TECHNICAL REFERENCE HARDWARE

Version 11.02 - July 2013

Copyright

EVS Broadcast Equipment S.A.– Copyright © 2011-2013. All rights reserved.

Disclaimer

The information in this manual is furnished for informational use only and subject to change without notice. While every effort has been made to ensure that the information contained in this user manual is accurate, up-to-date and reliable, EVS Broadcast Equipment cannot be held responsible for inaccuracies or errors that may appear in this publication.

Improvement Requests

Your comments will help us improve the quality of the user documentation. Do not hesitate to send improvement requests, or report any error or inaccuracy on this user manual by e-mail to doc@evs.com.

Regional Contacts

The address and phone number of the EVS headquarters are usually mentioned in the Help > About menu in the user interface.

You will find the full list of addresses and phone numbers of local offices either at the end of this user manual (for manuals on hardware products) or at the following page on the EVS website: http://www.evs.com/contacts.

User Manuals on EVS Website

The latest version of the user manual, if any, and other user manuals on EVS products can be found on the EVS download center, on the following webpage: http://www.evs.com/downloadcenter.

I

Table of Contents

TAI	BLE OF CONTENTS	II
WH	AT'S NEW?	v
1.	OVERVIEW	1
1.1.	Presentation	1
	Proxy Server	
2.	SAFETY AND COMPLIANCE	3
2.1.	Safety	3
2.2.	EMC Standards	3
2.3.	EMC Warning	4
2.4.	FCC Marking	5
2.5.	CE Marking	5
3.	HARDWARE SPECIFICATIONS	6
3.1.	Mechanical Dimensions and Weights	6
	3.1.1. Rack Mount 4U Main Frame	6
	3.1.2. Rack Mount 6U Main Frame	7
	3.1.3. SAS-HDX Unit	
	3.1.4. Control Devices	
	Power Supply	
3.3.	Environmental Conditions	13
4.	SOFTWARE SPECIFICATIONS	14
4.1.	Video Specifications	14
4.2.	Audio Specifications	15
4.3.	Video Codecs and Bitrates	17
	4.3.1. Supported Codecs	17
	4.3.2. Maximum Bitrates	
	4.3.3. Internal Bandwidth	
	4.3.4. Recording Capacities	
4.4.	Network Transfers	
	4.4.1. XNet Transfers	
	4.4.2. Gigabit Ethernet Transfers 4.4.3. XF2 Capacities	
45	Video Interpolation	37

5.	HARDWARE INSTALLATION AND CABLING	39
5.1.	Rack Installation	39
5.2.	Rear Panel Description	40
	5.2.1. Rear Panel Configurations	40
	5.2.2. 6U Rear Panel Layout	40
	5.2.3. 4U Rear Panel Layout	45
5.3.	Video Connections	49
5.4.	Audio Connections	49
	5.4.1. Audio Channels	
	5.4.2. Digital Audio DA-15 Pinout	50
	5.4.3. Analog Audio DA-15 Pinout	51
	5.4.4. Monitoring Audio DA-15 Pinout	52
5.5.	RS422 Connections	53
	5.5.1. RS422 Connector Pinout	53
	5.5.2. Redundant IPDP Serial Link	53
5.6.	XNet Network	54
	5.6.1. Introduction	
	5.6.2. Network Architectures	55
	5.6.3. Required Conditions to Set up and Run XNet	56
	5.6.4. Starting XNet	58
	5.6.5. XNet Performances and Troubleshooting	58
5.7.	Gigabit Network	59
	5.7.1. Functional Overview	59
	5.7.2. Backup of Clips	61
	5.7.3. Restore of Clips	62
	5.7.4. Important Rules	63
	5.7.5. Switches	64
5.8.	GPIO Connections	66
	5.8.1. GPIO Connector Pin-Out	66
	5.8.2. GP In Connections	66
	5.8.3. GP Out Connections	69
6.	BOARDS DESCRIPTION	71
6.1.	Boards and Slots Configuration	71
6.2.	V3X Video and Reference Boards	72
	6.2.1. Description	
	6.2.2. COD Connectivity in SD and HD	
	6.2.3. COD Connectivity in 3D and 1080p Dual Link	
	6.2.4. COD Connectivity in 3D and 1080p Single Link 3G-SDI	
	6.2.5. COD Connectivity in SLSM 2Ph Single Link 3G-SDI	
	6.2.6. Channel Assignment	
6.3.	Audio Codec Board	
	H3X Board	
	RAID Controller Boards	

	6.5.1.	RCTL Board on SAS Disk Array	.89
		External RAID Array SAS-HDX	
66	MTPC	A3/A6 Board	93

IV Table of Contents

What's New?

In the Technical Reference manual, the icon NEW! has been added on the left margin to highlight information on new and updated features.

The XT3 Hardware Technical Reference manual has not been subject to changes linked to new features for release 11.02.

Former sections have however been fully restructured and generalized for all EVS servers:

- See section "Internal Bandwidth" on page 20
- See section "Network Transfers" on page 30

What's New?

1. Overview

1.1. Presentation

Welcome to the EVS range of products and thank you for using an EVS XT3 server. We will do our best to satisfy your video production needs and we look forward to continuing working with you.

The EVS XT3 servers are full digital in PAL (625i), NTSC (525i), 720p, 1080p, and 1080i standards. These multi-channel, disk-based video servers are ideal for a wide range of broadcast applications, from sports and live production to playout and transmission. XT3 servers are available in 6U or 4U chassis.

The XT3 servers offer flexible configurations up to 8-channel SD/HD and, optionally, 6-channel 3D/1080p.

XT3 servers work with SAS disks: they are equipped with internal SAS disk array and/or can be connected to a SAS-HDX external SAS disk array.

They can be used with various third party controllers, applications, and automation systems using industry-standard protocols such as Sony BVW75, VDCP, Odetics, DD35, IPDP, or EVS AVSP, EditRec, LinX API.

They natively support a wide range of HD codecs, such as M-JPEG, Avid DNxHD®, VC-3, Apple ProRes®, MPEG-2 intra, Panasonic DVCPRO HD, AVC-Intra Class 100, as well as SD codecs.

1. Overview

XT3 servers can also be controlled by EVS applications:

Live Slow Motion (LSM): for sports production, including replays, highlights editing, and analysis tools like Split Screen to compare 2 synchronized actions side by side, Target Tracking and Painting to highlight a particular detail or provide tactical explanations.

IPDirector: a suite of Windows software applications designed to manage networked EVS video servers. Its applications make it possible to control multiple channels within the XNet2 network, as well as to log an event, to create and manage clips and play-lists with advanced functions, among others to extract clips from a VTR. It also provides extensive database search features.

INSIO: an interface to manage single or multi-camera ingests, instant review, clip transfer and streaming to editor and storage, as well as production notes.

1.2. Proxy Server

A low-resolution option can be set up to use the XT3 server as a proxy server only. The Proxy servers can be run on large production events as the counterparts of the high-resolution servers. In this case, they need to be included in an XNet2 network distinct from the high-resolution XNet2 network.

The XT3 proxy servers are used for browsing purposes and can be controlled by IPDirector or EVS own API (AVSP) protocols.

2 1. Overview

2. Safety and Compliance

2.1. Safety

This equipment has been designed and tested to meet the requirements of the following:

- EN 60950 (European): Safety of information technology equipment including business equipment.
- IEC 950 (International): Safety of information technology equipment including business equipment.

In addition, this equipment has been designed to meet the following:

 UL 1950 - USA (USA): Safety of information technology equipment including business equipment.

2.2. EMC Standards

This equipment complies with following EMC standards:

Standard	Area	Title
EN 55022	European	Emission Standard
EN 61000-3-2	European	Electromagnetic Compatibility (EMC) Part 3 (Limits); Section2; limits for harmonic current emissions (equipment input current <16A per phase)
EN 61000-3-3	European	European Electromagnetic Compatibility (EMC) Part 3 (Limits), Section 3; limitation of voltage fluctuation and flicker in low-voltage supply systems for equipment with rated current of 16 A.
EN 61000-4-3	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits), Section 3; Testing and measurement techniques - Radiated, radio-Frequency, electromagnetic field immunity test.
EN 61000-4-4	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits), Section 4; Testing and measurement techniques - Electrical fast transient/burst immunity test.
EN 61000-4-5	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits), Section 5; Testing and measurement techniques - Surge immunity test.

2. Safety and Compliance 3

Standard	Area	Title
EN 61000-4-6	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits); Section 6; Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields.
EN 61000-4-7	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits), Section 7; harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto.
EN 61000-4- 11	European	European Electromagnetic Compatibility (EMC) Part 4 (Limits); Section 11; Voltage dips, short interruptions and voltage variations immunity tests.
EN 50082-1	European	European Generic Immunity Standard – Part 1: Domestic, commercial and light industry environment.
FCC	USA	Conducted and radiated emission limits for a Class A digital device, pursuant to the Code of Federal Regulations (CFR) Title 47 — Telecommunications, Part 15: Radio Frequency devices, subpart B-Unintentional Radiators.

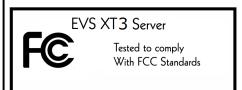
2.3. EMC Warning

Changes or modifications not expressly approved by the manufacturer for compliance could void the user's authority to operate the equipment.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.


2.4. FCC Marking

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

The following labels are affixed on the equipment:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.5. CE Marking

The CE marking is affixed to indicate compliance with the following directives:

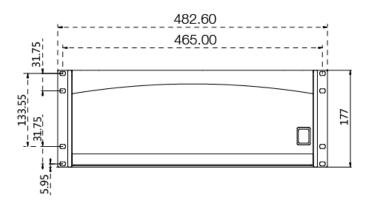
- 89/336//EEC of 3 May 1989 on the approximation of the laws of the Members States to electromagnetic compatibility.
- 73/23/EEC of 19 February 1973 on the harmonization of the laws of the Members
 States relating to electrical equipment designed for use within certain voltage limits.
- 1999/5/EC of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity.

2. Safety and Compliance 5

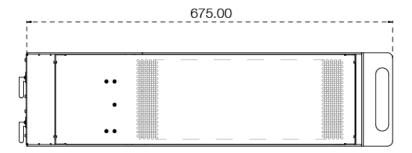
3. Hardware Specifications

3.1. Mechanical Dimensions and Weights

3.1.1. Rack Mount 4U Main Frame

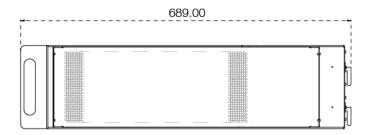

Weight

4U - 19 inches chassis with 6 HDD on RCTL board 31 kg / 68.3 lb.

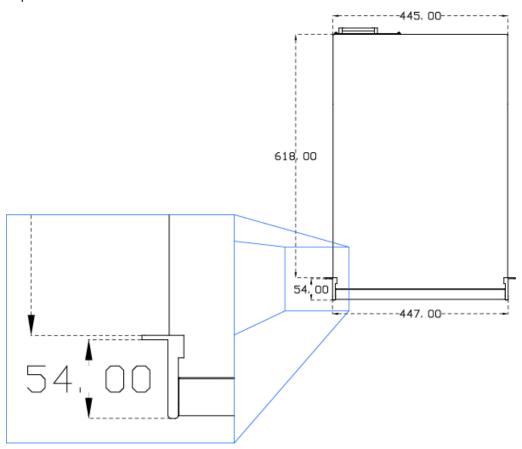

Dimensions

The following drawings provide the various dimensions, in mm, of the XT3 server with a 4U chassis.

Front view



Left view

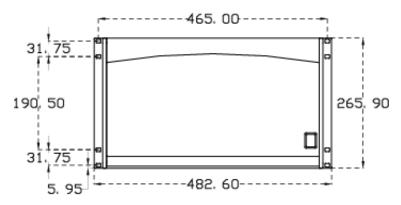


Right view

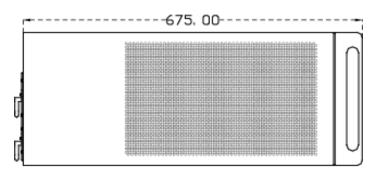
Top view

3.1.2. Rack Mount 6U Main Frame

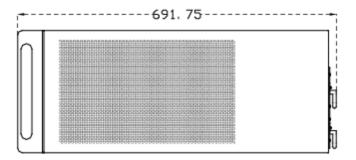
Weight


Disk Configuration	Weight
6U - 19 inches chassis with 6 HDD on RCTL board (fix mounted)	35 kg / 77.2 lb
6U - 19 inches chassis with 12 HDD on RCTL board (fix mounted)	37 kg / 81.6 lb
6U - 19 inches chassis with 6 HDD on hot swap rack	37 kg / 81.6 lb
6U - 19 inches chassis with 12 HDD on hot swap rack	39 kg / 86.0 lb

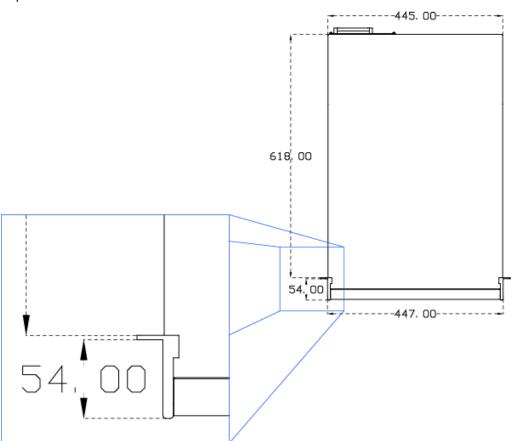
3. Hardware Specifications 7


Dimensions

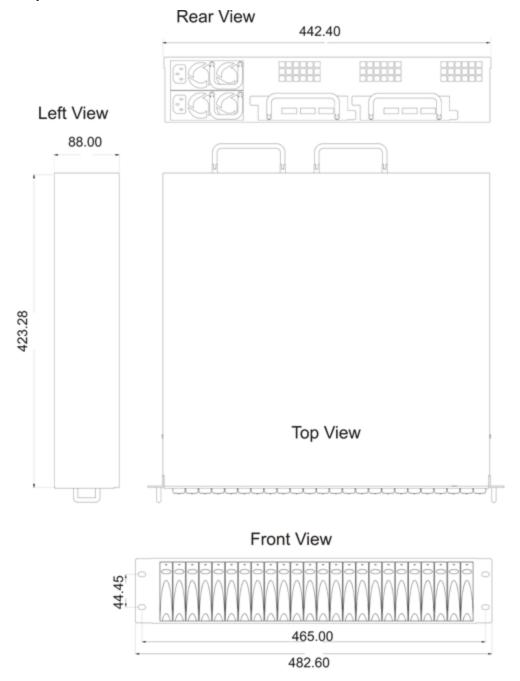
The following drawings provide the various dimensions, in mm, of the XT3 server with a 6U chassis.


Front view

Left view



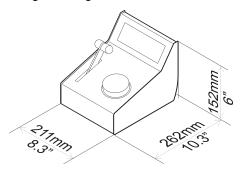
Right view



3.1.3. SAS-HDX Unit

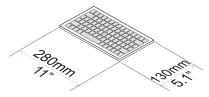
The following drawings provide the various dimensions, in mm, of the SAS-HDX external array.

