Editor Display

2.4 CONFIGURATION ENTITIES

Click on the ‘Configuration Entities’ tab of the object browser to select the system
configuration that is to be used by the control macro editor. A drop down menu of

all the available system configurations is displayed below the window title.

Logic | User Guide

Page 71

Figure A-5: Configuration Selection

After a system configuration has been selected the entities that exist in that

configuration are displayed in the object browser window under the headings:

• Gpsf - General Purpose Specific Functions

• Group - fixed groups and sort groups defined in EHX

• Port - system ports defined as Direct in EHX

• Conf - party lines (conferences) defined in EHX

• Port - system ports defined as panels in EHX

• Relay - relays that can be set open or closed

• Route - routes between panels defined in EHX

Each item can be opened to display a list of all the entities of this type in the

currently selected system configuration. If the configuration does not include

any entities of a type the heading for that entity type is not displayed.

If a new EHX element is made while the control macro editor is opened, then:

1) In EHX Save the configuration(s).

2) Re-select the configuration(s) from the configuration task in order to
force the macro editor to refresh its copy of the configuration(s).

Logic | User Guide

Page 72

Figure A-6: Configuration Entities List

These entities contained in the system configuration selected may be referenced

in the control macro as required but the control macro will be specific to that

system configuration and should not be used with any other system

configuration as it may fail or produce unexpected results.

2.5 AVAILABLE MODULES

Click on the ‘Available Modules’ tab in the object browser to display the menus for

the objects used to create the macros. These are divided into the ‘ClearCom’

modules to construct programs to modify the map and ‘Shared’ to provide

logging and debug capability.

2.5.1 CLEARCOM

Click on the ‘ClearCom’ item and expand the menus to show the object classes

available.

Logic | User Guide

Page 73

Figure A-7: ClearCom Module Libraries

Entities

The entities section is divided into Attachment Objects which are associated with

components, Control Objects that act on system components, Entity Objects

that act on the state of system components and Port Objects that act on system

ports.

Figure A-8: Entity Libraries

Attachment Objects

When the attachment objects item is selected the list will be expanded to display

the attachment objects available and the logic operations that may be used with

attachment objects. Attachment objects are attached to components to set or

get the properties of those components such as parameters.

Logic | User Guide

Page 74

Examples of attachment objects are relays, routes and speed dials.

Figure A-9: Attachment Objects Library

To use an attachment object select the required object by right clicking over it

and then dragging it over to the edit window and dropping it in the required

position.

When an attachment object is dropped into the control macro the editor will

prompt for information such as whether the object is to set or get the component

parameter and depending on this any other information that is required such as

parameters and how to return the information.

Figure A-10: Example of Attachment Object Properties

Logic | User Guide

Page 75

Control Objects

Control objects act on the components to change their properties in some way.

When a control object is dropped into the editor window the editor will prompt

for the required settings and parameters for that object.

Control objects are controls created in EHX using the Control Manager function

accessed from the Setup Eclipse menu.

Figure A-11: Control Objects List

An example of the use of a control object is:

HSON.Triggers(ControlActions.CutLoudspeaker(D4222)); where
CutLoudspeaker is the control.

Logic | User Guide

Page 76

Entity Objects

Entity objects act on the components to change their state in some way. When

an entity object is dropped into the editor window the editor will prompt for the

required settings and parameters for that object.

Figure A-12: Entity Object List

An example of the use of an entity object is:

HSON.Triggers(ControlActions.CutLoudspeaker(D4222)); where
CutLoudspeaker is the control.

Port Objects

Port objects are used to get information on a system port to change the

properties of a system port. When a port object is dropped into the the edit

window the editor will prompt for the required settings and parameters for that

object and action.

Port objects are normally ports on the system.

Logic | User Guide

Page 77

Figure A-13: Port Object List

An example of port object use is:

PortObject D4222 = ControlMacro.GetPort(“D4222”); where D4222 is the
port object defined is Matrix Hardware.

Scriptlibrary

The scriptlibrary section is divided into Conditions which allow components and
component parameters to be tested, Control Actions which specify actions to be
carried out on system components, Control Attachments which specify actions to

be carried out on objects and Control Macros which act on system components.

Logic | User Guide

Page 78

Figure A-14: Script Library Categories

Condition

The condition objects allow the value or state of component parameters to be

tested, compared or converted from one format to another. Conditions are AND

and OR.

Figure A-15: Conditions List

An example of the use of a condition is:

FRLY2.Triggerslf(crosspointControl,Condition.AND,AND1);

where control FRLY2 is triggered if the elements crosspointControl and AND1 are

both true.

Logic | User Guide

Page 79

Control Actions

Control actions allow the states of system components such as LEDs, actions (for

example when a key is pressed) and routes to be changed for new actions and

routes to be created.

Figure A-16: Control Actions List

Control Attachments

Control attachment objects allow the states of pre-existing system components

to be changed.

Logic | User Guide

Page 80

Control Latch

Control latch modules provide the functionality associated with latching actions.

Figure A-18: Control Latch Actions List

Logic | User Guide

Page 81

Control Macro

Control macros act on system components to get or set the states or attributes

of those components.

Figure A-19: Control Macro List

Crosspoint Control

Crosspoint controls act on system crosspoints to get or set the states of the

crosspoints.

Logic | User Guide

Page 82

Figure A-20: Crosspoint Controls

Current

Current provides facilities to obtain current system information.

Figure A-21: System Current

Logic | User Guide

Page 83

2.5.2 SHARED

The shared entry provides a library of objects for debugging control, error

reporting, messages and logging from user control macros.

Figure A-22: Shared Object List

2.6 CREATING A NEW PROJECT

To start a new project click on ‘File’ and then ‘New’ to display the options to

create a new control macro or project. Click on project to create a new project

and the new project folder with the default name “Unknown” will be displayed in

the object browser window.

Logic | User Guide

Page 84

Figure A-23: New Project Screen

A project is a collection of different control macros, usually for a specific

application such as a studio.

Double click on the ‘Project [Unknown]’ entry in the object browser to highlight

it and right-click to display the command menu and select ‘Rename’ then type in

the new project name. The new project can be saved by selecting ‘File’ and then

‘Save’ to save the project.

To start a new control macro click on ‘File’ to display the file menu, click on ‘New’

and then ‘Control Macro’ to initialize a new control macro.

Logic | User Guide

Page 85

Figure A-24: Start New Control Macro

After clicking on ‘Script’ the editor will automatically create the basic structure of

the control macro with the required libraries set up at the start of the control

macro. One the initial control macro has been created the user can start

creating the application control macro under the comment ‘// User script entered

here’.

Logic | User Guide

Page 86

Figure A-25: Inital New Control Macro

Once the control macro structure has been generated the user control macro is

created by dragging and dropping items from the object browser into the control

macro edit window to build up lines of the control macro.

For example, to create an instance of a port select the ‘Configuration Entities’ tab

and open the ‘PORT’ item to display a list of ports. Right click on the required
port to select it and then double click to automatically create the line of code that
will create and instance of that object.

Note: Note: Enter some blank lines (keyboard Enter) after automatically
generated ‘// user Script entered here’ line

Note: Note: Make sure the cursor is placed on a line under the start of the user
script marker before selecting a new control control macro line.

Certain types of macro actions may have variable or unpredictable effects on

different types of hardware so where a macro may act on different types of
hardware it should be checked on all the variants of the hardware.

Once such case is macros which cause LEDs on panels to flash. There are a
variety of different panel types which may be present on a system and they may
respond differently to commands to flash LEDs. For example a macro to cause

LEDs to flash system wide will not work on ICS-2003 panels but will work on other
panels. Macros which flash

LEDs at various frequencies may work on some panels but not on others.

Generally a 1Hz flash is likely to work.

Macros may also reference keys on panels but it should be noted that the key
numbering is different on different panels so any control macro will need to take

account of this if there is more than one type of panel on a system. The key
numbering on the various panel types is given in Appendix C.

Logic | User Guide

Page 87

Figure A-26: Control Macro with Port Commands

In this way commands to create instances of configuration objects can be

created. These instances can then to referenced by other commands to modify

the source system configuration.

The user may also create control macros manually using a text editor such as

Notepad but this is not normally recommended as the error checking facilities of

the control macro editor will not be available.

When a control macro is dragged and dropped into the control macro editor

window a configuration window is opened to request the parameters that are

required for that control macro. Where there are a number of predetermined

values for a parameter such as TRUE or FALSE a drop-down menu allows a

parameter to be selected.

Alternatively a parameter name can be entered manually.

Logic | User Guide

Page 88

Figure A-27: Macro Parameter Entry Window

When the parameters have been input clicking on ‘OK’ writes the new line into the
control macro editor window at the current cursor position. Any errors in the
command for example as a result of an incorrect parameter will be reported in the

compilation messages window below the control macro editor window.

2.7 ELEMENTS OF A CONTROL MACRO

There are three basic steps to create a control function using the control macro

facility. These are:

1) Set the objects the macros are to operate on. These may be ports or
entities such as groups or conferences. For example, to create a port

object that references a specific port select the ‘Configuration Entities’
tab in the object browser window and open the ‘Port’ item to display a
list of ports in the current configuration. Double click on the required

port to create the macro in the control macro editor window e.g.

PortObject var_myPortt = ControlMacro.GetPort(“MyPort”);

where ‘MyPort’ is the name of the port defined in EHX. Alternatively port
objects can be created by selecting the ‘Available Modules’ tab in the
object browser and opening the Scriptlibrary.ControlMacro menu and

selecting the ‘Getport (string)’ macro. Ports may be selected by port
name (string parameter), port number (integer parameter) or by global

identifier (Guid).

Logic | User Guide

Page 89

2) Create an action to perform. Select the ‘Available Modules’ tab in the
object browser window and open the Scriptlibrary ControlActions menu.

Actions which use the objects previously created can be dragged and
dropped into the control macro. For example the action to activate an
LED can be created using a port object created in step 1.

LEDDisplayAction MyLED = ControlAction.ActivateLED(MyPortObject,1);

will create an action ‘MyLED’ to activate the LED on key 1 on a panel

attached to port ‘MyPort’.

3) Create a control object which will be used to trigger the action set up in
step 2. For example a control action could be created using a general
purpose I/O port by selecting the ‘Configuration Entities’ tab and

opening the ‘GPSF’ item to display a list of GPSF items. Double click on
the required item to create the control macro in the control macro

editor window e.g.

ControlMacro MyControl = ControlMacro.GetControl(“MyGPSF”);

4) Trigger the action. To do this a control must be created which
connects an event on the system with the action that has been
created. For example, a control can be created for another port e.g.

MyControl.Triggers(MyLED);

so that an event on the GPSF ‘MyGPSF’ will trigger the LED on key 1 of the
panel attached to ‘MyPort’.

2.8 MACRO REFERENCE

The objects from the Available Modules are described in this section. These

macros are used to construct control macros using the control macro editor. The
meanings of the parameters used by the macros are:

• () - required parameter(s)

• [] - type of argument returned

• object - the name of the object being tested, normally an object created

by a control macro such as ‘GetPort’

• bool - boolean operator, set to True or False

• int - integer value in the range 0 - 32767

• string - alphanumeric string parameter

• Guid - an EHX internal global identifier. Every entity has a unique internal

identifier and while these may be used as input parameters for some

control macros they are not generally used.

Logic | User Guide

Page 90

2.8.1 ATTACHMENTOBJECT MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘Entities’ >

‘AttachmentObject’ entry in the Available Modules menu.

Macro Description

Equals (object) [bool] Tests the equivalence of two objects and returns True

or False. e.g.

bool <result> = <object1>.equals<(object2)>;

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g.

int <result> = <object>.GetHashCode();

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

ActivateWithListen [bool] Either returns the listen status of an object created by

a control macro as a boolean True or False or sets the

lis- ten status of an object to a boolean True or False

e.g. AttachmentObject <result> =
<object>.ActivateWith- Listen;

or

<object>.ActivateWithListen = <listen state>;

Logic | User Guide

Page 91

Macro Description

IsStnRelay [bool] Either returns whether the status of an object created

by a control macro is a station relay as a boolean True

or False or sets the status of an object as a station

relay to a boolean True or False e.g.