For more information on the SAS-HDX, refer to "External RAID Array SAS-HDX" on page 90.

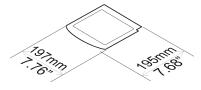


3.1.4. Control Devices

The following control devices can optionally be connected to your server to control it.


LSM Remote Control Panel

Weight: 2.9 kg / 6.3 lb.


Keyboard

Weight: 0.4 kg / 0.9 lb.

Tablet

Weight: 0.3 kg / 0.66 lb. (Ref: Wacom® CTF-430 Bamboo One)

3. Hardware Specifications

3.2. Power Supply

Redundant Power Supply

The server is fitted with two auto switching and hot-swappable power supplies.

The secondary hot-swappable power supply should be connected to the mains to allow automatic power switching to this second power supply should the first one fail.

Grounding

Warning

The protective earth must be connected to the ground before powering up the unit.

Ensure the disk recorder unit is properly grounded at all times to avoid electrical shock hazard.

Electrical Specifications

Rated voltage: 115 to 240 VAC (single phase)

Rated frequency: 47-63 Hz

Input connector: CEE 22/IEC 320 3-pin male receptacle

Connection to supply: Pluggable equipment Type A (EN 60950 §1.2.5): Equipment which is intended for connection to the building power supply wiring via a non-industrial plug and socket-outlet or a non-industrial appliance coupler or both. Correct mains polarity must always be observed. Do not use reversible power plugs with this equipment.

Class of equipment: Class 1 equipment (EN 60950 § 1.2.5): electric shock protection by basic insulation and protective earth.

Electrical Consumption

The following electrical specifications are valid for the XT3 6U server:

Data Type	Voltage	Value
Inrush current (PSU plugged on power grid)	230 V	3.8 A
Maximal current (full load, CPU at 100%)	230 V	1.7 A
Inrush current (PSU plugged on power grid)	115 V	7.9 A
Maximal current (full load, CPU at 100%)	115 V	3.6 A
Maximal power consumption (full load, CPU at 100%)	-	400 W

3.3. Environmental Conditions

Operating

- Temperature: 10°C to + 50°C (50°F to 122°F) ambient with free air flow
- Relative humidity: 0% to 90% (non-condensing)
- Cooling requirements: Forced air cooling air flow from front to back
- Handling/movement: Designed for fixed use when in operation

Storage and Transport

- Temperature: 0°C to +70°C (32°F to 158°F)
- Relative humidity: 0% to 90% (non-condensing)

3. Hardware Specifications

4. Software Specifications

4.1. Video Specifications

Video Standards

The following table lists the video specifications both in SD and in HD format for your XT3 server.

	Standard Definition	High Definition
Video Formats	525i 59.94fps (NTSC) 625i 50fps (PAL)	720p 50/59.94fps 1080i 50/59.94fps 1080p 50/59.94fps (DualLink or 3G)
Digital Interface	10-bit 4:2:2 Serial (ST 259:2008). Full frame synchronizer at input. Dual output for PLAY channels.	10-bit 4:2:2 Serial (ST 292- 1:2011). Full frame synchronizer at input. Dual output for PLAY channels.
Number of Channels	2, 4, 6 or 8* channels, reversible REC/PLAY	2, 4, 6 or 8* channels, reversible REC/PLAY
Monitoring & Down- converters	1 CVBS per channel, with OSD 1 SD SDI per channel, with OSD	1 built-in down-converter per channel, CVBS output with OSD 1 HD SDI output per channel, with OSD Additional clean SD SDI output
Reference	Analog Black Burst	Analog Black Burst and HD Tri-Level Sync
Graphics Board	n.a.	n.a.

^{*} From a hardware point of view, six codec modules, and therefore six channels, remain available on the backplane. However, it is possible to increase the number of connected record channels by connecting distinct recorders to the main and the secondary IN connector of a codec module. Such configurations, called XREC (2 recorders per codec module) are detailed in the Configuration manual, Supported Configurations chapter.

SMPTE Standards

The following table lists the SMPTE standards supported by your server.

Configuration	SMPTE standard
SD SDI	ST 259:2008 (525i 59.94 Hz; 625i 50 Hz)
HD SDI	ST 292-1:2011, ST 292:2012 (720p 50 and 59.94 Hz; 1080i 50 and 59.94 Hz)
Embedded audio HD	ST 299-0:2010, ST 299-1:2009
AES/EBU audio	ST 272:2004
LTC	ST 12-1:2008, ST12-2:2008
D-VITC	ST 266:2012
Ancillary TC in HD	RP 188
Vertical Ancillary Data	ST 334:2000
VC-3	ST 2019-1:2008
IMX D-10	ST 356:2001
Dual Link 1.5 Gb/s	ST 372:2011
Mapping of Audio Metadata into Vertical Ancillary data	ST 2020-2:2008, ST 2020-3:2008
3G SDI	ST 424:2006
3G SDI – Data mapping	ST 425-B:2008

4.2. Audio Specifications

Audio Analog and Digital Configurations

4U Server

The following optional audio configurations are available:

- Configuration BNC AES/EBU + DA-15 Analog :
 - 16 input and 16 output (8 pairs + 8 pairs) AES/EBU or Dolby E unbalanced on 16 BNC connectors
 - 8 input and 8 output analog balanced channels on 4 DA-15 connectors
- Configuration DA-15 AES/EBU + DA-15 Analog:
 - 16 input and 16 output (8 pairs + 8 pairs) AES/EBU or Dolby E on 4 DA-15 connectors
 - 8 input and 8 output analog balanced channels on 4 DA-15 connectors

6U Server

The following optional audio configurations are available:

Configuration XLR AES/EBU:

 16 input and 16 output (8 pairs + 8 pairs) AES/EBU balanced channels on 16 XLR connectors

Maximal supported assignment: AES/EBU audio pairs per video with maximum 2 REC (video) and 2 PLAY (video).

• Configuration BNC AES/EBU + XLR Analog:

- 16 input and 16 output (8 pairs + 8 pairs) AES/EBU or Dolby E unbalanced on 16 BNC connectors
- 8 input and 8 output (mono) analog balanced channels on 16 XLR connectors

Configuration DA-15 AES/EBU + XLR Analog:

- 16 input and 16 output (8 pairs + 8 pairs) AES/EBU or Dolby E on 4 DA-15 connectors
- 8 input and 8 output (mono) analog balanced channels on 16 XLR connectors

Configuration XLR AES/EBU + DA-15 Analog:

- 16 input and 16 output (8 pairs + 8 pairs) AES/EBU on 16 XLR connectors
- 8 input and 8 output analog balanced channels on 4 DA-15 connectors

Additional Audio Specifications

- 4 additional analog balanced output channels for monitoring
- · All audio connectors on mainframe

The 4U servers provide:

- Up to 64 embedded audio channels (4*16 audio mono channels per video channel)
- Up to 56 embedded audio channels (7*8 audi mono channels per video channel) in XREC configurations

The 6U servers provide:

- Up to 96 embedded audio channels (6*16 audio mono channels per video channel)
- Up to 64 embedded audio channels (8*8 audi mono channels per video channel) in XREC configurations

Audio Processing

- Uncompressed audio
- 24 bit processing and storage
- Sample rate converter from 25-55 kHz to 48 kHz
- Audio scrub
- Audio mix

4.3. Video Codecs and Bitrates

4.3.1. Supported Codecs

Codecs and Related License Codes

The XT3 server uses an intra-frame video encoding technique. It supports natively the video codecs presented in the table below.

Codec	SD	HD	Code Protection
Mjpeg SD	√	√	Code 10
DVCPro 50	√	-	Code 9
IMX	√	-	Code 11
Intra-frame MPEG-2	-	√	Code 12
Avid DNxHD®	-	√	Code 5
Apple ProRes 422	-	√	Code 6
DVCPro HD	-	√	Code 8
AVC-Intra 100	-	V	Code 13

The codecs are available when the corresponding code is valid.

Target Bitrate Range and Default Values

The target bitrate of the encoded video stream can be set by the user within the accepted range: 8 to 100 Mbps for standard definition, 40 to 250 Mbps for high definition with the exception of Apple ProRes, Avid DNxHD® and DVCPro codecs working with defined bitrates.

The default values are M-JPEG 30 Mbps for standard definition and M-JPEG 100 Mbps for high definition.

Content Transfer Encoding and File Header

It is possible to perform the encoding process in 8-bit or 10-bit and to write a 10-bit file on selected codecs.

The following table summarizes the proposed configurations:

Codec	Encoding	File Header
DNxHD 120/145	8-bit	8-bit
DNxHD 185/220	8-bit	8-bit
DNxHD 185x DNxHD 220x	10-bit	10-bit
ProRes 85	8-bit	10-bit
ProRes 120/145	8-bit	10-bit
ProRes 185/220	8-bit or 10-bit	10-bit
DVCPro HD	8-bit	8-bit
M-JPEG	8-bit	8-bit
MPEG	8-bit	8-bit
AVC-Intra 100	10-bit	10-bit

Note

When encoding in 10-bit, it is not possible to use the graphic functionality: Paint, Target, Logo Insertion, and internal offside line.

4.3.2. Maximum Bitrates

These maximum values are valid for XT3 servers running Multicam version 11.00 or higher. They guarantee a smooth play and a browse at 100% speed on all channels simultaneously.

Codec	Format	2 ch	4 ch	4ch (3D)	4ch (3D SLSM 3x)	6 ch	6ch (1080p)
SD JPEG	PAL	100	100	N/A	N/A	100	N/A
	NTSC	100	100	N/A	N/A	100	N/A
HD JPEG	PAL	225	225	180	100	180	180
	NTSC	250	250	180	100	180	180
HD MPEG	PAL	225	225	180	N/A	180	180
	NTSC	250	250	180	N/A	180	180
Avid DNxHD®	PAL	185	185	185	100	185	120
	NTSC	220	220	220	100	220	145
Apple ProRes	PAL	185	185	185	85	185	120
422	NTSC	220	220	220	102	220	145
DVCPro 50	PAL	50	50	N/A	N/A	50	N/A
	NTSC	50	50	N/A	N/A	50	N/A
DVCPro HD	PAL	100	100	100	N/A	100	100
	NTSC	100	100	100	N/A	100	100
AVC-Intra 100	PAL	111	111	110	N/A	111	110
	NTSC	111	111	110	N/A	111	110

4.3.3. Internal Bandwidth

General Description

This section helps you select the most appropriate bitrate for the native codec(s) on the EVS server, on the basis of the internal bandwidth, the channel configuration, and the calculated number of real-time channels at the EVS server level.

The section therefore presents tables including the following parameters:

- 1. **Video Bitrate:** codec bitrate set by the user in the **Codec** section of the **Server** tab in the Multicam Configuration window.
- 2. **Fields/Block:** numbers of video fields that can be stored in one disk block of 8 MB, taking into account 8 audio tracks.
- 3. **Actual Bandwidth:** actual disk/network bandwidth required for the real-time record or real-time playback of one video stream and its associated audio tracks.
- 4. **Max. RT Channels:** maximum number of video channels (real-time record or real-time playback) that one EVS server can support for a given frame rate and bitrate.

Since an XT3 server can have a maximum of 68 local video channels, any value higher than 68 means that these additional real-time accesses can be used for transfers over the XNet (SDTI) network.

The RT Channels calculation is based on the use of Seagate disks of 300 GB (10K5) configured in 4+1 raids. Such disks are able to write 300 MB/s.

Bandwidth and RT Channels at 50 Hz (PAL)

Codec	Video Bitrate	Fields /Block	Actual Bandwidth	Max. RT Channels
Apple ProRes LT	85 Mbps	35	11.43 MB/s	26.24
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	30	13.33 MB/s	22.50
Avid DNxHD® Apple ProRes 422	120 Mbps	26	15.38 MB/s	19.50
Avid DNxHD® Apple ProRes 422 HQ	185 Mbps	17	23.53 MB/s	12.75

Bandwidth and RT Channels at 150 Hz (PAL Super Motion 3x)

Codec	Video Bitrate	Fields /Block	Actual Bandwidth	Max. RT Channels
Avid DNxHD® Apple ProRes LT	85 Mbps	12	33.33 MB/s	9.00
Avid DNxHD® HD MJPE EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	10	40.00 MB/s	7.50
Avid DNxHD® Apple ProRes 422 HQ	120 Mbps	9	44.44 MB/s	6.75
Avid DNxHD® Apple ProRes 422 HQ	185 Mbps	5	66.67 MB/s	4.50

Bandwidth and RT Channels at 59.94 Hz (NTSC)

Codec	Video Fields Bitrate /Block		Actual Bandwidth	Max. RT Channels	
Avid DNxHD® Apple ProRes LT	85 Mbps	42	11.42 MB/s	26.27	
Avid DNxHD® HD MJPE EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	36	13.32 MB/s	22.52	
Avid DNxHD® Apple ProRes 422	145 Mbps	26	18.44 MB/s	16.27	
Avid DNxHD® Apple ProRes 422 HQ	220 Mbps	17	28.21 MB/s	10.63	

Bandwidth and RT Channels at 180 Hz (NTSC Super Motion 3x)

Codec	Video Bitrate	Fields /Block	Actual Bandwidth	Max. RT Channels
Avid DNxHD® Apple ProRes LT	85 Mbps	15	31.97 MB/s	9.38
Avid DNxHD® HD MJPE EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	12	39.96 MB/s	7.50
Avid DNxHD® Apple ProRes 422	145 Mbps	9	53.28 MB/s	5.63
Avid DNxHD® Apple ProRes 422 HQ	220 Mbps	6	79.92 MB/s	3.75

Real-Time Channel Calculation

Rule

The maximum server bandwidth depends on the disks. Based on the assumption that Seagate disks of 300 GB (10K5) are used in 4+1 raids, the disks will be able to write 300 MB/s, and the maximum server bandwidth is therefore 300 MB/s.

For a mixed configuration with standard and super motion channels on the same EVS server, the following calculation must be used to ensure that the settings do not exceed the maximum bandwidth of the server, that is to say 300 MB/s:

```
(nbr of standard channels x their actual bandwidth)
+ (nbr of super motion channels x their actual bandwidth)
```

Example with Standard and Supermotion Channels

Can I run an XT3 server with 2 record channels (1 super motion + 1 standard) + 2 play channels (1 super motion + 1 standard) in Avid DNxHD® with a video bitrate of 100 Mbps in PAL?

Calculation:

- 1 standard rec/play at 100 Mbps uses 13.3 MB/s
- 1 super motion record/play at 100 Mbps uses 40.0 MB/s
- All channels will use: 2 x 13.3 + 2 x 40.0 = 126.6 MB/s.

Conclusion: this configuration is supported as it is lower than 300 MB/s.

4.3.4. Recording Capacities

Disk Storage

The disk storage, on SAS disks, can be as follows, with a total of up to 84 disks:

- internal storage only: 6 or 12 x 300 GB or 900 GB SAS disks
- external storage only: up to 4 arrays with 24 x 300 GB or 900 GB SAS disks, with or without spare disks
- both internal and external storage.