AttachmentObject <result> =
<object>.IsStnRelay;

or

<object>.IsStnRelay = <boolean>;

ModuleNumber [int] Either returns the module number of an object created

by a control macro as an integer value or sets the
mod- ule number of an object to an integer value e.g.

AttachmentObject <integer> =
<object>.Module- Number;

or

<object>.ModuleNumber = <integer>;

OutputNumber [int] Either returns the output number of an object created

by a control macro as an integer value or sets the
output number of an object to an integer value e.g.

AttachmentObject <integer> =
<object>.OutputNum- ber;

or

<object>.OutputNumber = <integer>;

RelayInformation [string] Either returns the relay information of an object

created by a control macro as a string or sets the relay
informa- tion of an object to a string e.g.

AttachmentObject <string> =
<object>.RelayInfor- mation;

or

<object>.RelayInformation = <string>;

Logic | User Guide

Page 92

Macro Description

ReverseListen [bool] Either returns the reverse listen status of an object

cre- ated by a control macro as a boolean True or

False or sets the reverse listen status of an object to
a boolean True or False e.g.

AttachmentObject <boolean> =

<object>.ReverseListen

or

<object>.ReverseListen = <boolean>

RouteDestID [Guid] Either returns the route destination ID of an object

cre- ated by a control macro as type Guid or sets the
route destination ID of an object to a Guid e.g.

AttachmentObject <destID> =

<object>.RouteDestID

or

<object>.RouteDestID = <destID>

RouteSourceID [Guid] Either returns the route source ID of an object created

by a control macro as type Guid or sets the route
source ID of an object to a Guid e.g.

AttachmentObject <sourceID> =

<object>.Route-

SourceID

or

<object>.RouteSourceID = <sourceID>

2.9 CONTROL OBJECT MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘Entities’ >

‘ControlObject’ entry in the Available Modules menu.

Macro Description

Dispose () [void] Disposes of an object created by a control macro e.g.

<object>.Dispose();

Logic | User Guide

Page 93

Macro Description

Equals (Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g:

bool <result> = <object1>.equals<(object2)>;

GetGPSF () [GPSF] Gets the GPSF e.g.

GPSF <result> = <object>.GetGPSF();

GetGPSF (TalkType) [GPSF] Gets the talk type for GPSF e.g.

GPSF <result> = <object>.GetGPSF(<talk
type>);

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g:

int <result> = <object>.GetHashCode();

GetID (TalkType) [Guid] Returns the Guid of the talk/listen status of an object

created by a control macro e.g.

Guid <return> = <object>.GetID(<talk/listen
type>);

GetOwnerSystemGPSF(Talk-

Type) [GPSF]

Returns the GPSF of an object specified by TalkType

e.g.

GPSF <return> = <object>.GetOwnerSystemG-
PSF(TalkType.<talk/listen type>);

GetOwnerSystemRackOff-

set(TalkType) [ushort]

Returns the rack number of an object specified by

Talk- Type e.g.

ushort <return> =

<object>.GetOwnerSystemRack-
Offset(TalkType.<talk/listen type>);

GetRackOffset () [ushort] Returns an offset value as an unsigned short for the

object previously created by a control macro e.g.

ushort <value> = <object>.GetRackOffset();

GetRackOffset (TalkType) [ush-

ort]

Returns an offset value as an unsigned short for the

object previously created by a control macro where

the type of route is specified ie Talk and/or Listen e.g.

ushort <value> =

<object>.GetRackOffset(<type>);

Logic | User Guide

Page 94

Macro Description

SetGPSF (TalkType, GPSF)

[void]

Sets the talktype GPSF e.g.

GPSF <result> = <object>.SetGPSF(<talk
type>,<GPSF>);

SetID (Guid, TalkType) [void] Sets the ID of the talk/listen status of an object

created by a control macro e.g.

Guid <return> = <object>.GetID(<talk/listen
type>);

SetOwnerSystemGPSF(Talk-

Type,GPSF) [void]

Sets the GPSF of the object specified by TalkType e.g.

<object>.SetOwnerSystemGPSF(TalkType.<talk/

lis- ten type>, GPSF);

TalkTypeIsCreated(TalkType)

[bool]

Creates an object TalkType and returns the result as a

boolean e.g.

bool <result> =

<object>.TalkTypeIsCreated(Talk-
Type.<talk/listen type>);

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

ConfigurationID [Guid] Sets or returns the configuration ID of an object

created by a control macro as a control object e.g.

ControlObject <ID object> =
<object>.Configura- tionID;

or

<object>.ConfigurationID = <ID object>;

EntityID [Guid] Sets or returns the entity ID of an object created by a

control macro as a Guid e.g.

ControlObject <Guid> = <object>.EntityID;

or

<object>.EntityID = <Guid>;

EntityType [dest_type_e] Returns the entity type of an object created by a

control macro as a Guid e.g.

ControlObject <object> = <object>.EntityType;

Logic | User Guide

Page 95

Macro Description

IsCreated [bool] Returns a boolean indicating whether an object created

by a control macro has been created e.g.

ControlObject <bool> = <object>.IsCreated;

LatchDisable [bool] Sets or returns the latch disable status of an object

cre- ated by a control macro e.g.

ControlObject <bool> = <object>.LatchDisable;

or

<object>.LatchDisable = <bool>;

ListenAlias [string] Sets or returns the listen alias of an object created by

a control macro e.g.

ControlObject <string> = <object>.ListenAlias;

or

<object>.ListenAlias = <string>;

ListenLabel [string] Sets or returns the listen label of an object created by

a control macro e.g.

ControlObject <string> = <object>.ListenLabel;

or

<object>.ListenLabel = <string>;

TalkAlias [string] Sets or returns the talk alias of an object created by a

control macro e.g.

ControlObject <string> = <object>.TalkAlias;

or

<object>.TalkAlias = <string>;

TalkLabel [string] Sets or returns the talk label of an object created by a

control macro e.g.

ControlObject <string> = <object>.TalkLabel;

or

<object>.TalkLabel = <string>;

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

Logic | User Guide

Page 96

2.9.1 PORT OBJECT MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘Entities’ >
‘PortObject’ entry in the Available Modules menu.

Macro Description

Equals (Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g:

bool <result> = <object1>.equals<(object2)>

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g:

int <result> = <object>.GetHashCode()

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType()

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

CC_ADV_TYPE [Destination

Type]

Gets or sets the port type according to the parameter

details selected from a menu e.g.

<port object>.CC_ADV_TYPE = <Destination

Type>.CC_ADV_PORT;

CombinedLabel[string] Returns the port Talk/Listen label specified by the

string e.g.

PortObject <resultstring> = <port

object>.Combin- edLabel;

ConfigurationID [Guid] Sets or returns the configuration ID of an object

created by a control macro as a control object e.g.

ControlObject <ID object> =
<object>.Configura- tionID;

or

<object>.ConfigurationID = <ID object>;

Logic | User Guide

Page 97

Macro Description

Description [string] Sets or returns the description of a port as a string

e.g.

<port object>.Description = <description
string>;

or

PortObject <string> = <port

object>.Description; EnableTalkAssign [bool] Sets or returns the permission to assign a port as

Listen using a boolean e.g.

<port object>.EnableTalkAssign = True;

or

PortObject <boolean> = <port object>.Enable-
TalkAssign;

EntityID [Guid] Sets or returns the entity ID of an object created by a

control macro as a Guid e.g.

ControlObject <Guid> = <object>.EntityID;

or

<object>.EntityID = <Guid>;

EntityType [dest_type_e] Returns the entity type of an object created by a

control macro as a Guid e.g.

ControlObject <object> = <object>.EntityType;

GlobalIfb [bool] Gets or sets the global IFB (Interruptable foldback) on

a port e.g.

<port object>.GlobalIfb = True;

or

PortObject <boolean result> = <port
object>.Glo- balIfb;

GlobalIso [bool] Gets or sets the global ISO on a port e.g.

<port object>.GlobalIso = <boolean>;

or

PortObject <boolean result> = <port

object>.Glo- balIso;

Logic | User Guide

Page 98

Macro Description

LatchDisable [bool] Sets or returns the latch disable status of an object

cre- ated by a control macro e.g.

ControlObject <bool> = <object>.LatchDisable;

or

<object>.LatchDisable = <bool>;

ListenAlias [string] Sets or returns the listen alias of an object created by

a control macro e.g.

ControlObject <string> = <object>.ListenAlias;

or

<object>.ListenAlias = <string>;

ListenLabel [string] Sets or returns the listen label of an object created by

a control macro e.g.

ControlObject <string> = <object>.ListenLabel;

or

<object>.ListenLabel = <string>;

PortNumber [ushort] Sets or returns the port number of an object created

by a control macro as an unsigned short e.g.

ushort <portno> = <object>.PortNumber;

or

<object>.PortNumber = <portno>;

PortSubType [EntityType] Sets or returns the port subtype of an object created

by a control macro as a port subtype entity e.g.

PortObject <portsubtype> =
<object>.PortSubType;

or

<object>.PortSubType = <portsubtype>;

PortType [BasicType] Sets or returns the port type of an object created by a

control macro as a port type entity e.g.

PortObject <type> = <object>.PortType;

or

<object>.PortType = BasicType.<type>;

Logic | User Guide

Page 99

Macro Description

PreventReplySignalisation [bool] Sets the status of the prevent reply signalization

setting for the port using the boolean e.g.

<port object>.PreventReplySignalization = True;

PreventTally [bool] Sets or returns the status of the prevent tally setting
for the port using the boolean e.g.

<port object>.PreventTally = False;

or

PortObject <result> = <port

object>.PreventTally;

ProtectPortAssignment [bool] Sets or returns the status of the port protection

setting for the port using the boolean e.g.

<port object>.ProtectPortAssignment = True;

or

PortObject protectPortAssignment = <port
object>.ProtectPortAssignment;

SecondaryAction [Guid] Sets or returns the secondary action of an object cre-

ated by a control macro e.g.

Guid <return> = <object>.SecondaryAction;

or

<object>.SecondaryAction = <Guid>;

SplitLabel [bool] Sets or returns the split label status of a port using the

boolean e.g.

<port object>.SplitLabel = True;

or

PortObject <relult boolean> = <port
object>.SplitLa- bel;

StackedKey [bool] Sets or returns a boolean indicating whether a key is a

stacked key e.g.

bool <return> = <object>.StackedKey;

or

<object>.StackedKey = <bool>;

Logic | User Guide

Page 100

Macro Description

TalkAlias [string] Sets or returns the talk alias of an object created by a

control macro e.g.

ControlObject <string> = <object>.TalkAlias;

or

<object>.TalkAlias = <string>;

TalkLabel [string] Sets or returns the talk label of an object created by a

control macro e.g.

ControlObject <string> = <object>.TalkLabel;

or

<object>.TalkLabel = <string>;

VoxAction [Guid] Sets or returns the vox action of an object created by

a control macro e.g.

Guid <Guid> = <object>.VoxAction;

or

<object>.VoxAction = <Guid>;

EnableListenAssign [bool] Sets or returns the permission to assign a port as

Listen using a boolean e.g.

<port object>.EnableListenAssign = True;

or

PortObject <boolean> = <port
object>.EnableLis- tenAssign;

2.9.2 CONDITION MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘ScriptLibrary’ >

‘Condition’ entry in the Available Modules menu.

Macro Description

CompareTo (Object) [int] Returns an integer value from the comparison of two

objects e.g.

int <result> =

<object1>.CompareTo(<object2>);

Logic | User Guide

Page 101

Macro Description

Equals (Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g:

bool <result> = <object1>.equals<(object2)>;

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g:

int <result> = <object>.GetHashCode();

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

GetTypeCode () [TypeCode] Returns the type code of an object previously created

by a control macro. e.g.

TypeCode <result> = <object>.GetTypeCode();

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

ToString (IFormatProvider)

[string]

Returns the string value of an object previously

created by a control macro formatted by a format

specifier e.g. string <result> =
<object>.ToString(<format>);

ToString (string) [string] Returns the string value of an object previously

created by a control macro formatted by a format

provded as a parameter e.g.

string <result> = <object>.ToString(<format>);

ToString (string, IFormatPro-

vider) [string]

Returns the string value of an object previously

created by a control macro formatted by a format
provded as two parameters e.g.

string <result> =
<object>.ToString(<format>,<for- mat>);

AND [Condition] Specifies a condition to tested between two objects

and returns a boolean TRUE or False e.g.

<object1>,Condition.AND,<object2>;

value [int] Returns the value of a condition eg.

Condition <result> = <condition>.value ;

OR [Condition] Specifies a condition to tested between two objects

and returns a boolean TRUE or FALSE eg.

<object1>,Condition.OR,<object2>;

Logic | User Guide

Page 102

2.9.3 CONTROL ACTIONS MACRO

Control action macros act on system configuration objects to change the state of

the object. The format of a control action macro command is:

ControlActions.<Macroname><parameters>;

The ‘ControlActionMacro’ command is used to change the state of a system

configuration object

For example, the command:

Action fireLed1 = ControlActions.ActivateLED(<parameters>);

will create an action ‘fireLED1’ that changes the state of the system object LED1

in accordance with the parameters supplied.

These macros are accessed by expanding the ‘Clearcom’ > ‘ScriptLibrary’ >

‘ControlActions’ entry in the Available Modules menu.

Macro Description

ActivateLED(EntityObject,

LedRate, LedIndication) [Action]

Returns a control object to set the flash rate and color

for a specified LED e.g.

Action = ControlActions.ActivateLED(<EntityOb-
ject>, Ledrate, Off, LedIndications.Red);

ActivateLED (EntityObject[],

LedRate, LedIndication) [Action]

Returns a control object to set the flash rate and color

for specified LED e.g.

Action = ControlActions.ActivateLED(<EnityOb-
ject>, LedRate.Off, LedIndictions.Red);

ActivateLED (PortObject, ush-

ort) [LEDDisplayAction]

Returns a control object to activate a LED on a

specified port and key number e.g.

LEDDisplayAction <result> =

ControlActions.Acti- vateLED(<port object>,<key

number>);

ActivateLed (PortObject, ushort,

ushort, ushort) [LEDDisplayAc-
tion]

Returns a control object to activate a LED on a

specified port, key number, key region and key page
e.g.

LEDDisplayAction <result> =

ControlActions.Acti- vateLED(<port object>,<key

number>, key region>,<key page>);

Logic | User Guide

Page 103

Macro Description

ActivateLED (PortObject, ush-

ort, ushort, ushort, LedRate,

LedIndication) {LEDDisplayAc-

tion]

Returns a control object to activate a LED on a

specified port, key number, key region, key page, LED
rate and LED colour e.g.

LEDDisplayAction <result> =

ControlActions.Acti- vateLED(<port object>,<key

number>, key region>,<key page>, <LED
rate>,<LED colour>);

The parameters <LED rate> and <LED colour> may

be selected from a drop-down menu or specified as a

number.

ActivateLED (PortObject, ush-

ort, ushort, ushort, bool,

LedRate, LedIndication) [LED-
DisplayAction]

Returns a control object to activate a LED on a

specified port, key number, key region, key page, LED
rate and LED colour e.g.

DisplayAction <action name> =

ControlActions.Acti- vateLED(<port name>, <key

number>, <Key Region>, <Key Page>,

LedRate.Off, LedIndica- tion.Green);

The parameters <LED rate> and <LED colour> may

be selected from a drop-down menu or specified as a
number.

CallSignalAction () [CallSigna-

lAction]

Returns an object that can be used to call action func-

tions e.g.

CallSignalAction <object> =

ControlActions.CallSig- nalAction ();

Control (ControlMacro) [Action] Returns the result of a control action e.g.

Action <result> =
ControlActions.Control(<action>);

Control (ControlMacro, Bits)

[Action]

Returns the result of a control action e.g.

Action <result> =
ControlActions.Control(<action>,

<control bits>);

CrossPointAction () [Cros-

sPointAction]

Returns a crosspoint action e.g.

Action <result> = ControlActions.CrosspointAc-
tion();

Logic | User Guide

Page 104

Macro Description

ActivateLED (PortObject, Entity-

Object, LedRate, LedIndication)
[Action]

Returns a control object to set the flash rate and color

for a specified LED on a specified port e.g.

Action = ControlActions.ActivateLED(<port
object>,

<Entity Object>, LedRate.Off,
LedIndication.Red);

CutLoudspeaker (PortObject)

[ControlMacro]

Cuts the loudspeaker on the specified port e.g.

ControlMacro = ControlActions.CutLoud-
Speaker(<port object>);

DCCAction (ushort, ushort, int)

[Action]

Returns a Digital Control Card (DCC) action e.g.

Action <result> = ControlActions.DCCAction();

Equals (Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g.

bool <result> = <object1>.equals<(object2)>;

FrameRelay (ushort) [Digital-

ControlCardAction]

Returns a relay action object for a specific relay on a

digital control card e.g.

DigitaControlCardAction <action> = ControlAc-
tions.FrameRelay(<relay number>);

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g:

int <result> = <object>.GetHashCode();

GetLogic (bool, bool, bool, bool,

bool, bool) [Bits]

Returns a bit pattern corresponding to the boolean

vari- ables e.g.

Bits <bit pattern> = ControlActions.GetLogic

(<bool>,<bool>,<bool>,<bool>,<bool>,<bool>

);

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

HeadsetSelect (portObject)

[ControlMacro]

Selects the headset on the specified port e.g.

ControlMacro =
ControlActions.HeadsetSelect)(Por- tObject);

Logic | User Guide

Page 105

Macro Description

IsolateRoute (PortObject, Port-

Object) [IsolateAction]

Isolates a route between the two specified ports e.g.

IsolateAction =

ControlActions.IsolateRoute(PortO- bject,

PortObject);

LatchResetAction (Control-

Latch) [Action]

Resets the specified latch to the state specified in

Action e.g.

Action =

ControlActions.LatchResetAction(Control-
Latch);

LatchSetAction (ControlLatch]

[Action]

Sets the specified latch to the state specified in Action

e.g.

Action =

ControlActions.LatchSetupAction(Control-
Latch);

LocalAction (PortObject, Loca-

lAction) [LocalAction]

Returns a control for a local action on the specified

port e.g.

LocalAction =

ControlActions.LocalAction(PortOb- ject,
LocalAction.Null);

MicMute (PortObject) [Control-

Macro]

Mutes the microphone on the specified port e.g.

ControlMacro = ControlActions.MicMute(PortOb-
ject);

NewDCCAction (ushort, ushort,

int, bool) [Action]

Returns a Digital Control Card (DCC) action e.g.

Action <result> = ControlActions.NewDCCAc-

tion(<card>,<pin>,<remote system>,<station
relay>);

RouteOff (PortObject, PortOb-

ject) [Action]

Returns a new action for disabling a route between

two ports e.g.

Action <result> = ControlAction.RouteOff

(<source port object>,<destination port
object>);

RouteOff (ushort, ushort,

ushort) [Action]

Returns a new action for disabling a route between

two ports e.g.

Action <result> = ControlAction.RouteOff

(<source portnumber >,<destination port

number>,<source system number>);

RouteOffPartyLine (PortObject,

EntityObject) [Action]

Returns a new action for disabling a route between

two party lines (conferences) e.g.

Action =

ControlActions.RouteOffPartyLine(PortOb- ject,
EntityObject);

Logic | User Guide

Page 106

Macro Description

RouteOn (PortObject, PortOb-

ject) [Action]

Returns a new action for enabling a route between two

ports e.g.

Action <result> = ControlAction.RouteOn

(<source port object>,<destination port
object>);

RouteOn (PortObject, ushort)

[Action]

Returns a new action for enabling a specified route

e.g.

Action = ControlActions.RouteOn(PortObject,

<group number>);

RouteOn (ushort, ushort, ushort)

[Action]

Returns a new action for enabling a route between two

ports e.g.

Action <result> =

ControlAction.RouteOn(<source portnumber

>,<destination port number>,<source system
number>);

LatchToggleAction (Control-

Latch) [Action]

Toggles the specified latch to the state specified in

Action e.g.

Action = ControlActions.LatchToggleAction(Con-
trolLatch);

Macro Description

RouteToGroup (ushort, ushort,

bool, bool, ushort) [Action]

Returns an action for creating a route between two

groups e.g.

Action = ControlActions.RouteToGroup(<source

port no>, <group offset number>, <talk or listen

boolean>, <permanent boolean>, <remote
system number>);

RouteToGroupAction () [Route-

ToGroupAction]

Returns an action for creating a route to a group e.g.

RouteToGroupAction <result> = ControlAc-
tions.RouteTo GroupAction();

RouteToGroupOn (ushort, ush-

ort) [Action]

Returns an action for enabling a route between two

groups e.g.

Action =

ControlActions.RouteToGroupOn(<source port
no>, <group number>);

RouteToIfbOn (PortObject, Port-

Object) [Action]

Returns an action for enabling a route to an IFB e.g.

Action = ControlActions.RouteToIfbOn(<source
port object>, <destination port object>);

Logic | User Guide

Page 107

RouteToPartyLine (portObject,

EntityObject) [Action]

Returns an action for enabling a route to a party line

e.g. Action =

ControlActions.RouteToPartyLine(<source port
object>, <party line object>);

RouteToPartyLine (ushort, ush-

ort, bool, bool, ushort) [Action]

Returns an action for enabling a route between two

party lines e.g.

Action =

ControlActions.RouteToPartyLine(<source port

number>, <party line number>, <talk or listen

boolean>, <permanent boolean>, remote system

number>);
RouteToPartyLineAction () [Rou-

teToPartyLineAction]

Returns an action for creating a route to a party line

e.g. RouteToPartyLineAction <result> =
ControlAc- tions.RouteTo PartyLineAction();

SourceToIfbOn (PortObject,

PortObject) [Action]

Creates an action to enable a crosspoint linking the

source and destination ports for an IFB.

PortObject s =

ControlMacro.GetPort(sourceport); PortObject d
= ControlMacro GetPort(destport); Action action;

action = ControlActions.SourceToIfbOn(s, d);

SpeedDialAction (ushort, ushort)

[Action]

Returns an action for creating a speed dial action with

a speed dial ID and a port number e.g.

Action <result> = ControlAction.SpeedDialAction

(<speed dial ID>,<port number>);

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

SpeedDial (PortObject, string)

[SpeedDialAction]

Returns an action for creating a speed dial with a port

object and a telephone number e.g.

SpeedDialAction <result> =

ControlAction.SpeedDi- alAction (<port

object>,<telephone number>);

2.9.4 CONTROL ATTACHMENT MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘ScriptLibrary’ >
‘ControlAttachment’ entry in the Available Modules menu.

Logic | User Guide

Page 108

Macro Description

Equals (object) [bool] Tests the equivalence of two objects and returns True

or False. e.g.

bool <result> = <object1>.equals<(object2)>;

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g.

int <result> = <object>.GetHashCode();

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

ActivationState [Attachment-

State]

Gets or sets the listen activation state of an object e.g.

<object>.ActivateWithListen = <boolean>;

AttachmentObject [Attachment-

Object]

Gets or sets the talk activation state of an object e.g.

<object>.ActivateWithTalk = <boolean>;

2.9.5 CONTROL LATCH MACROS

These macros are accessed by expanding the ‘Clearcom’ > ‘ScriptLibrary’ >
‘ControlLatch’ entry in the Available Modules menu.

Macro Description

CreateLatch() [ControlLatch] Creates and returns a control latch e.g. ControlLatch

AlwaysOff = ControlLatch.Cre- ateLatch()

Equals(Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g.

bool <result> = <object1>.equals<(object2)>;

GetHashCode() [int] Returns the hash code of an object previously created

by a control as an integer. e.g.

int <result> = <object>.GetHashCode();

GetType() [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

Logic | User Guide

Page 109

Macro Description

ResetsWhenOff(ControlLatch)

[void]

This control latch function will reset a latch when a

con- trol input is off. The example below shows

sequence to get a control reference, create a latch and

set the latch to reset when the control input is off.