Warning

The sum of internal and external disk storage on an XT3 server cannot exceed 20 TB. This is therefore not possible to have higher recording capacities than the ones described in the following tables.

RAID Level: 3

The video RAID uses striping process across 5 or 6 disk drives. The video and audio data is striped over the first 4 or 5 drives while the parity information is saved on the fifth or sixth drive

If one drive is damaged, the video RAID can use the parity information to recover the missing information, so that operation can continue seamlessly without bandwidth loss.

Recording Capacity Figures

The following tables show the recording capacity, in hours, for different video bitrates for:

- 1 record channel, that is 1 video + 4 stereo audio tracks in SD; 1 video + 8 stereo audio tracks in HD.
- With the Operational Disk Size parameter set to 100%.
- · With arrays of 300 GB disks.

Tip

The table figures should be multiplied by 3 for 900 GB disk arrays.

Recording Capacity in Hours for 5 Disks (4+1) RAID Configuration – 50Hz

						(4+1)				
# Disks	# Ext arra	#	#	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	120Mbp s	185Mbp s	
	у	У	RAID S	Spare s	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios
5	1	1	0	75	58	48	23	22	19	13	
6	1	1	1	75	58	48	23	22	19	13	
10	1	2	0	152	117	96	47	44	39	26	
11	1	2	1	152	117	96	47	44	39	26	
15	1	3	0	228	176	145	71	66	59	40	
16	1	3	1	228	176	145	71	66	59	40	
20	1	4	0	304	234	193	95	88	79	53	
21	1	4	1	304	234	193	95	88	79	53	
25	2	5	0	380	293	242	119	111	99	67	
27	2	5	2	380	293	242	119	111	99	67	
30	2	6	0	457	352	290	142	133	119	80	
32	2	6	2	457	352	290	142	133	119	80	
35	2	7	0	533	411	339	166	155	138	94	
37	2	7	2	533	411	339	166	155	138	94	
40	2	8	0	609	470	387	190	177	158	107	
42	2	8	2	609	470	387	190	177	158	107	
45	2	9	0	686	528	435	214	200	178	121	
47	2	9	2	686	528	435	214	200	178	121	
50	3	10	0	762	587	484	238	222	198	135	
53	3	10	3	762	587	484	238	222	198	135	
55	3	11	0	838	646	532	262	244	218	148	
58	3	11	3	838	646	532	262	244	218	148	
60	3	12	0	914	705	581	285	266	238	162	
63	3	12	3	914	705	581	285	266	238	162	
65	3	13	0	991	764	629	309	289	258	175	
68	3	13	3	991	764	629	309	289	258	175	
70	3	14	0	1067	822	678	333	311	278	189	
74	4	14	4	1067	822	678	333	311	278	189	
75	4	15	0	1143	881	726	357	333	297	202	

# Disks	# Ext arra y	(4+1)										
		t # ra RAID	# Spara	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	120Mbp s	185Mbp s		
			Spare s	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios		
79	4	15	4	1143	881	726	357	333	297	202		
80	4	16	0	1220	940	775	381	355	317	216		
84	4	16	4	1220	940	775	381	355	317	216		

Recording Capacity in Hours for 6 Disk (5+1) RAID Configuration – 50Hz

		(5+1)											
# Disk	# Ext arra	# RAID	# Spare	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	120Mbp s	185Mbp s			
S	У	S	Spare	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios			
6	1	1	0	94	73	60	29	27	24	16			
7	1	1	1	94	73	60	29	27	24	16			
12	1	2	0	190	146	120	59	55	49	33			
13	1	2	1	190	146	120	59	55	49	33			
18	1	3	0	285	220	181	89	83	74	50			
19	1	3	1	285	220	181	89	83	74	50			
24	1	4	0	380	293	242	119	111	99	67			
26	2	4	2	380	293	242	119	111	99	67			
30	2	5	0	476	367	302	148	138	124	84			
32	2	5	2	476	367	302	148	138	124	84			
36	2	6	0	571	440	363	178	166	148	101			
38	2	6	2	571	440	363	178	166	148	101			
42	2	7	0	667	514	423	208	194	173	118			
44	2	7	2	667	514	423	208	194	173	118			
48	2	8	0	762	587	484	238	222	198	135			
51	3	8	3	762	587	484	238	222	198	135			
54	3	9	0	857	661	545	268	250	223	151			
57	3	9	3	857	661	545	268	250	223	151			
60	3	10	0	953	734	605	297	277	248	168			
63	3	10	3	953	734	605	297	277	248	168			
66	3	11	0	1048	808	666	327	305	273	185			
69	3	11	3	1048	808	666	327	305	273	185			
72	3	12	0	1143	881	726	357	333	297	202			
76	4	12	4	1143	881	726	357	333	297	202			
78	4	13	0	1220	940	775	381	355	317	216			
82	4	13	4	1220	940	775	381	355	317	216			

Recording Capacity in Hours for 5 Disk (4+1) RAID Configuration – 59.94Hz

						(4+1)			
# Disk	# Ext arra	#	#	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	145Mbp s	220Mbp s
S	У	RAID S	Spare s	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios
5	1	1	0	75	58	48	23	21	16	11
6	1	1	1	75	58	48	23	21	16	11
10	1	2	0	151	117	96	47	43	33	22
11	1	2	1	151	117	96	47	43	33	22
15	1	3	0	228	176	144	71	65	49	33
16	1	3	1	228	176	144	71	65	49	33
20	1	4	0	304	235	193	95	87	66	45
21	1	4	1	304	235	193	95	87	66	45
25	2	5	0	380	294	241	119	109	82	56
27	2	5	2	380	294	241	119	109	82	56
30	2	6	0	456	353	290	143	131	99	67
32	2	6	2	456	353	290	143	131	99	67
35	2	7	0	533	412	338	166	152	115	78
37	2	7	2	533	412	338	166	152	115	78
40	2	8	0	609	471	386	190	174	132	90
42	2	8	2	609	471	386	190	174	132	90
45	2	9	0	685	530	435	214	196	149	101
47	2	9	2	685	530	435	214	196	149	101
50	3	10	0	761	589	483	238	218	165	112
53	3	10	3	761	589	483	238	218	165	112
55	3	11	0	838	648	531	262	240	182	123
58	3	11	3	838	648	531	262	240	182	123
60	3	12	0	914	707	580	286	262	198	135
63	3	12	3	914	707	580	286	262	198	135
65	3	13	0	990	766	628	310	284	215	146
68	3	13	3	990	766	628	310	284	215	146
70	3	14	0	1066	825	677	333	306	231	157
74	4	14	4	1066	825	677	333	306	231	157
75	4	15	0	1143	884	725	357	328	248	168

# Disk s	# Ext arra y	(4+1)										
		# RAID S	#	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	145Mbp s	220Mbp s		
			Spare s	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios		
79	4	15	4	1143	884	725	357	328	248	168		
80	4	16	0	1219	943	773	381	349	265	180		
84	4	16	4	1219	943	773	381	349	265	180		

Recording Capacity in Hours for 6 Disk (5+1) RAID Configuration – 59.94Hz

						(5+1)			
# Disk	# Ext arra	# RAID	# Spara	30Mbp s	40Mbp s	50Mbp s	100Mbp s	110Mbp s	145Mbp s	220Mbp s
S	s y	S	Spare s	4 audios	4 audios	4 audios	8 audios	8 audios	8 audios	8 audios
6	1	1	0	94	73	60	29	27	20	14
7	1	1	1	94	73	60	29	27	20	14
12	1	2	0	190	147	120	59	54	41	28
13	1	2	1	190	147	120	59	54	41	28
18	1	3	0	285	220	181	89	81	62	42
19	1	3	1	285	220	181	89	81	62	42
24	1	4	0	380	294	241	119	109	82	56
26	2	4	2	380	294	241	119	109	82	56
30	2	5	0	475	368	302	148	136	103	70
32	2	5	2	475	368	302	148	136	103	70
36	2	6	0	571	442	362	178	163	124	84
38	2	6	2	571	442	362	178	163	124	84
42	2	7	0	666	515	423	208	191	144	98
44	2	7	2	666	515	423	208	191	144	98
48	2	8	0	761	589	483	238	218	165	112
51	3	8	3	761	589	483	238	218	165	112
54	3	9	0	857	663	544	268	245	186	126
57	3	9	3	857	663	544	268	245	186	126
60	3	10	0	952	737	604	298	273	207	140
63	3	10	3	952	737	604	298	273	207	140
66	3	11	0	1047	810	665	327	300	227	154
69	3	11	3	1047	810	665	327	300	227	154
72	3	12	0	1143	884	725	357	328	248	168
76	4	12	4	1143	884	725	357	328	248	168
78	4	13	0	1219	943	773	381	349	265	180
82	4	13	4	1219	943	773	381	349	265	180

4. Software Specifications 29

4.4. Network Transfers

4.4.1. XNet Transfers

Rule

This section provides figures on transfer speeds for jobs processed by the XNet (or SDTI) network.

The section presents data in tables including the following parameters:

- 1. **Field Rate:** field frequency used, or number of video fields transferred per second.
- 2. **Video Bitrate:** codec bitrate set by the user in the **Codec** section of the **Server** tab in the Multicam Configuration window.
- 3. **RT Transfers:** maximum number of simultaneous transfers of A/V data that can be processed for the given frame rate and video bitrate through the SDTI network.

```
Calculation formula: Maximum SDTI bandwidth / Actual Bandwidth =
real-time transfers
```

4. **Transfer Speed:** transfer speed for a single transfer expressed in faster than-real time speed. The calculation formula is the same as the RT transfers.

When A/V data is transferred through the XNet network, you should take into account the maximum SDTI bandwidth of 110 MB/s.

When A/V data is backed up and restored to/from the XF2, smaller bandwidths have to be taken into account.

Example

How many real time transfers can I do over an XNet network (set at 1485 Mbps) if I work with Apple ProRes 422 at 145 Mbps in NTSC?

Calculation: Maximum SDTI bandwidth / Actual Bandwidth = real time transfers

110 MB/s / 18.4 MB/s = 6 real time transfers.

This is the maximum real-time transfers the network connection can support.

It is obviously also necessary that the XT3 where the material is stored has enough local disk bandwidth to feed the network accesses, on top of its own local channels (see Max. RT Channels).

XNet Transfers

The maximum transfer speeds between EVS servers through the SDTI ports of the XT3 server are summarized in the following table. The calculations take into account an SDTI bandwidth of 110 MB/s:

Codec	Field Rate	Video Bitrate	RT Transfers	Transfer Speed (faster than RT)
Apple ProRes LT	50.00 Hz	85 Mbps	8.8	8x
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	50.00 Hz	100 Mbps	7.6	7x
Avid DNxHD® Apple ProRes 422	50.00 Hz	120 Mbps	6.5	5.9x
Avid DNxHD® Apple ProRes 422 HQ	59.95 Hz	185 Mbps	4.4	4x

Backup Transfers

The following tables gives the transfer speed of A/V content of a given codec to the XF2 hardware, knowing that the XF2 bandwidth for backup is 50 MB/s.

Codec	Field Rate	Video Bitrate	RT Transfers
Apple ProRes LT	50.00 Hz	85 Mbps	4.0
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	50.00 Hz	100 Mbps	3.5
Avid DNxHD® Apple ProRes 422	50.00 Hz	120 Mbps	3.0
Avid DNxHD® Apple ProRes 422 HQ	59.95 Hz	185 Mbps	2.5

4. Software Specifications 31

Restore Transfers

The following tables gives the transfer speed of A/V content of a given codec to the XF2 hardware, knowing that the XF2 bandwidth for restore is 32 MB/s.

Codec	Field Rate	Video Bitrate	RT Transfers
Apple ProRes LT	50.00 Hz	85 Mbps	2.8
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	50.00 Hz	100 Mbps	2.4
Avid DNxHD® Apple ProRes 422	50.00 Hz	120 Mbps	2.0
Avid DNxHD® Apple ProRes 422 HQ	59.95 Hz	185 Mbps	1.7

4.4.2. Gigabit Ethernet Transfers

General Description

This section provides empirical figures on transfer speeds for backup and restore jobs processed by the GigE network. The GigE bandwidth however relies on the customer network behavior, which depends on external conditions, and partly on the EVS servers.

The section presents data in tables including the following parameters:

- 1. Field Rate: field frequency used, or number of video fields transferred per second.
- 2. **Video Bitrate:** codec bitrate set by the user in the **Codec** section of the **Server** tab in the Multicam Configuration window.
- 3. **RT Transfers:** maximum number of simultaneous transfers of A/V data that can be processed for the given frame rate and video bitrate through the GigE network.

Calculation formula: Maximum GigE bandwidth / Actual Bandwidth =
real-time transfers

4. Transfer Speed: transfer speed for a single transfer expressed in faster than-real time speed. The calculation formula is the same with a reference GigE bandwidth that is slightly smaller.

Warning

- The reference GigE bandwidth used to calculate the data in this section (65 MB/s for a 1Gb GigE connection) depends on network behavior, which only partly relies on the EVS server.
- The observations and data focus on steady rates: the transfer performances with small clips will be lower as they generate a lot of starts and ends of sessions.

Example

How many real-time transfers can be processed over a GigE network if I work with Avid DNxHD® 100 Mbps in NTSC, and if the maximum GigE bandwidth on my network is 65 MB/s?

Calculation: Maximum GigE bandwidth / Actual Bandwidth = real time transfers 65 MB/s / 13.33 MB/s = 4.8 real time transfers.

Important Recommendations

- For 6-channel configuration, maximum bitrates for Avid DNxHD® or Apple ProRes 422 should be 220 Mbps (NTSC) or 185 Mbps (PAL).
- "Super Motion + 1 Cam" configuration (i.e. 1 Super Motion REC + 1 Std REC + 1 Super Motion PLAY + 1 Std PLAY): maximum bitrates for Avid DNxHD® or Apple ProRes 422 should be 145 Mbps (NTSC) or 185 Mbps (PAL).
- When using the Avid DNxHD® codec, we advise to work at 100 Mbps if the picture quality is satisfactory so that the XT3 can sustain 6 local channels + 5 network transfers.
- The 4ch configurations with 3D, 1080p or 3D SLSM 3x are only possible with Avid DNxHD® 100 Mbps or Apple ProRes 422 LT.

Backup Transfers

The maximum transfer speeds through the Gigabit ports of the XT3 server are summarized in the following table:

Codec	Field Rate	Video Bitrate	RT Transfers	Transfer Speed (faster than RT)
Apple ProRes LT	50.00 Hz	85 Mbps	6	6.2x
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	50.00 Hz	100 Mbps	6	5.3x
Avid DNxHD® Apple ProRes 422	50.00 Hz	120 Mbps	5.8	4.6x
Avid DNxHD® Apple ProRes 422 HQ	59.95 Hz	185 Mbps	4.8	3.8x

4. Software Specifications 33

Restore Transfers

The maximum transfer speeds through the Gigabit ports of the XT3 server are summarized in the following table:

Codec	Field Rate	Video Bitrate	RT Transfers	Transfer Speed (faster than RT)
Apple ProRes LT	50.00 Hz	85 Mbps	6	4x
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	50.00 Hz	100 Mbps	5.7	3.4x
Avid DNxHD® Apple ProRes 422	50.00 Hz	120 Mbps	5	3x
Avid DNxHD® Apple ProRes 422 HQ	59.95 Hz	185 Mbps	4.1	3.8x

Simultaneous Backup and Restore

The backup sessions reach higher bandwidth and pre-empt the bandwidth against the restore sessions. On a 'per session' base, the system allocate between 3.75 and 6 times more bandwidth to backup session than to restore session.