ControlMacro INPUT1 = ControlMacro.GetCon-
trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.ResetsWhenOff(INPUT1);

ResetsWhenOn(ControlLatch)

[void]

This control latch function will reset a latch when a

con- trol input is on. The example below shows

sequence to get a control reference, create a latch and

set the latch to reset when the control input is on.

ControlMacro INPUT1 = ControlMacro.GetCon-
trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.ResetsWhenOn(INPUT1);

SetsWhenOff(ControlLatch)

[void]

This control latch function will set a latch when a

control input is off. The example below shows

sequence to get a control reference, create a latch and
assign the latch to be set when the control input is off.

ControlMacro INPUT1 = ControlMacro.GetCon-
trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();

LATCH1.SetsWhenOff(INPUT1);

SetsWhenOn(ControlLatch)

[void]

This control latch function will set a latch when a

control input is on. The example below shows

sequence to get a control reference, create a latch and

assign the latch to be set when the control input is on.

ControlMacro INPUT1 = ControlMacro.GetCon-

trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.SetsWhenOn(INPUT1);

Logic | User Guide

Page 110

Macro Description

TogglesWhenOff(ControlLatch)

[void]

This control latch function will toggle a latch when a

con- trol input is off. The example below shows

sequence to get a control reference, create a latch and

assign the latch to be toggled when the control input is

off.

ControlMacro INPUT1 = ControlMacro.GetCon-
trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.TogglesWhenOff(INPUT1);

TogglesWhenOn(ControlLatch)

[void]

This control latch function will toggle a latch when a

con- trol input is on. The example below shows

sequence to get a control reference, create a latch and

assign the latch to be toggled when the control input is
on.

ControlMacro INPUT1 = ControlMacro.GetCon-
trol("INB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.TogglesWhenOn(INPUT1);

ToString() [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

TriggersWhenOff(Control-

Macro] [void]

Triggers a control macro object when the input

condition is OFF e.g.

<control
macro>.TriggersWhenOff(ControlMacro);

TriggersWhenOn(Control-

Macro) [void]

This control latch function will trigger an output to the

specified control when the input to the latch is on. The

example below shows sequence to get a control refer-

ence, create a latch and set the latch to trigger the
con- trol when the input is on.

ControlMacro OUTPUT1 = ControlMacro.GetCon-
trol("OUTB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();

LATCH1.TriggersWhenOn(OUTPUT1);

Logic | User Guide

Page 111

Macro Description

TriggersWhenOn(Action) [void] This control latch function will trigger an output to the

specified control when the input to the latch is on. The

example below shows sequence to get a control refer-

ence, create a latch and set the latch to trigger the
con- trol when the input is on e.g.

ControlMacro OUTPUT1 = ControlMacro.GetCon-
trol("OUTB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();

LATCH1.TriggersWhenOn(OUTPUT1);

GetId [ushort] Returns the ID of an object e.g.

ControlLatch <result> = <latch name>.GetId;

TriggersWhenOff(Action) [void] This control latch function will trigger an action on a

crosspoint when the

ControlMacro OUTPUT1 = ControlMacro.GetCon-
trol("OUTB", "");

ControlLatch LATCH1 =

ControlLatch.CreateLatch();
LATCH1.TriggersWhenOff(OUTPUT1);

2.9.6 CONTROL MACROS

Control macros act on system configuration objects to get or set parameters or

to change the state of the object. The format of a control macro command is:

ControlMacro.<Macroname><parameters>;

The ‘ControlMacro’ command is used to create a copy of a system configuration

object which can then to used in the control macro.

For example, the command:

ControlMacro GP19 = ControlMacro.GetControl(“GP19”);

will create a copy of the GPIO control object called GP19 created by EHX called
GP19 which can be used in the control macro.

These macros are accessed by expanding the ‘Clearcom’ > ‘ScriptLibrary’ >
‘ControlMacro’ entry in the Available Modules menu.

Logic | User Guide

Page 112

Macro Description

CreateControl (string) [Control-

Macro]

Creates a control named by the string e.g. ControlMacro
AND_60 = ControlMacro.CreateCon- trol(“AND_60”);

CreateControl(string,bool) [Con-

trolMacro]

Creates a control named by the string with a state set by the

boolean e.g.

ControlMacro AND_60 = ControlMacro.CreateCon-
trol("AND_60", true);

Equals (Object) [bool] Tests the equivalence of two objects and returns True or False.

e.g.

bool <result> = <object1>.equals<(object2)>;

GetAllEntities[(bool) [EntityOb-

ject[]]

Returns a list of all known entities e.g.

EntityObject[] = ControlMacro.GetAll Entities(<local
system only boolean>);

GetAllPorts() [PortObject[]] Returns all the known ports in a system to an allay of PortObject

e.g.

PortObject[] allportsknown = ControlMacro.GetAll-
Ports();

GetAllStations() [PortObject[]] Returns an array of PortObject containing all the panels in a

system e.g.

PortObject[] stationsToCut = ControlMacro.GetAll-

Stations();

GetControl (Guid) [Control-

Macro]

Gets the control information for the item named in the string

parameter e.g.

ControlMacro.<object> = ControlMacro.GetCon-

trol(<string>);

GetControl (string) [Control-

Macro]

Returns a reference to a control label with the given Talk label e.g.

ControlMacro CONTROL = ControlMacro.GetCon- trol("CTLA
")

GetControl(string,string) [Con-

trolMacro]

Returns a reference to a control label with the given Talk and

Listen labels e.g.

ControlMacro CONTROL = ControlMacro.GetCon- trol("CTLA

", " ")

GetControl(string,string,int)

[ControlMacro]

Returns a reference to a control label with the given Talk and

Listen labels on the specified system e.g.

ControlMacro CONTROL = ControlMacro.GetCon- trol("CTLA

", " ", 1)

Logic | User Guide

Page 113

Macro Description

GetEntities(string) [EntityOb-

ject[]]

Return the entities specified in the string e.g. EntityObject[]
<entity> = ControlMacro.GetEnti- ties(“<entity names>”);

GetEntity(string) [EntityObject] Returns the entity specified in the string e.g. EntityObject

<entity> = ControlMacro.GetEn- tity(<entity name>);

GetGroup(string) [EntityObject] Returns the talk label for a group e.g. EntityObject <entity> =
ControlMacro.Get- Group(“<talk label>”);

GetGroup(string string)

[EntityO- bject]

Returns the talk and listen labels for the group specified as strings

e.g.

EntityObject <entity> = ControlMacro.get- Group(“<talk

label>”, “<listen label>”);

GetGroup(string,string,int)

[Enti- tyObject]

Returns the talk and listen labels for a group on the given system

number e.g.

EntityObject <entity> = ControlMacro.Get- Group(“<talk

label>, <listen label>, <system num- ber>);

GetGroupMembers(EntityOb-

ject) [EntityObject[]]

Returns the members of a specified group e.g. EntityObject[]

<entity> = ControlMacro.GetGroup- Members(<group
identifier>);

Macro Description

GetHashCode () [int] Returns the hash code of an object previously created by a

control as an integer. e.g.

int <result> = <object>.GetHashCode();

GetLocalSharedListenPortNum-

berForRemoteEntity(PortOb-
ject) [ushort]

Returns the port number on the remote system for the specified

Listen port object e.g.

ushort <port number> = ControlMacro.GetLocal-

SharedListenPortNumberForRemoteEntity(<port object>);
GetLocalSharedTalkPortNum-

berForRemoteEntity(PortOb-
ject) [ushort]

Returns the port number on the remote system for the specified

Talk port object e.g.

ushort <port number> = ControlMacro.GetLocal-
SharedTalkPortNumberForRemoteEntity(<port object>);

GetPartyLine(string) [EntityOb-

ject]

Returns an entity for the named party line talk label e.g.

EntityObject <entity> = ControlMacro.GetParty- Line(<party line
name>);

Logic | User Guide

Page 114

Macro Description

GetPartyLine(string string)

[Enti- tyObject]

Returns the talk and listen labels for the party line e.g.

EntityObject <entity> = ControlMacro.GetParty- Line(<talk
label>, <listen label>);

GetPartylineMembers(EntityOb-

ject) [EntityObject[]]

Returns the members of a party line e.g. EntityObject[] <entity>

= ControlMacro.GetParty- LineMembers(EntityObject);

GetPort (Guid) [PortObject] Gets the Guid for a port e.g.

PortObject <result> = ControlMacro.GetPort(<port- Guid>);

GetPort (int) [PortObject] Returns a reference for the specified port number e.g.

PortObject p = ControlMacro.GetPort(600)

GetPort (string) [PortObject] Returns a reference for a port with the given Talk label e.g.

PortObject p = ControlMacro.GetPort("Talk ")

GetPort(string string) [PortOb-

ject]

Returns the reference for a port with the given Talk and Listen

labels e.g.

PortObject p = ControlMacro.GetPort("Talk ", "Lstn ")

GetPort(string string int)

[PortO- bject]

Returns the reference for a port with the given Talk and Listen

labels and port number e.g.

PortObject p = ControlMacro.GetPort("Talk ", "Lstn ", 600)

GetAllPorts(bool) [PortObject[]] Returns a list of port objects e.g.

PortObject[] = ControlMacro.GetAllPorts(<local sys- tem

only boolean>);

Macro Description

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

Inhibits(ControlMacro) [void] Causes a specified control action to be inhibited e.g.

<control identifier>.Inhibits(<control macro>);

Inhibits(ControlMacro, ushort)

[void]

Causes a specified control action to be inhibited e.g.

<control identifier>.Inhibits(<control
macro>,<logic parameter>);

Logic | User Guide

Page 115

NameExists(string) [bool] Returns a boolean indicating whether a named entity

exists e.g.

bool <boolean> =
ControlMacro.NameExists(<entity name>);

Resets(ControlLatch) [void] Resets the specified control latch e.g.

<entity instance>.Resets(latch name);

SetDefaultGateway(string)

[void]

Sets the default gateway address 1 on a frame to the

specified string e.g.

ControlMacro.SetDefaultGateway(<default
gateway address>);

SetDefaultGateway2(string)

[void]

Sets the default gateway address 2 on a frame to the

specified string e.g.

ControlMacro.SetDefaultGateway2(<default
gateway 2 address>);

Sets(ControlLatch) [void] Set a control latch e.g.

<control latch entity>.Sets(ControlLatch);

SetSubnetMask(string) [void] Sets the subnetmask 1 on a frame to the specified

string e.g.

ControlMacro.SetSubnetMask(<subnet mask

string>);

SetSubnetMask2(string) [void] Sets the subnetmask 2 on a frame to the specified

string e.g.

ControlMacro.SetSubnetMask2(<subnet mask

string>);

Toggles(ControlLatch) [void] Toggles the specified control latch e.g.

<latch instance>.Toggles(ControlLatch);

Triggers (ControlMacro) [void] This command executes a previously defined control.

For example if an instance ‘GP23’ has been defined

using the GetControl control macro and the control

‘fireLED1’ has been defined using the ControlActions

macro the control ‘fireLED1 can be used as the

parame- ter to the Trigger macro e.g.

GP23.Triggers (fireLED1);

Triggers (Action) [void] This command executes a previously defined action.

For example if an instance ‘GP23’ has been defined

using the GetControl control macro and the action

‘fireLED1’ has been defined using the ControlActions

macro the action ‘fireLED1 can be used as the parame-

ter to the Trigger macro.e.g.

GP23.Triggers (fireLED1);

Logic | User Guide

Page 116

TriggersIf (ControlMacro, Condi-

tion, ControlMacro) [void]

Triggers an action if the result of the condition test on

the two control macros is met e.g.

<result>.TriggersIf(<control1>,<condition>,<co
n- trol2>);

Triggerslf(CrosspointCon-

trol,Condition,ControlMacro)
[void]

Triggers a crosspoint control for a specified condition

e.g.

<crosspoint>.TriggersIf(CrospointControl,
<condi- tion>, ControlMacro);

Triggerslf(CrosspointCon-

trol,Condition,CrosspointCon-
trol) [void]

Triggers a crosspoint control for a specified condition

e.g.

<crosspoint>.TriggersIF(CrosspointControl,
<condi- tion>, CrosspointControl);

ControlObject [ControlObject] Creates a control macro for an object e.g.

ControlMacro <result> =

<object>.ControlObject;
ToString () [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

2.9.7 CROSSPOINT CONTROL

Macro Description

Equals(Object) [bool] Tests the equivalence of two objects and returns True or False.

e.g.

bool <result> = <object1>.equals<(object2)>;

GetDestination() [PortObject] Returns the destination port for a crosspoint e.g.

PortObject <destination> = <port>.GetDestination;

GetHashCode() [int] Returns the hash code of an object previously created by a

control as an integer. e.g.

int <result> = <object>.GetHashCode();

GetSource() [PortObject] Returns the source port for a crosspoint e.g.

PortObject <source> = <port>.GetSource;

GetType() [Type] Returns the type of an object previously created by a control

macro. e.g.

Type <result> = <object>.GetType();

Resets(ControlLatch) [void] Resets a control latch object e.g.

<latch>.Resets(ControlLatch);

Logic | User Guide

Page 117

Sets(ControlLatch) [void] Sets a control latch object e.g.

<latch>.Sets(ControlLatch);

Toggles(ControlLatch) [void] Toggles a control latch object e.g.

<latch>.Toggles(ControlLatch);

ToString() [string] Returns the string value of an object previously created by a

control macro. e.g.

string <result> = <object>.ToString();

Triggers(ControlMacro) [void] Triggers a control macro from a latch e.g.

<latch>.Triggers(ControlMacro)

Triggers(Action] [void] Triggers an action from a latch e.g.

<latch>.Triggers(Action);

On [bool] Sets a crosspoint On/Off state to that specified by the boolean

e.g.

crosspointControl.On = <boolean>

Priority [uint] Sets a crosspoint priority level to the value specified e.g.

crosspointControl.Priority = <priority>;

2.9.8 CURRENT MACROS

Macro Description

Equals(Object) [bool] Tests the equivalence of two objects and returns True

or False. e.g.

bool <result> = <object1>.equals<(object2)>;

GetHashCode() [int] Returns the hash code of an object previously created

by a control as an integer. e.g.

int <result> = <object>.GetHashCode();

IPAddress() [string) Returns the IP address as a string e.g.

string <result string> = Current.IPAddress();

SystemNumber() [int] Returns the system number as an integer e.g.

int <result> = Current.systemNumber();

ToString() [string] Returns the string value of an object previously

created by a control macro. e.g.

string <result> = <object>.ToString();

GetType() [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

Logic | User Guide

Page 118

2.9.9 LOGGING MACROS

These macros are accessed by expanding the ‘Shared’ > ‘Logging’ > ‘Logger’

entry in the Available Modules menu. Logging macros allow informatory, warning,

error and fatal error messages to be output to a logging device.

Macro Description

Debug (Exception, IFormatPro-

vider, string, Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<exception>,<format><string
for- mat>,Object[<object>]);

Debug (Exception, Object)

[void]

Creates a debug object to be sent to the logger e.g.

<logger>.Debug(<exception>,<object>);

Debug (Exception, string,

Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<exception>,<string for-
mat>,Object[<object>]);

Debug (IformatProvider, string,

Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<format><string for-
mat>,Object[<object>]);

Debug (Object) [void] Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<Object[<object>]);

Debug (string, Object[]) [void] Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<string
format>,Object[<object>]);

DebugLow (Exception, IFormat-

Provider, string, Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.Debug(<exception>,<format><string
for- mat>,Object[<object>]);

DebugLow (Exception, Object)

[void]

Creates a debug object to be sent to a logger e.g.

<logger>.DebugLow(<exception>,Object[<objec
t>]);

DebugLow (Exception, string,

Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.DebugLow(<exception>,<string for-
mat>,Object[<object>]);

DebugLow (IFormatProvider,

string, Object[]) [void]

Creates a debug object to be sent to a logger e.g.

<logger>.DebugLow(<format><string for-
mat>,Object[<object>]);

DebugLow (Object) [void] Creates a debug object to be sent to a logger e.g.

<logger>.DebugLow(<Object[<object>]);

DebugLow (string, Object[])

[void]

Creates a debug object to be sent to a logger e.g.

<logger>.DebugLow(<string for-
mat>,Object[<object>]);

Logic | User Guide

Page 119

Macro Description

Equals (Object) [bool] Tests the equivalence of two objects and returns True or

False. e.g:

bool <result> = <object1>.equals<(object2)>;

Error (Exception, IFormatPro-

vider, string, Object[]) [void]

Creates a error object to be sent to a logger e.g.

<logger>.Error(<exception>,<format><string
for- mat>,Object[<object>]);

Error (Exception, Object) [void] Creates a error object to be sent to a logger e.g.

<logger>.Error(<exception>,Object[<object>]);

Error (Exception, string,

Object[]) [void]

Creates a error object to be sent to a logger e.g.

<logger>.Error(<exception>,<string for-
mat>,Object[<object>]);

Error (IFormatProvider, string,

Object[]) [void]

Creates a error object to be sent to a logger e.g.

<logger>.Error(<format><string for-
mat>,Object[<object>]);

Error (Object) [void] Creates a error object to be sent to a logger e.g.

<logger>.Error(Object[<object>]);

Error (string, Object[]) [void] Creates a error object to be sent to a logger e.g.

<logger>.Error(<string
format>,Object[<object>]);

Fatal (Exception, IFormatPro-

vider, string, Object[]) [void]

Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(<exception>,<format><string
for- mat>,Object[<object>]);

Fatal (Exception, Object) [void] Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(<exception>,Object[<object>]);

Fatal (Exception, string,

Object[]) [void]

Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(<exception>,<string for-
mat>,Object[<object>]);

Fatal (IFormatProvider, string,

Object[]) [void]

Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(<format><string for-
mat>,Object[<object>]);

Fatal (Object) [void] Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(Object[<object>]);

Fatal (string Object[]) [void] Creates a fatal error object to be sent to a logger e.g.

<logger>.Fatal(<string
format>,Object[<object>]);

GetLogger (string) [Logger] Gets information for the logger specified in the string

parameter e.g.

Logger <result> = Logger.GetLogger(<string>);

Logic | User Guide

Page 120

Macro Description

GetLogger (Type) [Logger] Gets information for the logger specified in the type

parameter e.g.

Logger <result> = Logger.GetLogger(<type>);

GetType () [Type] Returns the type of an object previously created by a

control macro. e.g.

Type <result> = <object>.GetType();

HasLoggingStarted () [bool] Returns a boolean to indicate whether logging has been

started or not e.g.

bool <result> = Logger.HasLoggingStarted();

Info (Exception, IFormatPro-

vider, string, Object[]) [void]

Creates a information object to be sent to a logger e.g.

<logger>.Info(<exception>,<format><string
for- mat>,Object[<object>]);

Info (Exception, Object) [void] Creates a information object to be sent to a logger e.g.

<logger>.Info(<exception>,Object[<object>]);

Info (Exception, string,

Object[]) [void]

Creates a information object to be sent to a logger e.g.

<logger>.Info(<exception>,<string for-
mat>,Object[<object>]);

Info (IFormatProvider, string,

Object[]) [void]

Creates a information object to be sent to a logger e.g.

<logger>.Info(<format><string for-

mat>,Object[<object>]);

Info (Object) [void] Creates a information object to be sent to a logger e.g.

<logger>.Info(Object[<object>]);

Info (string, Object[]) [void] Creates a information object to be sent to a logger e.g.

<logger>.Info(<string

format>,Object[<object>]);
Push (string) [IDisposable] creates a temporary string object e.g.

IDisposable <object> = Logger.Push(<string>);

StartLogging () [void] Command to start logging e.g.

Logger.StartLogging();

ToString () [string] Returns the string value of an object previously created

by a control macro. e.g.

string <result> = <object>.ToString();

Warn (Exception, IFormatPro-

vider, string, Object[]) [void]

Creates a warning object to be sent to a logger e.g.

<logger>.Warn(<exception>,<format><string
for- mat>,Object[<object>]);

Warn (Exception, Object) [void] Creates a warning object to be sent to a logger e.g.

<logger>.Warn(<exception>,Object[<object>]);

Logic | User Guide

Page 121

Macro Description

Warn (Exception, string,

Object[]) [void]

Creates a warning object to be sent to a logger e.g.

<logger>.Warn(<exception>,<string for-
mat>,Object[<object>]);

Warn (IFormatprovider, string,

Object[]) [void]

Creates a warning object to be sent to a logger e.g.

<logger>.Warn(<format>,<string for-
mat>,Object[<object>]);

Warn (Object) [void] Creates a warning object to be sent to a logger e.g.

<logger>.Warn(Object[<object>]);

Warn (string, Object[]) [void] Creates a warning object to be sent to a logger e.g.

<logger>.Warn(<string
format>,Object[<object>]);

IsDebugEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

debug mode is enabled e.g.

Logger isDebugEnabled = <object>.IsDebugEna-
bled;

IsDebugLowEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

debug low mode is enabled e.g.

Logger isDebugLowEnabled =
<object>.IsDebugLo- wEnabled;

IsErrorEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

error reporting mode is enabled e.g.

Logger isErrorEnabled =
<object>.IsErrorEnabled;

IsFatalEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

fatal error reporting mode is enabled e.g.

Logger isFatalEnabled =
<object>.IsFatalEnabled;

IsInfoEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

info mode is enabled e.g.

Logger isInfoEnabled = <object>.IsInfoEnabled;

IsWarnEnabled [bool] Returns a boolean TRUE or FALSE indicating whether

warn mode is enabled e.g.

Logger isWarnEnabled =
<object>.IsEWarnEnabled;

GetHashCode () [int] Returns the hash code of an object previously created

by a control as an integer. e.g:

int <result> = <object>.GetHashCode();

Logic | User Guide

Page 122

3 APPENDIX B EXAMPLE CONTROL MACROS

3.1 ACTIVATE SPECIFIC KEY LED

// When control LED0 is activated fourth key on each panel is illuminated red.
using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the control that will trigger this action. ControlMacro LED0 =
ControlMacro.GetControl("LED0");

// Fetch the panels we wish to activate the LED on. PortObject ISTA =

ControlMacro.GetPort("ISTA"); PortObject D4222 =
ControlMacro.GetPort("D4222");

PortObject[] panelArray = new PortObject[] { ISTA, D4222 }; foreach (PortObject
panel in panelArray)

{

// Set up LED indications.

// Note1: LED will only indicate if a key is assigned here, i.e. can't illuminate

empty key.

// Note2: Key numbers are silly, some start from 1, some from 0 etc

Action fireLed1 = ControlActions.ActivateLED(panel, 4, 1, 0,
Shared.Enums.LedRate.On, Shared.Enums.LedIndication.Red);

// Activate LEDs on. LED0.Triggers(fireLed1);

}

Logic | User Guide

Page 123

}

}

}

3.2 ACTIVATE LED ON ALL KEYS TO DESTINATION

// When control LED1 is activated, any key on any panel to I2003 is illuminated
red. using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the elements we need.

ControlMacro LED1 = ControlMacro.GetControl("LED1"); PortObject I2003 =
ControlMacro.GetPort("I2003");

// Set up LED indications.

Action fireLed1 = ControlActions.ActivateLED(I2003, Shared.Enums.LedRate.On,

Shared.Enums.LedIndication.Red);

// Activate LEDs on. LED1.Triggers(fireLed1);

}

}

}

3.3 TRIGGER ACTION WHEN BOTH A AND B ARE SET

// When control AND1 is activated and control AND2 is activated, activate control
FRLY1 using System;

Logic | User Guide

Page 124

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the elements we need.

ControlMacro AND1 = ControlMacro.GetControl("AND1"); ControlMacro AND2 =

ControlMacro.GetControl("AND2"); ControlMacro FRLY1 =
ControlMacro.GetControl("FRLY1");

FRLY1.TriggersIf(AND1, Condition.AND, AND2);

}

}

}

3.4 TRIGGER ACTION WHEN ALL OF A AND B AND C

ARE SET

// When control A1 is activated AND control A2 is activated AND control A3 is
activated, activate control FRLY4

using System;

using ClearCom.ScriptHost; using ClearCom.ScriptLibrary; using
ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

Logic | User Guide

Page 125

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the elements we need.