4.4.3. XF2 Capacities

Storage Capacity at 50 Hz (PAL)

The following tables gives the time (in hours and minutes) of A/V content of a given codec that can be stored on the XF2 hardware at a frame rate of 50 Hz:

Codec	Video Bitrate	1 TB	2 TB	4 TB
Avid DNxHD® Apple ProRes LT	85 Mbps	22.24	44.48	89.36
Avid DNxHD® HD MJPEG EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	19.12	38.24	76.48
Avid DNxHD® Apple ProRes 422	120 Mbps	16.36	33.12	66.24
Avid DNxHD® Apple ProRes 422 HQ	185 Mbps	10.52	21.44	43.28

Storage Capacity at 150 Hz (PAL Super Motion 3x)

The following tables gives the time (in hours and minutes) of A/V content of a given codec that can be stored on the XF2 hardware at a frame rate of 150 Hz:

Codec	Video Bitrate	1 TB	2 TB	4 TB
Avid DNxHD® Apple ProRes LT	85 Mbps	7.39	15.18	30.36
Avid DNxHD® HD MJPEG EVS/ Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	6.24	12.48	25.36
Avid DNxHD® Apple ProRes 422 HQ	120 Mbps	5.44	11.28	22.56
Avid DNxHD® Apple ProRes 422 HQ	185 Mbps	3.48	7.36	15.12

4. Software Specifications 35

Storage Capacity at 59.94 Hz (NTSC)

The following tables gives the time (in hours and minutes) of A/V content of a given codec that can be stored on the XF2 hardware at a frame rate of 59.94 Hz:

Codec	Video Bitrate	1 TB	2 TB	4 TB
Avid DNxHD® Apple ProRes LT	85 Mbps	22.24	44.48	89.36
Avid DNxHD® HD MJPE EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	19.12	38.24	76.48
Avid DNxHD® Apple ProRes 422	145 Mbps	13.52	27.44	55.28
Avid DNxHD® Apple ProRes 422 HQ	220 Mbps	9.04	18.08	36.16

Storage Capacity at 180 Hz (NTSC Super Motion 3x)

The following tables gives the time (in hours and minutes) of A/V content of a given codec that can be stored on the XF2 hardware at a frame rate of 180 Hz:

Codec	Video Bitrate	1 TB	2 TB	4 TB
Avid DNxHD® Apple ProRes LT	85 Mbps	7.39	15.18	30.36
Avid DNxHD® HD MJPE EVS/Standard HD MPEG2 Intra AVC Intra 100 DVCPro HD	100 Mbps	6.24	12.48	25.36
Avid DNxHD® Apple ProRes 422	145 Mbps	4.48	9.36	19.12
Avid DNxHD® Apple ProRes 422 HQ	220 Mbps	3.12	6.24	12.48

4.5. Video Interpolation

Introduction

The playing back of smooth slow motion pictures carries specific issues: since some fields must be repeated at regular interval to provide the video at the playback speed required by the operator, parity violation appears regularly on the output video signal. This issue is specific to interlaced formats (525i, 625i and 1080i) and does not concern progressive formats (720p and 1080p).

If O and E represent respectively the odd and even fields of a standard video signal (50/60 Hz), we have:

The original video signal:

OEOEOEOEOEOEOE

The output video signal at 50% speed:

· OOEEOOEEOOEE

The output video signal at 33% speed:

• 000EEE000EEE000E

The output video signal at 25% speed:

OOOOEEEEOOOOEEEE

Fields with parity violation are shown in bold, underlined letters. As it appears from the above table, whatever the playback speed (with the exception of the normal 100% playback speed), a number of fields violate the normal parity of the output signal. This parity violation induces a 1-line shift of the field, resulting in a vertical jitter of the picture. The jitter frequency depends upon the chosen playback speed.

To avoid this phenomenon and provide a stable output picture, EVS developed 2 types of line interpolator: 2-line and 4-line interpolators. The interpolation process can be enabled or disabled by the operator on all EVS slow motion systems.

2-Line Interpolator

The 2-line interpolator actually generates a new field, when the original field is in parity violation. Each line of this new field is calculated by a weighted average of the 2 neighboring lines. This process solves the problem of parity violation and vertical jitter, but the drawback is a reduction of the vertical resolution on the interpolated fields, that appear unfocused. Another side effect is the alternation of original fields (perfectly focused) and interpolated fields (unfocused), resulting in a "pumping" video signal.

4. Software Specifications 37

4-Line Interpolator

The 4-line interpolator uses a more sophisticated calculation based on the 4 neighboring lines. By using suitable coefficients for the weight of each line in the resulting calculation, we apply this interpolation to all fields. The final result is a permanently, slightly unfocused picture. The advantage is a stable output signal with no jitter and no "pumping", but the vertical bandwidth is even more reduced.

The interpolator is of course always disabled at 100% playback speed, because there is no parity violation.

EVS uses the same techniques with the Super Slow Motion disk recorder, working with all models of Super Motion cameras (150/180 Hz). The only difference between the processing of Super Motion and normal scan (50/60 Hz) signals is that the interpolator is always disabled at 33% playback speed, because the Super Motion signal does not cause parity violation at this particular speed.

Whatever the choice, the resulting picture is thus always a compromise between stability and resolution. With EVS systems, the operator always has the choice between any of the 3 above described techniques: no interpolation, 2-line interpolation or 4-line interpolation. Even if the operator chooses to use the interpolation, this process will be automatically disabled when not necessary (100% playback for 50/60 Hz signal, 33% and 100% playback for 150/180 Hz signal).

Note

All professional VTRs use line interpolation in PlayVar mode to avoid vertical jitters.

Default value is interpolator off for all configurations except SuperLSM configuration in which 4-line interpolator mode is enabled.

5. Hardware Installation and Cabling

5.1. Rack Installation

Unpacking

Upon receipt of the equipment examine packing for obvious signs of damage. If damaged, do not unpack and inform the carrier immediately. Check thanks to the included packing list if all the items are present and if they show any mechanical damage. If yes, report damage or the missing parts to EVS or their appropriate representative.

Ventilation and Rack Mounting

Adequate ventilation is obviously required for optimum performance. As a result of this consideration, ensure that no other equipment is located close to the mainframe.

Warning

- Remember that fans are used to air cool the equipment and protect it from overheating.
- Do not block fans intakes during operations.

Having regard to the weight of the server chassis, support guides are required for this unit into the rack mount. The front ears of the unit are not designed to support its full weight. Applying full weight on these might result in bending the metal plate.

Boards Checking

The main power switch is located at the front side (lower right corner) of the unit.

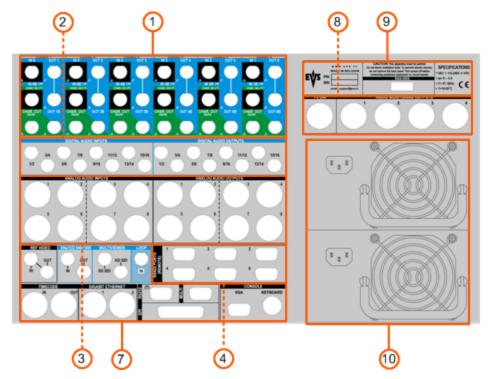
Before turning on the power, open the front door of Video disk recorder unit to check if all boards fit into their guides. If a board is out of its guides, remove carefully the board and replace it in the same slot.

5.2. Rear Panel Description

5.2.1. Rear Panel Configurations

The XT3 server comes in a variety of configurations and rear panel variants:

- 6U rack with 6, 4 or 2 codec modules and various audio connectors.
- 4U rack with 4 or 2 codec modules and various audio connectors.

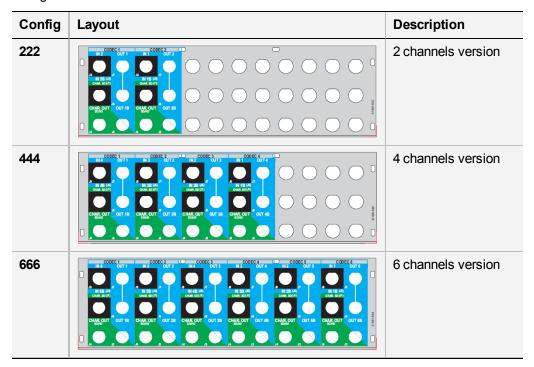

The different available configurations and the connectors positions and types for each of these variants are described in the following topics.

5.2.2. 6U Rear Panel Layout

Rear Panel Areas

The following drawing represents an example of a 6U rear panel available on an XT3 server.

The various areas of the rear panel are highlighted in the drawing and their respective variants are listed in the following table along with a short description of the related connectors.



Video and Codecs 1

The codecs modules allow connections for recording and playback of video material. Each connector on a codec module is connected to the corresponding J connector on the COD A or COD B module of a V3X board.

See section "V3X Video and Reference Boards" on page 72 for more details on each connector specific usage according to the different configurations.

The following video and codecs connectors layouts are available according to your configuration:

Analog and Digital Audio 23

This section shows the available associations of analog and digital connectors.

See section "Audio Specifications" on page 15 for more details on the available audio configurations.

See section "Audio Connections" on page 49 for more details on the DA-15 connectors pinout depending on the configuration.

The following analog and digital audio connectors layouts are available according to your configuration:

Config	Layout	Description
-	DIGITAL AUDIO INPUTS 1/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 11/2 5/6 9/10 13/14 13/14	 Digital audio: 16 BNC connectors (8 in and 8 out) Analog audio: 16 XLR connectors (8 in and 8 out)
-	000104_81000 NPUTS	 Digital audio: 4 multi-pin DA-15 connectors (2 in and 2 out) Analog audio: 16 XLR connectors (8 in and 8 out)
-	ANALGO AUGIO INPUTS 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 1/2 0/G/17/4 AUGIO INPUTS 1/2 13/14 15/16	 Analog audio: 4 multi-pin DA-15 connectors (2 in and 2 out) Digital audio: 16 XLR connectors (8 in and 8 out)
-	1/2 DIGITAL AUDIO INPUTS 5/6 7/8 1/2 DIGITAL AUDIO OUTPUTS 5/8 7/8 1/2 3/4 1/5/16 9/10 11/12 13/14 15/16	 Analog audio: none Digital audio: 16 XLR connectors (8 in and 8 out)

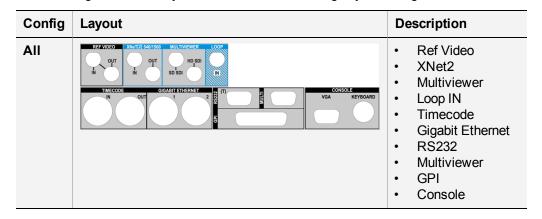
RS422 Ports 4

The RS422 ports allow the server to be remotely controlled through remote panels or third-party control devices.

When a remote panel is used, it should be connected on the first RS422 port.

The RS422 connectors layout is as follows:

Config	Layout	Description
All	STROOT ST	6 connectors



Controls and Communications 7

This rear panel part presents some or all of the following connectors according to your configuration:

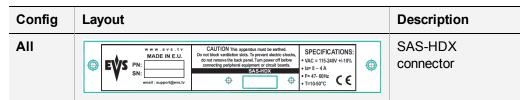
- The Ref Video connectors allow the server to receive or send back the analog genlock reference signal.
- The XNet2 connectors allow the interconnection of EVS servers, and/or XStore in an XNet2 network. The IN connector of a server is connected to the OUT connector of another server, and so on to form a closed loop network.
- The Multiviewer connectors allow a monitor to be connected directly to the server, and to display PGM and REC channels as configured in the Multicam Configuration window, in the Monitoring tab, Multiviewer page. See the Multicam Configuration manual for a description of the configuration parameters.
- The Loop connector allows the loop of PGM1 on REC1 to be able to use the internal loop feature.
- The **Timecode** connectors allow the server to receive or send back the LTC timecode reference signal.
- The **Gigabit Ethernet** connectors allow the interconnection of servers, other EVS, and/or third-party systems into a Gigabit Ethernet network.
- The RS232 connector allows a tablet to be connected to the server.
- The **Multiviewer** connector provides an analog Multiviewer output on a DA-15 connectors, that can be configured in CVBS, RGB HD or YUV HD.
- The GPI connector allows GPI (General Purpose Interface) devices to send or receive electric pulses that will trigger commands on the server or to be connected with thirdparty devices.
- The Console connector allows a monitor and a keyboard to be connected to the server.

The following connectors layouts are available according to your configuration:

Controls and Communications ®

This rear panel part presents some or all of the following connectors according to your configuration:

- The PC LAN connector allows connection of the PC LAN interface of the EVS server to an Ethernet network.
- The **Audio Monitoring Outputs** connectors are AES XLR connectors that allow audio output connections for monitoring purposes.


The following connectors layouts are available according to your configuration:

SAS-HDX 9

The SAS-HDX connector allows the connection to the external disk array SAS-HDX if it is installed.

The SAS-HDX connector layout is as follows:

Power Supplies 100

The server power supply is made of two hot-swappable units. Both of these units are connected to allow automatic power switching to the second power supply should the first one fail.



5.2.3. 4U Rear Panel Layout

Rear Panel Areas

The following drawing represents an example of a 4U rear panel available on an XT3 server.

The various areas of the rear panel are highlighted in the drawing and their respective variants are listed in the following table along with a short description of the related connectors.

Video and Codecs 1

The codecs modules allow connections for recording and playback of video material. Each connector on a codec module is connected to the corresponding J connector on the COD A or COD B module of a V3X board.

See section "V3X Video and Reference Boards" on page 72 for more details on each connector specific usage according to the different configurations.

The following video and codecs connectors layouts are available according to your configuration:

Config	Layout	Description
222	CODEC 1 CODEC 2 IN 2 OUT 1 IN 1 CODEC 2 IN 2 OUT 2 IN 18 SE 7 OAAA 50 SF CHAR, OUT OUT 1B CHAR, OUT OUT 2B UT OUT 2B OUT	2 channels version
444	CODEC 3 IN 2 CODEC 3 IN 2 CODEC 3 IN 2 CODEC 3 IN 3 CODEC 4 IN 3 CODEC 4 IN 3 CODEC 3 IN 4 CODEC 3 IN 4 CODEC 3 IN 5 CODEC 4 IN 5 CODEC 3 IN 5 CODEC 3 IN 5 CODEC 4 IN 5 CODEC 4 IN 5 CODEC 5 IN 5 CODEC	4 channels version

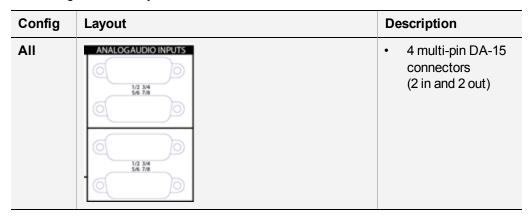
Digital Audio 2

The digital audio inputs and outputs are available on BNC or on multi-pin (DA-15) connectors for audio signal inputs and outputs in digital format.