ControlMacro A1 = ControlMacro.GetControl("A1"); ControlMacro A2 =

ControlMacro.GetControl("A2"); ControlMacro A3 =
ControlMacro.GetControl("A3"); ControlMacro FRLY4 =

ControlMacro.GetControl("FRLY4");

// Note that each control can only have one TriggersIf, so create an intermediate
control

// to test the first 2 inputs.

ControlMacro intermediate = ControlMacro.CreateControl("IMDTE", true);

intermediate.TriggersIf(A1, Condition.AND, A2);

FRLY4.TriggersIf(intermediate, Condition.AND, A3);

}

}

}

3.5 CUT TALK TO STUDIO

// When control ST-CT is activated, prevents all panels from talking to port I2003.

using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

Logic | User Guide

Page 126

{

ControlMacro STCT = ControlMacro.GetControl("ST-CT"); PortObject[]
stationsToCut = ControlMacro.GetAllStations();

PortObject STUD1 = ControlMacro.GetPort("I2003"); foreach (PortObject station
in stationsToCut)

{

Action rOff1 = ControlActions.RouteOff(station.PortNumber, STUD1.PortNumber,
0); STCT.Triggers(rOff1);

}

}

}

}

3.6 CUT TALK TO STUDIO, EXCLUDING SOME PANELS

// When control ST-CT is activated, prevents all panels apart from ISTA and I2003
from talking to port I2003

using System;

using ClearCom.ScriptHost; using ClearCom.ScriptLibrary; using

ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

ControlMacro STCT = ControlMacro.GetControl("ST-CT"); PortObject[]
stationsToCut = ControlMacro.GetAllStations();

PortObject STUD1 = ControlMacro.GetPort("I2003"); foreach (PortObject station

in stationsToCut)

{

Logic | User Guide

Page 127

if (Exclude(station)) continue;

Action rOff1 = ControlActions.RouteOff(station.PortNumber, STUD1.PortNumber,
0); STCT.Triggers(rOff1);

}

}

private bool Exclude(PortObject station)

{

if (station.TalkLabel.Trim() == "ISTA") return true;

if (station.TalkLabel.Trim() == "I2003") return true;

return false;

}

}

}

3.7 TRIGGER ACTION WHEN BOTH A IS SET AND A

CROSSPOINT IS MADE

// When control AND1 is activated AND ISTA talks to D4222, activate control
FRLY2 using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the elements we need.

Logic | User Guide

Page 128

ControlMacro AND1 = ControlMacro.GetControl("AND1"); ControlMacro FRLY2 =

ControlMacro.GetControl("FRLY2");

// Fetch the panels we wish to get the crosspoint between. PortObject ISTA =

ControlMacro.GetPort("ISTA"); PortObject D4222 =
ControlMacro.GetPort("D4222");

// Create the control that will be triggered on the crosspoint. CrosspointControl
crosspointControl = new CrosspointControl(ISTA, D4222);

FRLY2.TriggersIf(crosspointControl, Condition.AND, AND1);

}

}

}

3.8 TRIGGER ACTION WHEN GROUP 1 MEMBER TALKS

TO GROUP 2 MEMBER

// If any panel in group 1 talks to a panel in group 2, control "FRLY3" is activated

using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

PortObject[] allStations = ControlMacro.GetAllStations(); ControlMacro FRLY3 =

ControlMacro.GetControl("FRLY3");

// Test each panel to see if it is in group 1

foreach (PortObject possibleGroup1Station in allStations)

Logic | User Guide

Page 129

{

if (!IsInGroup1(possibleGroup1Station)) continue;

// Test each panel to see if it is in group 2

foreach (PortObject possibleGroup2Station in allStations)

{

if (!IsInGroup2(possibleGroup2Station)) continue;

// We have a pair of panels, one from group1, one from group2

// Create the control that will be triggered on the crosspoint.

CrosspointControl crosspointControl = new

CrosspointControl(possibleGroup1Station, possibleGroup2Station);

crosspointControl.Triggers(FRLY3);

}

}

}

private bool IsInGroup1(PortObject station)

{

if (station.ListenAlias.Contains("*")) return true;

return false;

}

private bool IsInGroup2(PortObject station)

{

if (station.ListenAlias.Contains("#")) return true;

return false;

}

}

}

Logic | User Guide

Page 130

3.9 HEADSET-SELECT ON

// When control HS-ON is activated forces headset-select on for panel D4222

using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// When control HS-ON is activated forces headset-select on for panel D4222

// Fetch the elements we need.

ControlMacro HSON = ControlMacro.GetControl("HS-ON"); PortObject D4222 =

ControlMacro.GetPort("D4222");

HSON.Triggers(ControlActions.HeadsetSelect(D4222));

}

}

}

3.10 HEADSET-SELECT ON ALWAYS

// Forces headset-select on for panel D4222 using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

Logic | User Guide

Page 131

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

PortObject D4222 = ControlMacro.GetPort("D4222");

// Create dummy crosspoint, and turn it on

CrosspointControl crosspointControl = new CrosspointControl(1022, 1022);
crosspointControl.On = true;

// Make the always-on crosspoint trigger the headset-select action
crosspointControl.Triggers(ControlActions.HeadsetSelect(D4222));

}

}

}

3.11 LOUDSPEAKER-CUT ON

// When control LS-CT is activated forces loudspeaker cut on for panel D4222
using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary; using ClearCom.Entities; using EMS.MapClient;

using EMS.MapClient.Tables;

using EMS.MapClient.Tables.Actions; using Shared.Enums;

namespace CustomControlMacros

{

public class CustomMacro : ScriptBase

{

public override void OnUserStart()

{

// Fetch the elements we need.

Logic | User Guide

Page 132

ControlMacro HSON = ControlMacro.GetControl("LS-CT"); PortObject D4222 =

ControlMacro.GetPort("D4222");

HSON.Triggers(ControlActions.CutLoudspeaker(D4222));

}

}

}

3.12 IFB CONTROL MACROS

You can use the following control macros to to edit virtual IFBs.

Note: Some of the macros can only be used if you enable the following setting in
the EHX configuration software: For any port configured as a panel, select
Port Properties > Global Options, and then select the IFB checkbox.

• Add caller (IFB checkbox enabled)

• Add caller (IFB checkbox not enabled)

• Add destination

• Add return

• Add source (IFB checkbox enabled)

• Add source (IFB checkbox not enabled)

3.12.1 ADD CALLER (IFB CHECKBOX ENABLED)

public static Action RouteToIfbOn(PortObject source, PortObject destination);
//add caller

3.12.2 ADD CALLER (IFB CHECKBOX NOT ENABLED)

public static Action RouteToIfbOn(PortObject source, ushort ifb); //add caller

3.12.3 ADD DESTINATION

public static Action DestinationToIfbOn(PortObject source, PortObject

destination); //add destination

3.12.4 ADD RETURN

public static Action ReturnToIfbOn(PortObject source, ushort ifb); //add return

Logic | User Guide

Page 133

3.12.5 ADD SOURCE (IFB CHECKBOX ENABLED)

public static Action SourceToIfbOn(PortObject source, PortObject destination);
//add source

3.12.6 ADD SOURCE (IFB CHECKBOX NOT ENABLED)

public static Action SourceToIfbOn(PortObject source, ushort ifb); //add source

3.12.7 EXAMPLE OF USING IFB CONTROL MACROS

Here is an example of how you might use IFB control macros.

using System;

using ClearCom.ScriptHost;

using ClearCom.ScriptLibrary;

using ClearCom.Entities;

using EMS.MapClient;

using EMS.MapClient.Tables;

using Shared.Enums;

using Action = EMS.MapClient.Tables.Actions.Action;

namespace CustomScript

{

public class UserScript : ScriptBase

{

public override void OnUserStart()

{

//This macro will allow a caller port (caller) to talk to an IFB port (ifb port) when a
control (do this) is fired

//get a control action from the physical system which will fire the actions

ControlMacro do_this = ControlMacro.GetControl("do th", "is ");

//make a refererence to a port which has the 'IFB' tick box set (so behaves as a
global IFB)

PortObject ifb_port = ControlMacro.GetPort("ifb p", "ort ");

//make a reference for a 'caller' port

PortObject caller = ControlMacro.GetPort("calle", "r ");

Logic | User Guide

Page 134

//make an action called 'fire' which lets the caller call the IFB port

Action Fire = ControlActions.RouteToIfbOn(caller, ifb_port);

//when you see the control happen on the system, trigger the action to fire the

IFB

do_this.Triggers(Fire);

}

}

}

Logic | User Guide

Page 135

4 APPENDIX C KEY NUMBERING ON PANELS

This appendix gives the key numbering for the various panel types to enable
control macros to be written to control specific keys on different types of panels.

Panels use region 1 unless otherwise stated. Keys on the main page are on page
0; keys on subsequent pages are on pages 1, 2, 3 etc.

The key numbers for panels are given below.

Figure 4-1 4212 Panel Keys

Figure 4-2…4215 Panel Keys

Figure 4-3.. 4222 Panel Keys

Figure 4-4.. 4224 Panel Keys

Logic | User Guide

Page 136

Figure 4-5.. 4226 Panel Keys

Figure 4-6.. i-Station Panel Keys

Figure 4-7.. ICS-1008 Panel Keys

Figure 4-8.. ICS-1016 Panel Keys

Figure 4-9.. ICS-102 Panel Keys

Logic | User Guide

Page 137

Figure 4-10.. ICS-2003 Panel Keys

Figure 4-11 ICS-52 Panel keys

|

Figure 4-12…ICS-62 Panel Keys

Figure 4-13.. ICS-92 Panel Keys

Figure 4-14.. V12LD Panel Keys

Figure 4-15.. V12PD Panel Keys

Figure 4-16.. V12RD Panel Keys

Logic | User Guide

Page 138

Figure 4-17.. V24LD Panel Keys

Figure 4-18.. V24PD Panel Keys

Figure 4-19.. V24RD Panel keys

Figure 4-20 V32LD Panel keys

Logic | User Guide

Page 139

Figure 4-21.. V12LDE Panel Keys

Figure 4-22 V16LDE Panel Keys

Figure 4-23.. V12PDE Panel keys

Figure 4-24.. V12RDE Panel keys

Figure 4-25.. V12LDD Panel Keys

Logic | User Guide

Page 140

Figure 4-26.. V12PDD Panel Keys

Figure 4-27.. V12RDD Panel Keys

Logic | User Guide

Page 141

Figure 4-28.. FreeSpeak Beltpack Keys

Figure 4-29.. FreeSpeak II Beltpack Keys

Logic | User Guide

Page 142

5 GLOSSARY

Analog Port Any of the Eclipse matrix’s analog

input/output RJ-45 connectors that are used to

connect cable from the matrix to panels and

interfaces. Each “port” connects to a separate

audio channel in the matrix intercom system.

Alias label A label that is temporarily assigned and

replaces a previously labeled port or conference.

Bus A bus is the channel or path between the

components in the matrix along which electrical

signals flow to carry information from one

component to the next. In the Eclipse matrix the

bus is located in the etched surface of the

midplane.

Call Signal A call signal is an electronic signal sent

from one panel or interface to another. A call

signal can be audible and/or visual.

Typically a call signal is sent to get the attention

of a panel operator who may have turned down

their intercom speaker’s volume or removed their

headset. It can also be sent to activate an

electronic relay.

Canvas The assignment area of Dynam-EC which

can have any user labeled background.

Category-5 cable EIA/TIA 568 category

specification relating to network cabling. Shielded

category-5 cabling is required for Eclipse matrix

wiring.

CellCom Digital wireless communications product.

Sold under the CellCom name in USA and as

FreeSpeak in Europe and Asia.

Central Matrix The term “central matrix” is used to

differentiate the central hardware and software of

the intercom system from the connected audio

devices. The central matrix consists of:

1. The metal housing for the circuit cards and

power supplies.

2. The circuit cards.

Logic | User Guide

Page 143

3. The power supplies.

4. The rear panel connectors which connect the
matrix’s hardware to panels and interfaces.

Conference An internal matrix virtual party line or

busbar where many panels and interfaces can talk

onto or listen from the party line without talking to

themselves.