See section "Audio Connections" on page 49 for more details on the DA-15 connectors pinout according to the different configurations.

The following digital audio connectors layouts are available according to your configuration:

Config	Layout	Description		
BNC	DIGITAL AUDIO NPUTS DIGITAL AUDIO OUTPUTS 11/2 5/6 9/10 13/14 1/2 5/6 9/10 13/14	• 16 BNC connectors (8 in and 8 out)		
DA-15	00/104 ALCHO MENTS 000/104 ALCHO CUTEVITS 12 34 56 28 810 1912 1314 1516 12 34 56 28 810 1912 1314 1516	4 multi-pin DA-15 connectors (2 in and 2 out)		

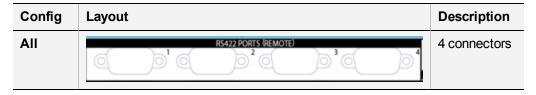


Analog Audio 3

The analog audio inputs and outputs are available on multi-pin (DA-15) connectors for audio signal inputs and outputs in analog format.

See section "Audio Connections" on page 49 for more details on the connectors pinout according to the different configurations.

The analog connector layout is as follows:



RS422 Ports 4

The RS422 ports allow the server to be remotely controlled through remote panels or third-party control devices.

When a remote panel is used, it should be connected on the first RS422 port.

The RS422 connectors layout is as follows:

Controls and Communications 7

This rear panel part presents some or all of the following connectors according to your configuration:

- The **Ref Video** connectors allow the server to receive or send back the analog genlock reference signal.
- The XNet2 connectors allow the interconnection of EVS servers, and/or XStore in an XNet2 network. The IN connector of a server is connected to the OUT connector of another server, and so on to form a closed loop network.
- The **Multiviewer** connectors allow a monitor to be connected directly to the server, and to display PGM and REC channels as configured in the Multicam Configuration window, in the Monitoring tab, Multiviewer page. See the Multicam Configuration manual for a description of the configuration parameters.
- The **Multiviewer** connector provides an analog Multiviewer output on a DA-15 connectors, that can be configured in CVBS, RGB HD or YUV HD.
- The **Loop** connector allows the loop of PGM1 on REC1 to be able to use the internal loop feature.
- The **Timecode** connectors allow the server to receive or send back the LTC timecode reference signal.
- The **Gigabit Ethernet** connectors allow the interconnection of servers, other EVS, and/or third-party systems into a Gigabit Ethernet network.
- The **RS232** connector allows a tablet to be connected to the server.
- The GPI connector allows GPI (General Purpose Interface) devices to send or receive electric pulses that will trigger commands on the server or to be connected with thirdparty devices.
- The **Console** connector allows a monitor and a keyboard to be connected to the server

Controls and Communications 8

This rear panel part presents some or all of the following connectors according to your configuration:

- The PC LAN connector allows connection of the PC LAN interface of the EVS server to an Ethernet network.
- The Audio Monitoring Output connector is a DA-15 connector that allows audio output connections for monitoring purposes.

SAS-HDX 9

The SAS-HDX connector allows the connection to the external disk array SAS-HDX if it is installed.

Power Supplies 00

The server power supply is made of two hot-swappable units. Both of these units are connected to allow automatic power switching to the second power supply should the first one fail.

5.3. Video Connections

You fill find full details on video connections in the Configuration manual, in the chapter "Supported Configurations".

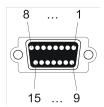
5.4. Audio Connections

5.4.1. Audio Channels

The XT3 server manages up to 96 embedded audio channels, depending on the chosen variant and the installed hardware.

The embedded audio modules and codecs can be used as input or output channels for embedded, digital (AES/EBU), or analog audio signals.

Depending on your server configuration you can find the following audio connectors on the rear panel:


- Digital audio:
 - DA-15 connectors: 16 inputs and 16 outputs (110 Ohm balanced).
 - BNC connectors: 8 inputs and 8 outputs (75 Ohm unbalanced).
 - XLR connectors: 8 inputs and 8 outputs (110 Ohm balanced).
- Analog audio:
 - XLR connectors: 8 inputs (high-Z balanced) and 8 outputs (600 Ohm drive capable).
 - DA-15 connectors: 16 inputs (high-Z balanced) and 16 outputs (600 Ohm drive capable - breakout cables with XLR connectors available).
- Audio monitoring :
 - DA-15 connector: 4 analog mono outputs (600 Ohm drive capable) (XT3 4U).
 - XLR connectors: 4 analog mono outputs (600 Ohm drive capable) (XT3 6U).

See also section "Audio Specifications" on page 15 for full information on the available audio hardware configurations.

The connectors are illustrated along with their respective pinouts in the following topics.

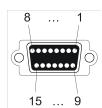
5.4.2. Digital Audio DA-15 Pinout

The digital audio DA-15 connector is illustrated hereunder (connector installed on the rear panel and viewed from outside). Its pinout is described in the following table where each column corresponds to one of the 4 available connectors.

Pin #	DA-15 connector #1 Inputs 1-8 (mono)	DA-15 connector #2 Inputs 9-16 (mono)	DA-15 connector #3 Outputs 1-8 (mono)	DA-15 connector #4 Outputs 9-16 (mono)		
1	Gnd	Gnd	Gnd	Gnd		
2	AES input 1/2 +	AES input 9/10 +	AES output 1/2 +	AES output 9/10 +		
3	Gnd	Gnd	Gnd	Gnd		
4	AES input 3/4 +	AES input 11/12 +	AES output 3/4 +	AES output 11/12		
5	Gnd	Gnd	Gnd	Gnd		
6	AES input 5/6 +	AES input 13/14 +	AES output 5/6 +	AES output 13/14		
7	Gnd	Gnd	Gnd	Gnd		
8	AES input 7/8 +	AES input 15/16 +	AES output 7/8 +	AES output 15/16 +		
9	AES input 1/2 -	AES input 9/10 -	AES output 1/2 -	AES output 9/10 -		
10	Gnd	Gnd	Gnd	Gnd		
11	AES input 3/4 -	AES input 11/12 -	AES output 3/4 -	AES output 11/12		
12	Gnd	Gnd Gnd		Gnd		
13	AES input 5/6 -	AES input 13/14 -	AES output 5/6 -	AES output 13/14		
14	Gnd	Gnd	Gnd	Gnd		
15	AES input 7/8 -	AES input 15/16 -	AES output 7/8 -	AES output 15/16		

5.4.3. Analog Audio DA-15 Pinout

The analog audio DA-15 connector is illustrated hereunder (connector installed on the rear panel and viewed from outside). Its pinout is described in the following table where each column corresponds to one of the 4 available connectors.



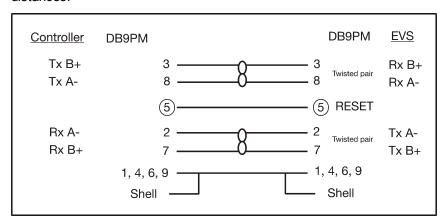
Pin #	DA-15 connector #1 Inputs 1-4 (mono)	DA-15 connector #2 Inputs 5-8 (mono)	DA-15 connector #3 Outputs 1-4 (mono)	DA-15 connector #4 Outputs 5-8 (mono)	
1	Gnd	Gnd	Gnd	Gnd	
2	Analog input 1 +	Analog input 5 +	Analog output 1 +	Analog output 5 +	
3	Gnd	Gnd	Gnd	Gnd	
4	Analog input 2+	Analog input 6 +	Analog output 2 +	Analog output 6 +	
5	Gnd	Gnd	Gnd	Gnd	
6	Analog input 3 +	Analog input 7 +	Analog output 3 +	Analog output 7 +	
7	Gnd	Gnd	Gnd	Gnd	
8	Analog input 4 +	Analog input 8 +	Analog output 4 +	Analog output 8 +	
9	Analog input 1 -	Analog input 5 -	Analog output 1 -	Analog output 5 -	
10	Gnd	Gnd	Gnd	Gnd	
11	Analog input 2 -	Analog input 6 -	Analog output 2 -	Analog output 6 -	
12	Gnd	Gnd	Gnd	Gnd	
13	Analog input 3 -	Analog input 7 -	Analog output 3 -	Analog output 7 -	
14	Gnd	Gnd	Gnd	Gnd	
15	Analog input 4 -	Analog input 8 -	Analog output 4 -	Analog output 8 -	

5.4.4. Monitoring Audio DA-15 Pinout

The monitoring audio DA-15 connector is illustrated hereunder (connector installed on the rear panel and viewed from outside). Its pinout is described in the following table.

The DA-15 monitoring audio connector is only available on XT3 4U.

Pin #	DA-15 connector Outputs 1-4 (mono)			
1	Gnd			
2	Analog output 1 +			
3	Gnd			
4	Analog output 2 +			
5	Gnd			
6	Analog output 3 +			
7	Gnd			
8	Analog output 4 +			
9	Analog output 1 -			
10	Gnd			
11	Analog output 2 -			
12	Gnd			
13	Analog output 3 -			
14	Gnd			
15	Analog output 4 -			



5.5. RS422 Connections

5.5.1. RS422 Connector Pinout

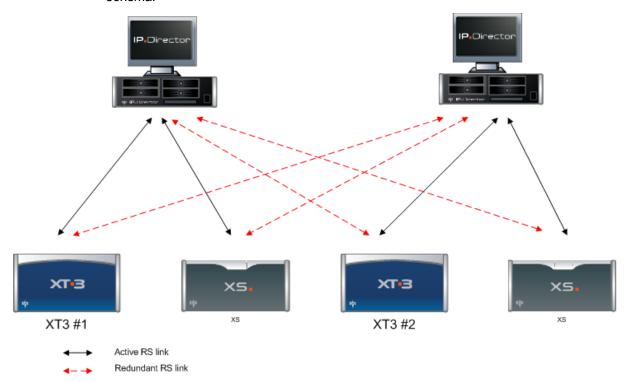
The RS422 connectors are used to connect a remote control (from EVS or third party) to your server.

The cable wiring is a straightforward pin-to-pin connection as illustrated in the following diagram. You should use a shielded cable to avoid electromagnetic interference on long distances.

Warning

The RESET command line from the remote control is sent through the pin 5 of the RS422 connector. This function should be disabled when the controller on connector #1 is not an EVS controller.

The technical specification for the RS422 link is as follows:


- 19200 bauds
- No parity
- 8 data bits
- 1 stop bit

5.5.2. Redundant IPDP Serial Link

The IPDirector communicates with the server via one serial link. If that link fails, the XT3 server can no longer be controlled by any IPDirector.

A failover mechanism has been put into place: it switches the IPDirector link from one port of an XT3 server to another port on another XT3 server.

To ensure the failover, the backup links between IPDirector workstations and the XT3 servers need to be physically wired to a second RS422 port, as shown on the following schema:

The serial link redundancy will ensure that there is no single point of failure in the setup. However, you need to put into place a thoroughly thought through IPDP configuration for the SynchroDB to continue working correctly. This can be achieved, for example, by defining an IPDirector workstation in Network mode.

5.6. XNet Network

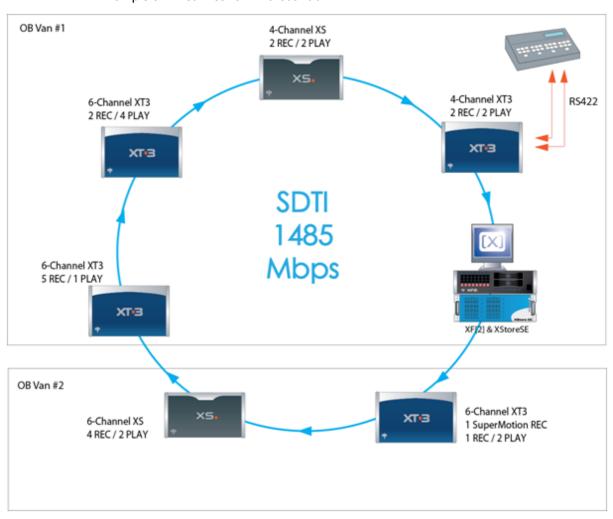
5.6.1. Introduction

The XNet2 network consists of several EVS video servers or other EVS hardware all connected with a 75-Ohm coaxial cable (BNC).

The data exchange between systems is operated through the SDTI interface at 1485 Mbps, with non-relay connectors.

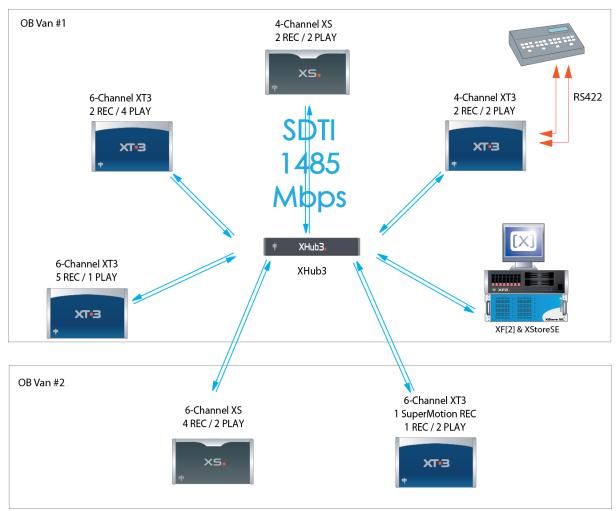
The SDTI loop is closed only when the Multicam software is started. As non-relay connectors are used, it is recommended to use XHub to avoid network interruptions.

The XNet2 requires a network server dedicated to the management of the database shared among all EVS video servers. This is assigned to one of the EVS servers on the network. The EVS server acting as the network server can of course be used for standard server operations.



5.6.2. Network Architectures

To set up an XNet network, EVS servers may be connected directly in a closed loop architecture or, using a dedicated hub, they may be connected in a star architecture as illustrated in the following figures.


Connection Diagram Without EVS XHub SDTI Hub

Example of XNet2 network without hub:

Connection Diagram With EVS XHub SDTI Hub

Example of XNet2 network with a SDTI hub:

5.6.3. Required Conditions to Set up and Run XNet

- 1. All systems on the network shall belong to the XT3 or XS servers, XStoreSE, XHub3 devices.
- 2. The SDTI advanced option code (for network client, master, or server modes) shall be validated in the options list.
- 3. They shall all be running compatible software versions. Otherwise, warning message is displayed.
- 4. The following parameters shall have the same value on all systems: SDTI speed (**Network** page, **SDTI** section).

- 5. the network type must be set to "Server" on one and only one EVS video server on the network. The others must be set to either "Master" (to share clips and view others clips) or "Client" (to share clips only).
- 6. A different network number must be specified for each EVS video server that you want to connect to the network. If the same network number is assigned to 2 different systems, the second one will not be able to connect and a warning message will be displayed.
- 7. All EVS video servers must be connected with a good quality BNC 75 Ohm cable to form a closed loop.
 - Connect the SDTI OUT connector of the first EVS video server to the SDTI IN connector of the second one, etc until the loop is closed by connecting the SDTI OUT connector of the last EVS video server to the SDTI IN connector of the first one.
 - The SDTI loop must be closed at all times during network operation. If for any reason the loop is open, all network communication will be interrupted and all systems will automatically switch to stand alone mode. When the loop is closed again, network operation will resume automatically. This problem can be avoided or limited using an XHub.
- 8. The distance shown in the table below is the maximum cable length between two active EVS servers, or 2 SDTI reclockers, on an XNet2 SDTI network, using a single piece of cable between 2 servers or 2 reclockers.
 - Intermediate connectors, patch panels, etc., might degrade these figures. Depending on the number of servers connected on the network, the location of the master server, the presence or not of an XHub SDTI hub, the actual maximum values may be higher than indicated. If longer distances between servers are required, SDTI to Fiber converters can be used, allowing distances over thousands of meters if necessary.

EVS has validated the following SDI-Fibre converters:

- Stratos Lightwave Media Converter TX/RX VMC-T-H-2/VMC-R-H-2 (www.stratoslightwave.com)
- Telecast TX/RX292 (www.telecast-fiber.com)
- Network Electronics SDI-EO-13T (electrical to optical) / SDI-OE-S (optical to electrical) (www.network-electronics.com)
- Network Electronics HD-EO-13T (electrical to optical) / HD-OE (optical to electrical)
- BlueBell BB320T (TX) and BB320R (RX) (www.bluebell.tv)

Cable type	@ 1485 Mbps			
RG59	45 m / 148 ft			
RG6	90 m / 484 ft			
RG11	120 m / 393 ft			
Super HiQ	150 m / 492 ft			
Fiber	80 km (*)			

(*) 80 km/200 km is the total length of the return path, i.e. the actual distances between the 2 servers connected via the fiber link is half of this value, i.e. 40 km @ 1485 Mbps.

Note

When reclockers are used, the total delay induced by these reclockers between 2 active servers on the network may not exceed 15 μ s.

5.6.4. Starting XNet

- When all above conditions are fulfilled and the cabling is correct, turn on the "Server" EVS video server.
- 2. Make sure the value to **Server** in the **Type** field in the **SDTI** section on the **Network** page. Then start Multicam.
- 3. Turn on all "Master" and "Client" EVS video servers, and make sure the appropriate value is selected in the Type field in the SDTI section.
- 4. Start Multicam on all of the Master and Client EVS servers.

They should see the "Server" on the network and they will connect automatically. Connection takes a few seconds (usually between 2 and 5 sec) for each EVS video server.

5.6.5. XNet Performances and Troubleshooting

Performances

With the default settings, the following performances can be achieved in normal conditions:

Material	Transfers	Distant copy
SD content	10 real-time transfers	Up to 5 times faster than real-time (depends on network load)
HD content	3 to 4 real-time transfers	Up to 2 times faster than real-time (depends on network load)
SLSM content	3 real-time transfers	-

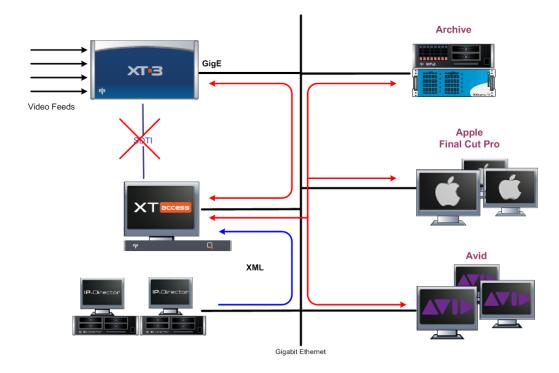
These performances are also limited by the disk bandwidth available from the EVS server where the clips are stored. To prevent freeze issues and to maximize network bandwidth efficiency, priority levels have been implemented in the following order, from the high to the low priority:

- 1. Play requests
- 2. Search/Browse and Live (E2E) requests
- 3. Copy requests.

Troubleshooting

- If the network does not start up properly although all machines are apparently configured properly and Multicam is actually started on all of them, check that selected cables to connect all EVS servers are suitable and not too long to operate.
- 2. If the connection cannot be established, please make sure that all equipments are set to the same speed and connected to the non-relay connectors.
- 3. Once the network has been established, if the EVS server acting as the network "Server" is disconnected or shut down, another server will automatically be assigned to act as a new network "Server". The next machine to be automatically assigned as new network server is the one with the highest serial number in the SDTI network.

5.7. Gigabit Network


5.7.1. Functional Overview

The Gigabit connection makes it possible to transfer video and audio material from your XT3 server to external systems via the TCP/IP network.

The external systems can be the following:

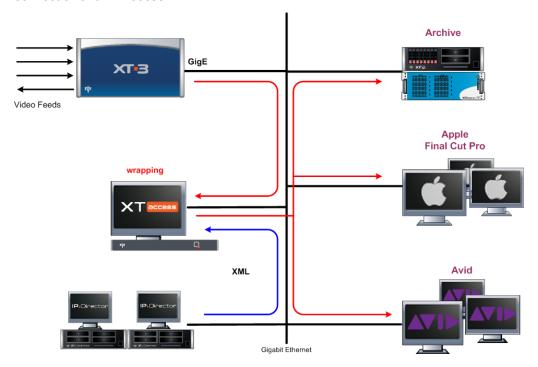
- A storage system or an archiving system, such as XStore or XF2.
- A non-linear editing system, such as Xedio, Apple Final Cut Pro, or Avid.

However, the external systems cannot read the raw files coming from a XT3 server. For this reason, XTAccess is used as a "gateway" between your server and the IT world. It takes up the role of gateway used so far by XFile/XStream as it creates file formats compliant with external systems. In this architecture, the Xsquare application plays the role of XTAccess orchestrator on the Gigabit network, communicating via the PC LAN connection.

XTAccess is directly connected to the XT3 server through the Gigabit network via an FTP client. It runs on a Windows workstation and is mainly controlled by the external systems (no user interface) via XML files or other processes.

The Gigabit connection fulfills the following functions in relation with the XT3 server:

- Backup of clips from an XT3 server.
- Restore of clips to an XT3 server.
- · Transfer of clips between servers.


Please refer to the XTAccess user manual for full information about the possible workflows with third-party systems.

5.7.2. Backup of Clips

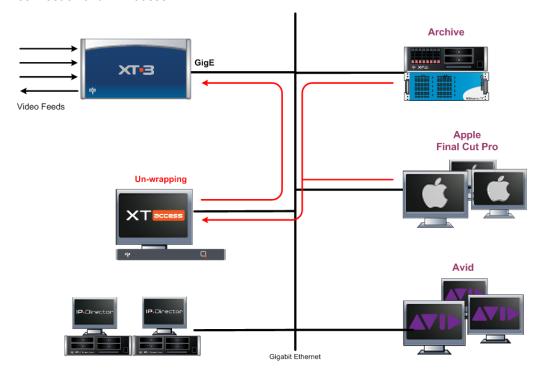
Overview

The following schema shows how the backup of clips is performed with the Gigabit connection and XTAccess:

Workflow

- 1. An external system, for example IP Director, sends an XML file to XTAccess to request the backup of a given clip created on an XT3 server.
- 2. XTAccess processes the XML file:
 - It gets the clip content that has to be backed up from the server.
 - It generates a backup file of the clip in the format specified by the external system (no transcoding feature, only native codec). The following formats are supported: EVS MXF, AVI, Avid MXF OPAtom, MXF OP-1A, Quick Time, Quick Time Ref (depending on the video codec).
 - It stores the backup file in the target folder specified by the external system. The metadata of the clip are either included in the file (in EVS MXF) or sent via an XML file.

5.7.3. Restore of Clips


Overview

Only clips having one of the following formats can be restored: EVS MXF, MXF OP-1A, or Quick Time (depending on the video codec).

The restore process can be set up in two different ways:

- Via XML file sent by the external application.
- · Via folder scan.

The following schema shows how the restore of clips is performed with the Gigabit connection and XTAccess:

Workflow (Restore via XML File)

- An external system (which can generate XML files for restoring clips, for example MediaXChange or IPDirector) sends an XML file to XTAccess to request the restore (copy) of clips from an archiving or backup system to a given XT3 server.
- 2. XTAccess processes the XML file:
 - It gets the clip file to restore from the external system.
 - It restores, i.e. copies, the clip on the server specified in the XML file.

Workflow (Restore via Folder Scan)

- 1. Based on the parameters defined in XTAccess, this application scans specific folders on external backup or archiving systems.
- 2. When a clip file has been written to the scanned folder, XTAccess creates a copy of the clip on the server specified in the XTAccess parameters.

The restored clip receives a new UmID and LSM ID:

- Multicam automatically assigns a UmID to the restored clip.
- A start LSM ID is specified in XTAccess and incremented as defined for each new clip that is restored in order to find an empty location on the server.

The restored clip contains the clip metadata.

- 3. The restored clip is moved from the scanned folder to one of the following subfolders on the external archiving or backup system:
 - Restore.done\: folder where the files are moved to when they are successfully restored.
 - \Restore.error\: folder where files are moved to when they failed to restore.

5.7.4. Important Rules

Gigabit networks including EVS servers need to abide by the following rules:

- The hardware used on GigE networks with EVS servers need to support jumbo frames.
- Both GigE ports of an EVS server need to be defined on different sub-networks.
- Teaming between the GigE1 and GigE2 ports is not possible.
- This is not possible to implement failover through the GigE network.
- The GigE port available on the MTPC board (PC LAN) is a 100Base-T port.

This is used for monitoring purposes (XNet Monitor) or for the communication with other applications (LinX). This can be in the same sub-network as the GigE port.

5.7.5. Switches

Supported Switches

All switches used on the GigE networks of EVS systems need to support jumbo frames (Ethernet frames with more than 1,500 bytes of payload).

The following models of 19-inch Gigabit switches have been validated for use with EVS workflows:

- HP Procurve 2510G-24
- Cisco Catalyst 2960S-24TD/2960S-48TD/2960S-24TS/2960S-48TS
- Cisco Catalyst 3750X-24TS/3750X-48TS

Comparison

The models HP Procurve 2510G-24, Cisco Catalyst 2960S-24TS and 2960S-48TS can be used for small setups where no inter-VLAN routing is needed.

The models Cisco Catalyst 2960S-24TD and 2960S-48TD can be used for small setups where 10G uplinks are required, but no inter-VLAN routing is needed.

On larger setups, both GigE ports of the XT3 servers or/and several ports on the SANs are often used to increase the bandwidth or to allow redundancy. Since both GigE ports of an XT3 server cannot be used on the same sub-network, virtual LANs need to be created. To allow the transfer of packets between the virtual LANs, layer 3 switches are required. You need to select a layer 3 switch that is able to route jumbo frames.

A switch of the Cisco Catalyst 3750X series should be used on larger setups as they support jumbo frames, allow traffic to be routed between different VLANs and provide stacking capabilities.

The following table gives an overview on the supported switches:

Model/Product Number	R U	Gb ports	Uplinks	JF switchin g	JF routin g	Stacki ng	Dual PS
HP Procurve 2510G-24	1	20 (+4)	4x1G SFP	Y	N	N	No
Cisco Catalyst WS-C2960S- 24TD-L	1	24	2x10GIG SFP+ or 2x1G SFP	Y	N	Y	No
Cisco Catalyst WS-C2960S- 48TD-L	1	48	2x10GIG SFP+ or 2x1G SFP	Y	N	Y	No
Cisco Catalyst WS-C2960S- 24TS-L	1	24	4x1G SFP	Y	N	Y	No

Model/Product Number	R U	Gb ports	Uplinks	JF switchin g	JF routin g	Stacki ng	Dual PS
Cisco Catalyst WS-C2960S- 48TS-L	1	48	4x1G SFP	Y	N	Y	No
Cisco Catalyst WS-C3750X- 24TS	1	24	Optional module	Y	Y	Y	Optio nal
Cisco Catalyst WS-C3750X- 48TS	1	48	Optional module	Y	Y	Y	Optio nal

A layer 2 device can be used when all machines are configured to be on the same LAN, when another layer 3 device is present to do the routing if needed, or when no routing between VLANs is needed.

The following table gives the list of available uplink modules for the Cisco Catalyst switches of the WS-C3750X series:

Product Number	Description
C3KX-NM-1G	Four GbE port network module
C3KX-NM-10G	Two 10GbE SFP+ ports and Two SFP ports network module
C3KX-NM-10GT	Two 10GB-T ports network module

Additional Information

HP switches have a lifetime guarantee with next-business-day advance replacement with no additional contract purchase.

HP switches are not compatible with Cisco's proprietary protocols (ISL, PagP, PVST, etc.) which could be a problem for integration in some legacy Cisco environment. However, such a case is quite unlikely to arise and most of the time workarounds can be found.

The stacking possibilities of the Cisco 3750X series permit to have fully active LACP teams for redundancy to the hosts.

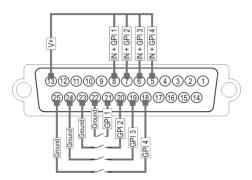
5.8. GPIO Connections

5.8.1. GPIO Connector Pin-Out

The following table lists the GPIO connector pin-out:

1	Relay Out 4	14	Relay Out 4
2	Relay Out 3	15	Relay Out 3
3	Relay Out 2	16	Relay Out 2
4	Relay Out 1	17	Relay Out 1
5	IN + opto 4	18	IN - opto 4
6	IN + opto 3	19	IN - opto 3
7	IN + opto 2	20	IN - opto 2
8	IN + opto 1	21	IN - opto 1
9	I/O TTL 8	22	GND (Return I/O 8)
10	I/O TTL 7	23	GND (Return I/O 7)
11	I/O TTL 6	24	GND (Return I/O 6)
12	I/O TTL 5	25	GND (Return I/O 5)
13	+ 5 V 50 mA max.		

5.8.2. GP In Connections

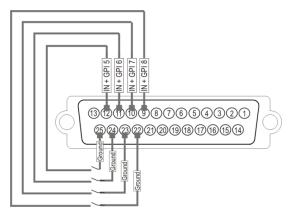

GPI Triggers

The allocation of the XT3 server GPI triggers is performed in the Multicam Configuration window, in the GPI tab. See the Configuration manual for detailed information on allocating GPI triggers.

Opto isolated Inputs (GP In 1, 2, 3, 4)

Pin-Out

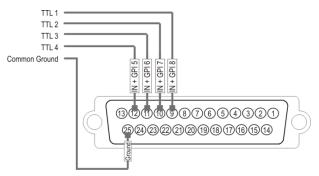
Specifications


- The input consists in an opto diode (VF @ 1.1 Volt) in series with a 470 ohm resistor.
- Typical switching point @ 1.4 mA, for secure operation:
 - i=0 to 0.5 mA -> opto OFF
 - i=2.5 to 30 mA -> opto ON
 - ∘ imax= 30 mA
- Direct connection to a TTL/CMOS signal possible (Pin opto to GND and pin opto + to the TTL/CMOS signal).