Destination A device such as an intercom panel,

beltpack, or interface to which audio signals are

sent. The device from which audio signals are

sent is called a “source”.

Duplex All real-time communication between

individuals talking face to face is full duplex,

meaning that they can both talk and listen

simultaneously. The Eclipse matrices provide full-

duplex audio.

EHX Eclipse Configuration Software. Software

program that guides the operation of the central

matrix circuit cards and connected panels.

Ethernet International standard which describes

how information is transmitted across a network.

Provides for the efficient organization of network

components.

Fiber-optic Cable A fiber-optic cable consists of a

glass core covered with a reflective material called

“cladding” and several layers of buffer coating to

protect the cable from the environment. A laser

sends light pulses through the glass core to the

other end of the cable.

FreeSpeak Digital wireless communications

product. Sold under the FreeSpeak name in

Europe and Asia and CellCom name in USA.

FreeSpeak II Advanced digital wireless communications
product.

Full Duplex Refers to transmission of signals in

two directions simultaneously.

IFB “Interruptible Foldback”. The term “foldback”

refers to sending “program” audio, or some other

audio mix, back to announcers while they are on

the air. Doing so allows announcers to monitor

themselves, other announcers, videotapes of

Logic | User Guide

Page 144

commercials, or some mix of sources, while they

on the air. This is typically found in television news

and live broadcast events.

Announcers typically wear a small ear piece so they

can hear the selected foldback audio mix. When a

director wants to give directions to an announcer

on air, or to announce changes in the program, the

director must “interrupt” the foldback. To do this,

the director uses a channel specifically set up to

interrupt the foldback audio.

Interface Module A piece of electronic hardware

designed to convert the 4-wire signals of a central

matrix port to some other form of communication,

such as 2-wire party line, telephone, etc. The

interface module is connected to a central matrix

port. The external non-4-wire device is then

connected to the interface module.

ISO The ISO function, short for “panel ISOlation”,

allows a panel operator to call a destination and

interrupt all of that destination’s other audio paths

and establish a private conversation. When the

call is completed the destination’s audio pathways

are restored to their original state before the

interruption.

KeyGroup KeyGroups provide a way of assigning a

label to multiple panels simultaneously even

within a networked matrix system. Once the

KeyGroups have been defined using EHX, all the

keys within a KeyGroup can be changed with a

single assignment in Dynam-EC (Pro mode only).

Label A label is an alphanumeric name of up to

five characters that identifies a source,

destination, or control function accessed by an

intercom panel. Labels appear in the displays of

the intercom panel.

Labels can identify panels, ports interfaced to

other external equipment, fixed groups, party

lines, and special control functions.

Multiplexing The process by which two or more

signals are transmitted over a single

communications channel. Examples include time

division and wavelength division multiplexing.

Logic | User Guide

Page 145

Non-volatile Memory Data stored in the CPU’s

firmware (ROM) that is not lost when the power is

turned off.

Palette The port, keyGroup and Monitor selection

screen in Dynam-EC.

Panel Also referred to as “station” in some cases

(usually older manuals). Any intelligent intercom

device connected to the rear-panel analog ports of

the central matrix. This term does not refer to

devices connected through interface modules.

Party Line A wired shared communication system

based on a single screened pair of wires. See

the Encore range. Matrix requires the CCI-22 to

interface to it.

Port Any of the input/output connections (RJ-45

connectors) on the back panel of the central

matrix. These connectors and the attached cables

connect the central matrix to remote intercom

devices. The term “port” emphasizes that the

connection is a “portal” between the central

matrix and the remote intercom devices.

Program Any separate audio source that is fed

into the intercom channels. In television

applications, for example, “program” audio is

the audio that is broadcast on air.

Rack Unit or RU Standardized unit of mounting

space on a rack panel. Each rack unit is 1.75

inches (44.45 mm) of vertical mounting space.

Therefore 1 RU is 1.75 inches (44.45 mm) of

vertical mounting space, 2 RU is 3.5 inches (88.9

mm), 3 RU is 5.25 inches (133.35 mm), and so

on.

Remote Panel Any intelligent intercom device

connected to the back-panel ports of the

central matrix. This term does not refer to

devices connected through interfaces.

Sidetone The sound of the panel operator’s own

voice heard in their own earphone as they speak.

Source In this manual, the term “source” refers to

a device—such as an intercom panel, interface, or

beltpack —that sends audio into the matrix. The

Logic | User Guide

Page 146

device to which audio is sent is called a

“destination”.

VOX In the Eclipse system, when audio at a panel

exceeds a threshold, a light switches on at the

panel’s port card to visually cue the operator. The

threshold level is set in the Eclipse Configuration

Software.

V-Series Communications panels used with Eclipse

systems providing advanced facilities. Available in

rack mount and desktop formats.

Logic | User Guide

Page 147

6 LIMITED WARRANTY

Vitec Group Communications (VGC) warrants that at the time of purchase,

the equipment supplied complies with any specification in the order

confirmation when used under normal conditions, and is free from defects in

workmanship and materials during the warranty period.

During the warranty period VGC, or any service company authorized by VGC,

will in a commercially reasonable time remedy defects in materials, design,

and workmanship free of charge by repairing, or should VGC in its discretion

deem it necessary, replacing the product in accordance with this limited

warranty. In no event will VGC be responsible for incidental, consequential, or

special loss or damage, however caused.

6.1 WARRANTY PERIOD

The product may consist of several parts, each covered by a different

warranty period. The warranty periods are:

• Cables, accessories, components, and consumable items have a limited

warranty of 90 days.

• Headsets, handsets, microphones, and spare parts have a limited

warranty of one year.

• UHF wireless IFB products have a limited warranty of one year.

• UHF wireless intercom systems have a limited warranty of three years.

• All other Clear-Com and Drake brand systems and products, including

beltpacks, have a limited warranty of two years.

The warranty starts at the time of the product’s original purchase. The

warranty start date for contracts which include installation and commissioning

will commence from the earlier of date of the Site Acceptance Test or three

months from purchase.

6.2 TECHNICAL SUPPORT

To ensure complete and timely support to its customers, VGC’s User Support

Center is staffed by qualified technical personnel. Telephone and email

technical support is offered worldwide by the User Support Center.

The User Support Center is available to VGC’s customers during the full

course of their warranty period.

Instructions for reaching VGC’s User Support Centers are given below.

Telephone for Europe, Middle East and Africa: +49 40 6688 4040 or

Logic | User Guide

Page 148

+44 1223 815000

Telephone for the Americas and Asia: +1 510 337 6600

Email: vitec.support@AVC.de

Once the standard warranty period has expired, the User Support Center
will continue to provide telephone support if you have purchased an

Extended Warranty.

For latest contact information please refer to the Service and Support
section at www.clearcom.com.

6.3 WARRANTY REPAIRS AND RETURNS

Before returning equipment for repair, contact a User Support Center to obtain a

Return Material Authorization (RMA). VGC representatives will give you
instructions and addresses for returning your equipment. You must ship the
equipment at your expense, and the support center will return the equipment at

VGC’s expense.

For out-of-box failures, use the following contact information:

Europe, Middle East and Africa

Tel: +44 1223 815000 Email: SalesSupportEMEA@vitecgroup.com

North America, Canada, Mexico, Caribbean & US Military

Tel: +1 510 337 6600 Email: SalesSupportUSA@vitecgroup.com

Asia Pacific & South America

Tel: +1 510 337 6600 Email: SalesSupportAPAC@vitecgroup.com

VGC has the right to inspect the equipment and/or installation or relevant

packaging.

For latest contact information please refer to the Service and Support
section at www.clearcom.com.

6.4 NON-WARRANTY REPAIRS AND RETURNS

For items not under warranty, you must obtain an RMA by contacting the User

Support Center. VGC representatives will give you instructions and addresses for
returning your equipment.

You must pay all charges to have the equipment shipped to the support center
and returned to you, in addition to the costs of the repair.

6.5 EXTENDED WARRANTY

You can purchase an extended warranty at the time of purchase or at any time
during the first two years of ownership of the product. The purchase of an

mailto:vitec.support@AVC.de
http://www.clearcom.com/
http://www.clearcom.com/
mailto:SalesSupportEMEA@vitecgroup.com
mailto:SalesSupportUSA@vitecgroup.com
mailto:SalesSupportAPAC@vitecgroup.com
mailto:SalesSupportAPAC@vitecgroup.com
http://www.clearcom.com/
http://www.clearcom.com/

Logic | User Guide

Page 149

extended warranty extends to five years the warranty of any product offered with
a standard two-year warranty. The total warranty period will not extend beyond

five years.

Note: VGC does not offer warranty extensions on UHF wireless intercom
systems, or on any product with a 1-year or 90-day warranty.

6.6 LIABILITY

THE FOREGOING WARRANTY IS VGC'S SOLE AND EXCLUSIVE WARRANTY. THE
IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE AND ANY OTHER REQUIRED IMPLIED WARRANTY SHALL EXPIRE AT THE

END OF THE WARRANTY PERIOD. THERE ARE NO OTHER WARRANTIES
(INCLUDING WITHOUT LIMITATION WARRANTIES FOR CONSUMABLES AND

OTHER SUPPLIES) OF ANY NATURE WHATSOEVER, WHETHER ARISING IN
CONTRACT, TORT, NEGLIGENCE OF ANY DEGREE, STRICT LIABILITY OR
OTHERWISE, WITH RESPECT TO THE PRODUCTS OR ANY PART THEREOF

DELIVERED HEREUNDER, OR FOR ANY DAMAGES AND/OR LOSSES (INCLUDING
LOSS OF USE, REVENUE, AND/OR PROFITS). SOME STATES DO NOT ALLOW THE

EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES OR
THE LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU. IN ANY EVENT, TO THE MAXIMUM EXTENT

PERMITTED UNDER APPLICABLE LAW, VGC'S LIABILITY TO CUSTOMER
HEREUNDER SHALL NOT UNDER ANY CIRCUMSTANCES EXCEED THE COST OF

REPAIRING OR REPLACING ANY PART(S) FOUND TO BE DEFECTIVE WITHIN THE
WARRANTY PERIOD AS AFORESAID.

This warranty does not cover any damage to a product resulting from cause other

than part defect and malfunction. The VGC warranty does not cover any defect,
malfunction, or failure caused beyond the control of VGC, including unreasonable

or negligent operation, abuse, accident, failure to follow instructions in the
manual, defective or improperly associated equipment, attempts at modification
and repair not approved by VGC, and shipping damage. Products with their serial

numbers removed or defaced are not covered by this warranty.

This warranty does not include defects arising from installation (when not

performed by VGC), lightning, power outages and fluctuations, air conditioning
failure, improper integration with non-approved components, defects or failures of
customer furnished components resulting in damage to VGC provided product.

This limited warranty is not transferable and cannot be enforced by anyone other
than the original consumer purchaser.

This warranty gives you specific legal rights and you may have other rights which
vary from country to country.

Logic | User Guide

Page 150

7 TECHNICAL SUPPORT & REPAIR POLICY

NOVEMBER 1, 2008

In order to ensure that your experience with Clear-Com and our World Class

products is as beneficial, effective and efficient as possible, we would like to

define the policies and share some "best practices" that can accelerate any

problem solving processes which we may find necessary and to enhance your

customer service experience. Our Technical Support, Return Material

Authorization, and Repair Policies are set forth below. These Policies are

subject to revision and constantly evolve in order to address our Customers'

and the Market's needs. Accordingly these are provided by way of guidance

and for information only and may be changed at anytime with or without

Notice.

TECHNICAL SUPPORT POLICY

a) Telephone, online, and e-mail technical support will be provided by the

Customer Service Center free of charge during the Warranty Period.

b) Technical support will be provided free of charge for all software
products under the following conditions:

i) The application, operating, and embedded software is installed on

a product covered by Clear-Com's Limited Warranty, and:

(1) The software is at the current release level; or,

(2) The software is one (1) version removed from current.

ii) Older versions of software will receive "best-effort" support,

but will not be updated to correct reported bugs or add

requested functionality.

c) For Technical Support:

i) North and South America, (inc. Canada, Mexico, and the

Caribbean) & US Military: Hours: 0800 - 1700 Pacific Time

Days: Monday - Friday

Tel: +1 510 337 6600

Email: CustomerServicesUS@clearcom.com

ii) Europe, the Middle East and Africa:

Hours: 0800 - 2000 Central European Time

Days: Monday - Friday

Tel: +49 40 853 999 700

Email: TechnicalSupportEMEA@clearcom.com

mailto:CustomerServicesUS@clearcom.com
mailto:TechnicalSupportEMEA@clearcom.com
mailto:TechnicalSupportEMEA@clearcom.com

Logic | User Guide

Page 151

iii) Asia-Pacific:

Hours: 0800 - 1700 Pacific Time

Days: Monday - Friday

Tel: +1 510 337 6600

Email: CustomerServicesAPAC@clearcom.com

d) Email Technical Support is available for all Clear-Com branded products
free of charge for the life of the product, or two years after a product has
been classified as obsolete, whichever comes first.

e) Support for Distributor and Dealer Sales

i) Distributors and Dealers may utilize the Customer Service Centers

once a system has been installed and commissioned. Clear-Com

Systems and Applications Engineers will provide support to the

Distributor from the pre-sales stage through to satisfactory

installation for new system purchases. Customers will be

encouraged to contact their Dealer or Distributor with their

installation and technical support enquires rather than using the

Customer Service Centers directly.

f) Support for Direct Sales

i) Customers may utilize the Customer Service Centers once a system

has been installed and commissioned by Clear-Com Systems and

Applications Engineers, or in the case of project installations, once the

Project Team has completed the hand-over to the Support Centers.

RETURN MATERIAL AUTHORIZATION POLICY

a) Authorizations: All products returned to Clear-Com or a Clear-Com

Authorized Service Partner must be identified by a Return Material

Authorization (RMA) number.

b) The Customer will be provided with an RMA number upon contacting
Clear-Com Sales Support as instructed below.

c) The RMA number must be obtained from Clear-Com via phone or email
prior to returning product to the Service Center. Product received by the
Service Center without a proper RMA number is subject to return to the
Customer at the Customer's expense.

d) Damaged equipment will be repaired at the Customer's expense.

e) Returns are subject to a 15% restocking fee.

f) Advance Warranty Replacements (AWRs);

i) During the first 30 days of the Standard Warranty Period: Once the

equipment fault has been verified by Clear-Com or its authorized

representative, Clear-Com will ship a new replacement product. The

mailto:CustomerServicesAPAC@clearcom.com
mailto:CustomerServicesAPAC@clearcom.com

Logic | User Guide

Page 152

Customer will be provided with an RMA number and be required to

return the faulty equipment within 14 days of receipt of the

replacement or will be invoiced for the list price of a new product.

ii) During days 31-90 of the Standard Warranty Period: Once the equipment

fault has been verified by Clear-Com or its authorized

representative, Clear-Com will ship a like-new, fully refurbished

replacement product. The Customer will be provided with an RMA

number and be required to return the faulty equipment within 14

days of receipt of the replacement or will be invoiced for the list

price of a new product.

iii) To obtain an RMA number or request an AWR:

(1) North and South America, Asia-

Pacific, and US Military: Hours:

 0800 - 1700 Pacific Time

Days: Monday - Friday

Tel: +1 510 337 6600

Email: SalesSupportUS@clearcom.com

(2) Europe, the Middle East and Africa:

Hours: 0800 - 1700 GMT + 1

Days: Monday - Friday

Tel: + 44 1223 815000

Email: SalesSupportEMEA@clearcom.com

iv) Note: AWRs are not available for UHF WBS Analog wireless intercom

systems. UHF WBS Analog wireless intercom systems out-of-box

failures must be returned to Alameda for repair.

v) Note: Out-of-box failures returned after 90 days will be repaired

and not replaced unless approved by Clear-Com Management.

vi) Note: AWRs are not available after 90 days of receipt of product

unless an AWR Warranty Extension is purchased at the time of

product purchase.

vii) Note: Shipping charges, including duties, taxes, and insurance

(optional), to Clear-Com's factory is the responsibility of the

Customer. Shipping AWRs from Clear-Com is at

Clear-Com's expense (normal ground or international economy

delivery). Requests for expedited shipping (E.g. "Next-Day Air") and

insurance are the responsibility of the Customer.

REPAIR POLICY

mailto:SalesSupportUS@clearcom.com
mailto:SalesSupportEMEA@clearcom.com

Logic | User Guide

Page 153

a) Repair Authorizations: All products sent to Clear-Com or a Clear-Com

Authorized Service Partner for repair must be identified by a Repair

Authorization (RA) number (see above).

b) The Customer will be provided with an RA number upon contacting
Clear-Com Customer Services as instructed below.

c) The RA number must be obtained from Clear-Com via phone or email prior
to returning product to the Service Center. Product received by the
Service Center without a proper RA number is subject to return to the
Customer at the Customer's expense.

d) Return for Repair

i) Customers are required to ship equipment at their own cost

(including transportation, packing, transit, insurance, taxes and

duties) to Clear-Com's designated location for repair.

(1) Clear-Com will pay for the equipment to be returned to the

Customer when it is repaired under warranty.

(2) Shipping from Clear-Com is normal ground delivery or

international economy. Requests for expedited shipping

(E.g. "Next-Day Air") and insurance are the responsibility

of the Customer.

ii) Clear-Com does not provide temporary replacement equipment

("loaner") during the period the product is at the factory for repair.

Customers should consider a potential prolonged outage during the repair

cycle, and if required for continuous operations purchase minimum spare

equipment required or purchase an AWR Warranty Extension.

iii) No individual parts or subassemblies will be provided under

warranty, and warranty repairs will be completed only by Clear-Com

or its Authorized Service Partners.

iv) Customers requesting a non-warranty repair will be provided an

estimate of the total repair cost prior to the return of the equipment.

In the event that Clear-Com is unable to estimate

the cost of repair, the Customer may elect to return the product to

the factory for an estimate. The Customer is responsible for

shipping costs both to and from the factory in the event they choose

not to accept the estimate.

v) The Customer must provide either a purchase order for the repair

work, or will be required to make an advance payment (as a debit

against the Dealer's line of credit, or credit card) prior to the repaired

product being returned to the Customer.

vi) For requesting a Repair Authorization number:

Logic | User Guide

Page 154

(1) North and South America, Asia-

Pacific, and US Military: Hours:

 0800 - 1700 Pacific Time

Days: Monday - Friday

Tel: +1 510 337 6600

Email: CustomerServicesUS@clearcom.com

(2) Europe, the Middle East and Africa:

Hours: 0800 - 2000 Central European Time

Days: Monday - Friday

Tel: +49 40 853 999 700

Email: TechnicalSupportEMEA@clearcom.com

vii) Note: Clear-Com's Limited Warranty does not cover normal wear and

tear. The Customer will be charged the full cost of the repair if their

equipment has been tampered with by

non-approved personnel, or has been subject to damage through

electrical failure, liquid damage or mishandling. The Customer

Service Center will provide the Customer with a cost estimate for

any such repairs prior to undertaking the work.

mailto:CustomerServicesUS@clearcom.com
mailto:TechnicalSupportEMEA@clearcom.com
mailto:TechnicalSupportEMEA@clearcom.com

	Eclipse® 9.1 Logic Programming Guide
	1 LOGIC PROGRAMMING
	1.1 INTRODUCTION
	1.2 OPERATION
	1.2.1 CONTROL SEQUENCE PROPERTIES
	Enabled Checkbox
	Edit Logic Column
	Edit Properties Column
	Name
	Project
	Author
	Description

	1.2.2 FUNCTION BUTTONS
	New
	Delete
	Import
	Export
	Clone

	1.3 LOGIC PROGRAMMING
	1.3.1 MODULE LIBRARY
	Control Input
	Control Input Operation
	Control Output
	Panel Control
	Crosspoint Trigger
	Trigger Crosspoint Type
	Crosspoint Trigger Sources
	Crosspoint Trigger Destinations
	Crosspoint Trigger Examples
	Crosspoint Action
	Action Type
	Crosspoint Type
	Crosspoint Priority
	Crosspoint Action Sources
	Crosspoint Action Destinations

	1.3.2 LOGIC ELEMENTS
	AND Gate
	NAND Gate
	OR Gate
	NOR Gate
	BUFFER Element
	NOT Element
	LATCH Element
	ENABLE Element
	DISABLE Element

	2 APPENDIX A CONTROL MACRO EDITOR
	2.1 INTRODUCTION TO CONTROL MACRO EDITOR
	2.2 CONTROL MACRO LANGUAGE
	2.2.1 EXAMPLE CONTROL MACRO

	2.3 CONTROL MACRO EDITOR
	2.3.1 CONTROL MACRO EDITOR WINDOW
	2.3.2 OBJECT BROWSER
	2.3.3 MESSAGE WINDOW
	2.3.4 RUNNING CONTROL MACROS
	2.3.5 STARTING THE CONTROL MACRO EDITOR

	2.4 CONFIGURATION ENTITIES
	2.5 AVAILABLE MODULES
	2.5.1 CLEARCOM
	Entities
	Attachment Objects
	Control Objects
	Entity Objects
	Port Objects
	Scriptlibrary
	Condition
	Control Actions
	Control Attachments
	Control Latch
	Control Macro
	Crosspoint Control
	Current

	2.5.2 SHARED

	2.6 CREATING A NEW PROJECT
	2.7 ELEMENTS OF A CONTROL MACRO
	2.8 MACRO REFERENCE
	2.8.1 ATTACHMENTOBJECT MACROS

	2.9 CONTROL OBJECT MACROS
	2.9.1 PORT OBJECT MACROS
	2.9.2 CONDITION MACROS
	2.9.3 CONTROL ACTIONS MACRO
	2.9.4 CONTROL ATTACHMENT MACROS
	2.9.5 CONTROL LATCH MACROS
	2.9.6 CONTROL MACROS
	2.9.7 CROSSPOINT CONTROL
	2.9.8 CURRENT MACROS
	2.9.9 LOGGING MACROS

	3 APPENDIX B EXAMPLE CONTROL MACROS
	3.1 ACTIVATE SPECIFIC KEY LED
	3.2 ACTIVATE LED ON ALL KEYS TO DESTINATION
	3.3 TRIGGER ACTION WHEN BOTH A AND B ARE SET
	3.4 TRIGGER ACTION WHEN ALL OF A AND B AND C ARE SET
	3.5 CUT TALK TO STUDIO
	3.6 CUT TALK TO STUDIO, EXCLUDING SOME PANELS
	3.7 TRIGGER ACTION WHEN BOTH A IS SET AND A CROSSPOINT IS MADE
	3.8 TRIGGER ACTION WHEN GROUP 1 MEMBER TALKS TO GROUP 2 MEMBER
	3.9 HEADSET-SELECT ON
	3.10 HEADSET-SELECT ON ALWAYS
	3.11 LOUDSPEAKER-CUT ON
	3.12 IFB CONTROL MACROS
	3.12.1 ADD CALLER (IFB CHECKBOX ENABLED)
	3.12.2 ADD CALLER (IFB CHECKBOX NOT ENABLED)
	3.12.3 ADD DESTINATION
	3.12.4 ADD RETURN
	3.12.5 ADD SOURCE (IFB CHECKBOX ENABLED)
	3.12.6 ADD SOURCE (IFB CHECKBOX NOT ENABLED)
	3.12.7 EXAMPLE OF USING IFB CONTROL MACROS

	4 APPENDIX C KEY NUMBERING ON PANELS
	5 GLOSSARY
	6 LIMITED WARRANTY
	6.1 WARRANTY PERIOD
	6.2 TECHNICAL SUPPORT
	6.3 WARRANTY REPAIRS AND RETURNS
	6.4 NON-WARRANTY REPAIRS AND RETURNS
	6.5 EXTENDED WARRANTY
	6.6 LIABILITY

	7 TECHNICAL SUPPORT & REPAIR POLICY NOVEMBER 1, 2008