Typical switching point @ 1.6 Volts, for secure operation:

- Vin< 0.8 Volts -> opto OFF
- Vin> 2.2 Volts @ 2 mA -> opto ON
- Vin max (without external resistor) = 15 Volts

TTL Inputs (GP In 5, 6, 7, 8)


Relay Inputs Pin-Out

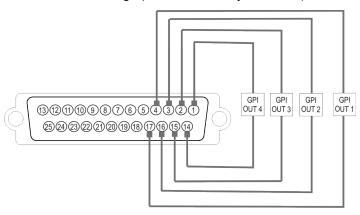
The relay must be connected between the ground and the corresponding TTL input on the DB-25.

TTL Inputs Pin-Out

Each TTL input on the DB-25 is directly connected to the pin of the TTL connector on the device triggering the GPI. The ground must be common between the DB-25 connector of the XT3 server and the external device.

Specifications

- · each pin can be individually configured as an output or an input
- internal 4K7 pull up to +5 V
- low level Vi < 1.5 Volt (U12 = 74HC245)
- high level Vi > 3.5 Volt (U12 = 74HC245)
- optional TTL compatible level (U12 = 74HCT245)

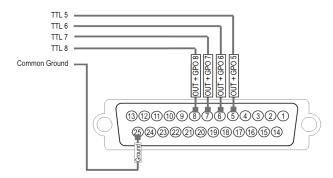

5.8.3. GP Out Connections

Relay Isolated Outputs (GP Out 1, 2, 3, 4)

Pin-Out

The user can define the functions, types and settings associated to the GPI outs in the following applications:

- · Setup menu of the Remote Panel
- IP Director settings (GPI and Auxiliary Track tab)



Specifications

- normally open contact (power off -> open)
- maximum 1 A
- maximum 50 Volts
- typical life time: 100.000.000 switchings

TTL Outputs (GP Out 5, 6, 7, 8)

Pin-Out

Specifications

- each pin can be individually configured as an output or an input
- internal 4K7 pull up to +5 V
- low level Vi < 1.5 Volt (U12 = 74HC245)
- high level Vi > 3.5 Volt (U12 = 74HC245)
- optional TTL compatible level (U12 = 74HCT245)

6. Boards Description

6.1. Boards and Slots Configuration

The XT3 server is equipped with several boards that are all developed by EVS.

According to your server version, the following setup configurations are available:

6U Rack

Slot	t Installed boards		
#	6 video channels	4 video channels	2 video channels
7		RSAS	
6	H3X		
5	CODA (Audio Codec)		
4	V3X (SD/HD) #3	_	_
3	V3X (SD/HD) #2	V3X (SD/HD) #2	_
2	V3X (SD/HD) #1 Genlock	V3X (SD/HD) #1 Genlock	V3X (SD/HD) #1 Genlock
1		MTPC	

4U Rack

Slot	Installed boards					
#	4 video channels	2 video channels				
6	RS	RSAS				
5	H3X					
4	CODA (Au	udio Codec)				
3	V3X (SD/HD) #2 —					
2	V3X (SD/HD) #1 Genlock V3X (SD/HD) #1 Genlock					
1	MTPC					

6.2. V3X Video and Reference Boards

6.2.1. Description

Overview

The V3X board is divided in several parts:

- a base board identified as V3X base (rear section and center extension)
- two modules identified as COD A V3X (front left) and COD B V3X (front right)

Warning

It is highly advised not to remove a V3X board from your EVS server. Should you have to do so, manipulate the board very carefully, making sure it is not exposed to mechanical or electric shocks.

COD Modules

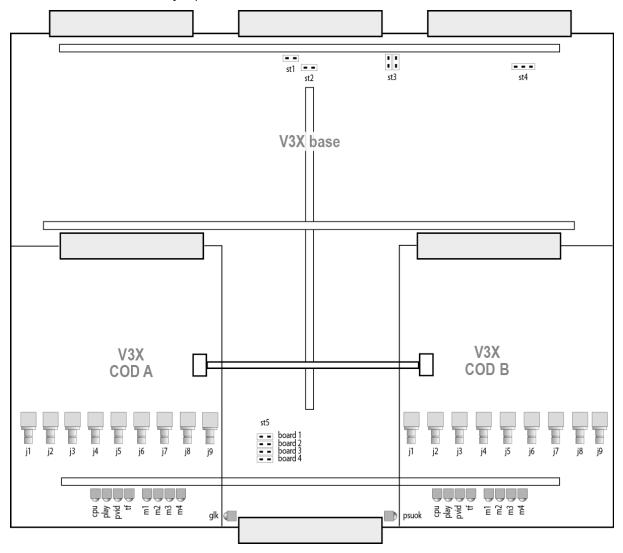
The COD A V3X and COD B V3X modules are the actual codec modules, each of them being able to be configured by software either as an encoder (for a record channel) or as a decoder (for a play channel). The COD V3X modules are SD, HD, and 3 Gbps capable.

They support the following feature(s):

- Full resolution 3D HD on a single V3X module (Dual Link HD SDI or single link 3 Gbps)
- 1080p 50/59.94 Hz video standard on a single V3X module (Dual Link HD SDI or single link 3 Gbps)

Genlock

There are 2 versions of the V3X board: one with genlock, one without genlock.


The genlock model can easily be identified by the presence of 3 quartz synthesizers at the rear of the V3X base board, on the right-hand side, and by the presence of the GLK and PSU OK LEDs on either side of the DIN connector at the center front of the board.

Note that a V3X board with genlock must be installed as V3X #1 in first position (slot 2) in the server. A V3X board with genlock can never be installed in any other slot, and thus cannot be used instead of V3X #2 or #3. Doing so will result in conflicting electrical signals inside the system.

Block Diagram

The block diagram of the V3X board with genlock is illustrated hereunder with the connectors, jumpers and LEDs location:

Base Board Jumpers

The follow ing table lists the V3X base board jumpers and their respective function:

Jumper	Function
ST1, ST2	These 2 jumpers must be installed on the last V3X board of the server (that is on V3X #1, 2, or 3 if there are respectively 1, 2, or 3 V3X boards installed in the server).
ST3 (SPARE)	«Parking» for ST1 and ST2 jumpers when they are not used.
ST4 (only on V3X with genlock)	Must be set to HiZ (or not installed). Note that the Genlock Loop connector on the back panel of the server (if available) must always be terminated with a 75 Ohm load if it is not used.
ST5	Defines the position of the board inside the server. It must be set to « 1 » for a V3X with genlock, and to « 2 » or « 3 » for a V3X board without genlock, depending on its position in the server.

Base Board LEDs

The following table lists the LEDs available on the V3X base board with the genlock functionality:

LED	Color	Status	Function
GLK	_	Off	The genlock module is not initialized.
	Green	Blinking	The genlock module is properly initialized, but no valid genlock signal is detected.
		On	The module is initialized and a valid genlock signal is detected.
	Red	Blinking	There is a genlock problem.
		On	A resync is needed.
PSU	Green	On	All voltages are present and in the allowed range.
OK	_	Off	There is a voltage problem.

V3X COD Modules LEDs

The following table lists the LEDs available on then V3X COD modules (from left to right):

LED	Color	Status	Function
CPU	Green	Blinking	Indicates CPU activity.
		On	There is a problem with the module processor.
PLAY	Green	On	The module is set in play mode by the software.
		Off	The module is set in record mode.
PVID	Green	On	A valid video signal has been detected on the J8 connector (SD/HD SDI input), whether the module is in play or record mode.
TF (transfer)	Green	Blinking	Data transfers occur between the module and the H3X board.
M1	_	_	Not used.
M2			
M3			
M4			

6.2.2. COD Connectivity in SD and HD

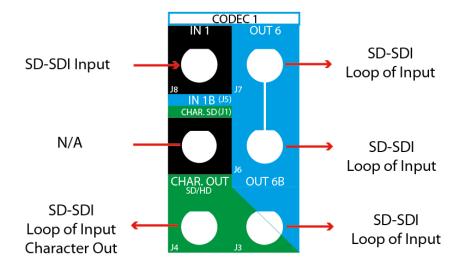
Connector Assignments

This section describes the connector assignments and layout for the video standards SD 525i, SD 625i, HD 1080i and HD 720p.

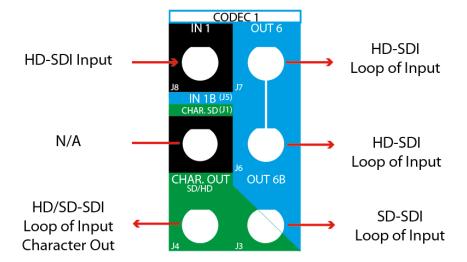
The specific connectivity for HD 3D/1080p Dual Link and 3D/1080p Single Link 3 Gbps is described in the following sections.

Connector	SD mode	HD mode	Connector label
J1	connect J1 instead of J5 if CVI SD or HD mode.	is factory-wired to the backplane instead of J1. You can connect J1 instead of J5 if CVBS monitoring is required in D or HD mode. SDI monitoring is no longer available on J1.	
	CVBS monitoring output (SD)	CVBS monitoring output (SD, down-converted)	

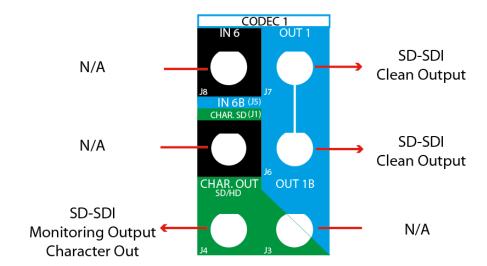
Connector	SD mode	HD mode	Connector label
J2	SDI monitoring output (SD)	SDI monitoring output (HD)	Not wired to the backplane. Used for onboard multiviewer input.
J3	Loop-through for the SDI input signal (SD)	Loop-through for the SDI input signal (SD, down-converted)	OUTB
J4	SDI monitoring output (SD)	SDI monitoring output (SD/HD)	CHAR OUT SD/HD
J5	Not used or SDI input (SD) in an XREC configuration	Not used or SDI input (HD) in an XREC configuration	IN B
J6	SDI program output (SD, identical to J7)	HD SDI program output (SD, identical to J7)	OUT
J7	SDI program output (SD, identical to J6)	HD SDI program output (HD, identical to J6)	OUT
J8	SDI input (SD)	HD SDI input (HD)	IN
J9	Alternate SDI input (SD, for the internal loop)	Alternate HD SDI input (HD, for the internal loop)	Not wired to the backplane. J9 of REC1 only connected to Loop connector.

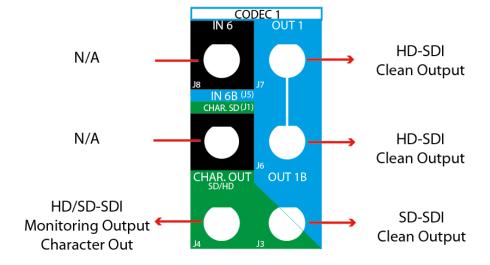

Note

The loops of the input signal are not genlocked.



Connector Layouts


SD Mode - Input (REC)


HD Mode - Input (REC)

SD Mode - Output (PLAY)

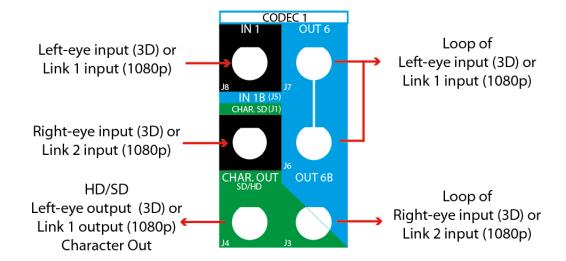
HD Mode - Output (PLAY)

6.2.3. COD Connectivity in 3D and 1080p Dual Link

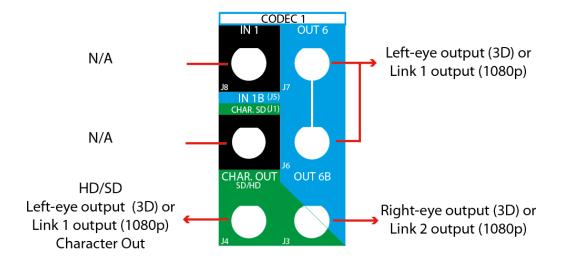
Connector Assignments

This section describes the connector assignments and layout for the video standards HD 3D and 1080p in Dual Link mode.

Connector	3D/1080p mode	Connector label
J1	N/A	CHAR SD
J2	SDI monitoring output (HD)	Not wired to the backplane. Used for onboard multiviewer input
J3	HD SDI program output for right eye (3D) or link 2 (1080p) (HD)	OUTB
J4	SDI monitoring output for left eye (3D) or link 1 (1080p) (HD/SD)	CHAR OUT SD/HD
J5	HD SDI input for right eye (3D) or link 2 (1080p) (HD)	IN B
J6	HD SDI program output for left eye (3D) or link 1 (1080p) (HD, identical to J7)	OUT
J7	HD SDI program output for left eye (3D) or link 1 (1080p) (HD, identical to J6)	OUT
J8	HD SDI input for left eye (3D) or link 1 (1080p) (HD)	IN
J9	Alternate HD SDI input (HD, for the internal loop)	Not wired to the backplane. J9 of REC1 only connected to Loop connector.



Note


The loops of the input signal are not genlocked.

Connectors Layouts

3D/1080p - Input (REC)

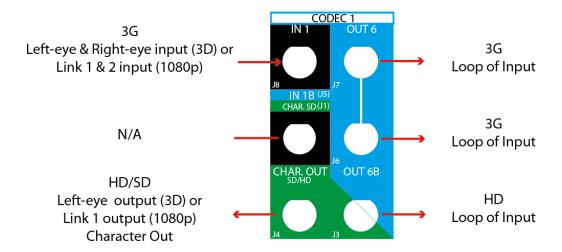
3D/1080p - Output (PLAY)

6.2.4. COD Connectivity in 3D and 1080p Single Link 3G-SDI

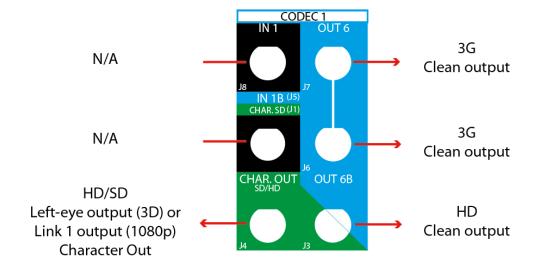
Connector Assignments

This section describes the connector assignments and layout for the video standards HD 3D and 1080p in Single Link 3G-SDI mode.

Connec	3D/1080p Mode	Connector label
J1	N/A	CHAR SD
J2	SDI program output 2D (HD)	Not wired to the backplane. Used for onboard multiviewer input
J3	SDI program output 2D (HD)	OUTB
J4	SDI monitoring output for left eye (3D) or link 1 (1080p) (HD/SD)	CHAR OUT SD/HD
J5	Not installed	IN B
J6	3G-SDI program output for left & right eyes (3D) or link 1 & 2 (1080p) (3G, identical to J7)	OUT
J7	3G-SDI program output for left & right eyes (3D) or link 1 & 2 (1080p) (3G, identical to J6)	OUT
J8	3G-SDI input left & right eyes (3D) or link 1 & 2 (1080p) (3G)	IN
J9	Alternate 3G-SDI input (3G, for the internal loop)	Not wired to the backplane. J9 of REC1 only connected to Loop connector.



Note


The loops of the input signal are not genlocked.

Connectors Layouts

3D/1080p - Input (REC)

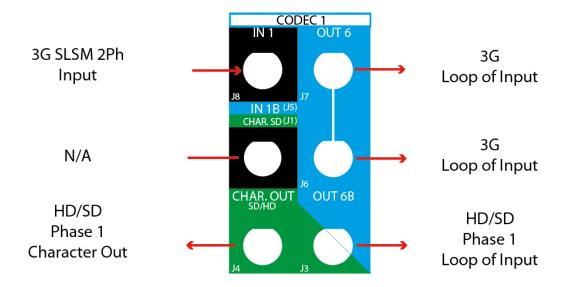
3D/1080p - Output (PLAY)

6.2.5. COD Connectivity in SLSM 2Ph Single Link 3G-SDI

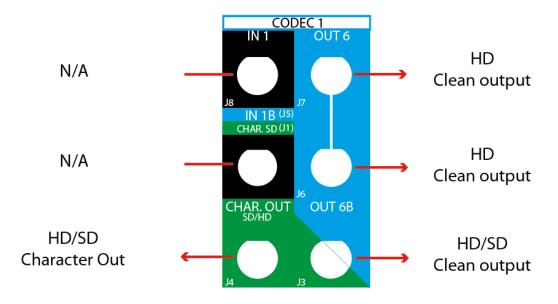
Connector Assignments

This section describes the connector assignments and layout for the SLSM 2-phase cameras in Single Link 3G-SDI mode.

Connector	SLSM 2-Phase 3G Mode	Connector label
J1	N/A	CHAR SD
J2	SDI program output (HD)	Not wired to the backplane. Used for onboard multiviewer input
J3	SDI program output of phase 1 (HD/SD)	OUTB
J4	SDI monitoring output in SLSM (HD/SD)	CHAR OUT SD/HD
J5	Not installed	IN B
J6	HD program output of phase 1 (identical to J7)	OUT
J7	HD program output of phase 1 (identical to J6)	OUT
J8	3G-SDI SLSM 2Ph input (3G)	IN
J9	Alternate 3G-SDI SLSM 2Ph input (3G, for internal loop)	Not wired to the backplane. J9 of REC1 only connected to Loop connector.



Note


The loops of the input signal are not genlocked.

Connectors Layouts

SLSM 2Ph 3G - Input (REC)

SLSM 2Ph 3G - Output (PLAY)

6.2.6. Channel Assignment

Server with Three Codec Boards

The following table shows how the channels (play or record channels) are assigned to the codec boards and connectors:

Codec Board	Codec Connector	Channel Number
Lower codec board (slot 2)	COD A	CAM F or PGM 1
Lower codec board (slot 2)	COD B	CAM E or PGM 2
Middle codec board (slot 3)	COD A	CAM D or PGM 3
Middle codec board (slot 3)	COD B	CAM C or PGM 4
Upper codec board (slot 4)	COD A	CAM B or PGM 5
Upper codec board (slot 4)	COD B	CAM A or PGM 6

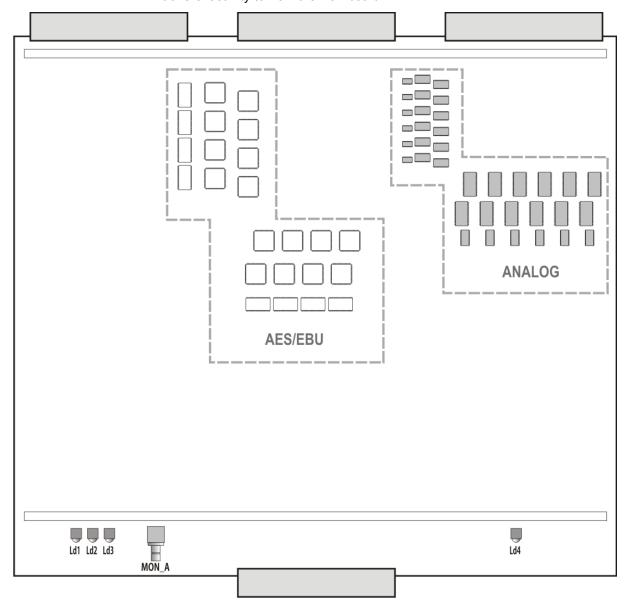
Server with Two Codec Boards

The following table shows how the channels (play or record channels) are assigned to the codec boards and connectors:

Codec Board	Codec Connector	Channel Number
Lower codec board (slot 2)	COD A	CAM D or PGM 1
Lower codec board (slot 2)	COD B	CAM C or PGM 2
Middle codec board (slot 3)	COD A	CAM B or PGM 3
Middle codec board (slot 3)	COD B	CAM A or PGM 4

Server with a Single Codec Board

The following table shows how the channels (play or record channels) are assigned to the codec board and connectors:

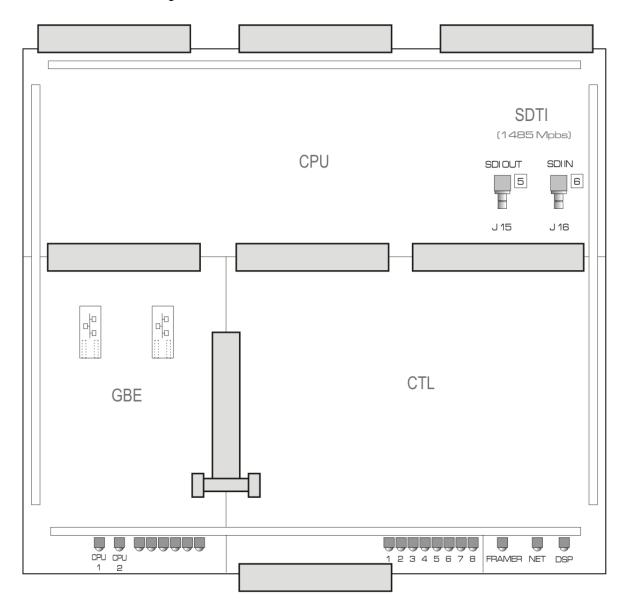

Codec Board	Codec Connector	Channel Number
Lower codec board (slot 2)	COD A	CAM B or PGM 1
Lower codec board (slot 2)	COD B	CAM A or PGM 2

6.3. Audio Codec Board

The audio codec board is the audio interface between the V3X boards and the H3X board. Video codec and audio codec boards are tied to the H3X board with one bus connector on the front side. Different audio configurations are available with the audio codec board. See "Audio Connections" on page 49 for details.

The following LEDs are available on the audio codec board:

- LD 1-3: internal EVS information only.
- LD 4: transfer activity to/from the H3X board.



6.4. H3X Board

The H3X board is divided in 4 parts (2 in front, 2 in the back).

- Front left: GBE (GigE) module.
- Front right: CTL controller module.
- Back left: CPU module .
- Back right: SDTI module.

LEDs Function

The available LEDs on the XNet2CTL controller module are, from left to right:

LED	Color	Status	Function
LED 1	Green	On	Ok.
	Red	On	An error occurred while booting the H3X board.
LED 2 to LED 8	_	_	For EVS internal use only.
FRAMER	Green	On	The signal on the XNet2 IN connector is a valid EVS SDTI signal.
NET	Green	On	The XNet2 SDTI network is established (SDTI loop closed, correct speed, etc).
DSP	Green	Blinking	Indicates DSP activity (audio processing).

The available LEDs on the GBE Gigabit module module are, from left to right:

LED	Color	Status	Function
CPU1 CPU2	Green	Blinking	These LEDs blink alternately every 250 milliseconds to indicate that the processor is running.
Other LEDs	_	_	For EVS internal use only.

Connectors

The following connectors are available on the XNet2 (SDTI) module:

J15	OUT connector for XNet2 (SDTI network 1485 Mbps without relay).
J16	IN connector for XNet2 (SDTI network 1485 Mbps without relay).

Gigabit Connectors

The two board Gigabit connectors are connected to the two backplane Gigabit ports.

The Gigabit connectors must be on a network that supports Jumbo Frames of (at least) 9014 bytes Ethernet frames. One of the tested switch belongs to the Cisco 3750 G family, for example the WS-C3750G-24T-S.

You can set up the GigE IP addresses in the Multicam Configuration window, in the Network tab, Gigabit Ethernet section. See the Configuration manual for more information.

6.5. RAID Controller Boards

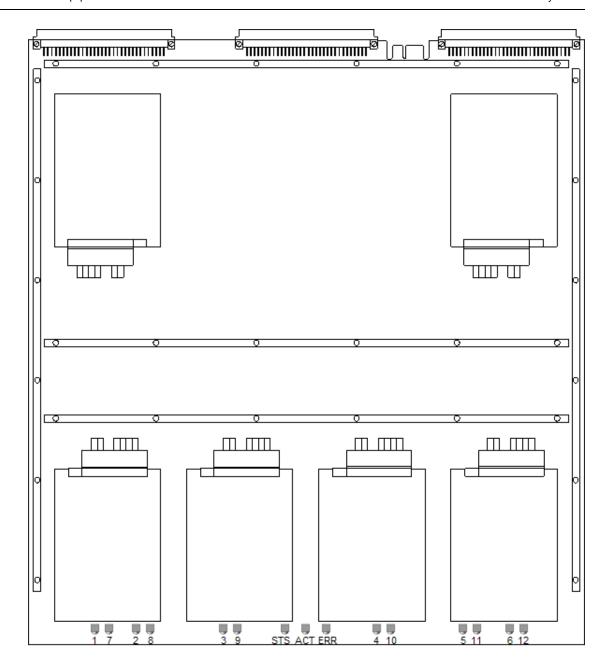
6.5.1. RCTL Board on SAS Disk Array

Disk Arrays on systems with H3X boards have a controller on the disk array board.

Different configurations can be used

- · One internal array with a series of 6 disks
- One internal array with two stacked series of 6 disks,
- No internal storage

LEDs on Internal Array


LEDs 1 to 6 are used in case of one internal array of 6 disks.

LEDs 7 to 12 are used for the upper series of disks in case of one internal array of 2x6 disks.

LEDs correspond to the disks as schematized as followed:

upper	7			12
lower	1			6
upper	8	9	10	11
lower	2	3	4	5

LED	Status	Function
Disk	Off	the corresponding disk is not started (not spinning)
LEDs	On, fast blinking (green)	the corresponding disk is starting (spinning)
	On, steady (green)	the corresponding disk is started and used in the RAID array
	On, slowly blinking (green)	the corresponding disk is started but not used in the RAID array
STS	On (green)	the RCTL RAID controller is properly booted.
ERR	On (red)	errors occur during the data transfer between the RAID controller and the disks

6.5.2. External RAID Array SAS-HDX

The SAS-HDX is a 2U external disk storage containing up to 24 hot-swappable SAS disks, with a minimum of 5 disks. External storage can be used with or without internal storage.

It is connected to the server via a dedicated SAS cable on the rear panel of the server, provided that the X-ESAS connection module has been placed inside the server.

Necessary equipment:

- · Server with SAS-HDX connector on the rear panel.
- · Multicam version 10.05 or higher
- SAS-HDX external disk storage

LEDs on the External Array

For each disk, a blue LED and a red LED are present.

Status			
Blue LED	Red LED	Function	
Off	On (steady)	Defect drive – must be replaced.	
Blinking	Off	Connected, disk being written to / read from.	
On (steady)	Off	Connected, disk not currently written to / read from.	
On (steady)	On, slowly blinking	Spare disk - the corresponding disk is started and used in the RAID array.	
Off	Off	The corresponding disk is not present.	

Note

When starting from a clean disk array (after a "Clear Video Disks" from the EVS maintenance menu), the server is recording first on RAID #0 until this one is full, then on RAID #1 and finally on RAID #2. It is therefore normal to see activity only on some disks depending on how much material (clips and record trains) is stored on the server.

Sound Alert on External Array

When a fan or a power supply unit fails on an external array, a sound alert is given and can be stopped by pressing the Mute button on the array.

Disk Insertion and Removal

To insert or remove a disk from an external array, carefully follow these steps:

How to insert

- Insert the canister in the bay slot.
- Push the canister (do not press the lock lever)

- Push until the canister is fully engaged in the slot.
- Press to hold the canister firmly in place.

- While holding the canister in place, press the lock lever.
 The canister is locked when you hear a "click".
- All the canisters must be well aligned.

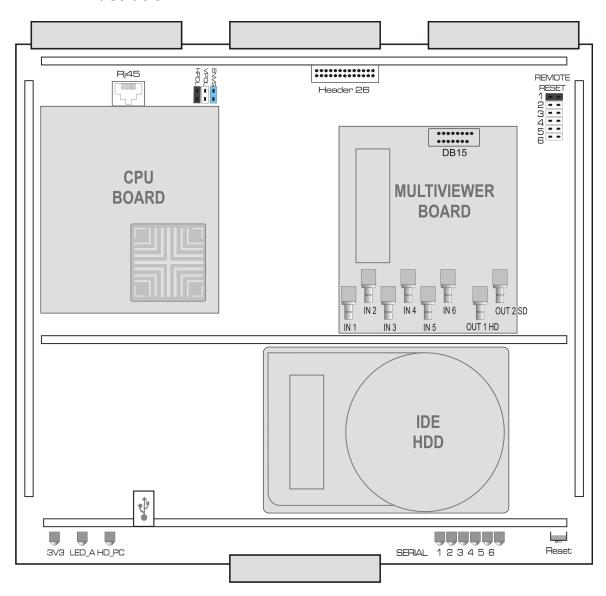
2. How to remove

- Press the "unlock" button.
- Pinch slightly the lock lever and pull out the canister.

6.6. MTPC A3/A6 Board

Introduction

The function of the PC board is mainly the control of the video hardware and the interface of the peripheral equipment (such as a remote controller) with the video hardware.


The following MTPC board is used:

• Revision A3/A6 with COMMEL HS873 motherboard and a new time code management module (with bootable USB).

In standard configuration the PC hardware is composed of:

- One mounting PC board, with serial ports, LTC reader and generator, is controlled by the motherboard.
- IDE System Hard disk: the IDE disk drive is used for storing the EVS software and the DOS operating system. Neither audio nor video data is saved on this disk. The capacity of this drive may vary depending on market availability, but the system partition is always set to 1 GB. The remaining capacity of this drive is not used.
- 128 MB SDRAM (or higher) modified. The SDRAM used has been modified to suit the system requirements. Please contact EVS support for RAMs upgrade. Do not use standard PC RAM modules.

Illustration

Multiviewer

The multiviewer board is an option on XT3 servers.

Connectors	Function
IN	The J2 connectors from the CODEC modules of the COHX board are connected to the IN connectors of the multiviewer board.
OUT1 HD	The OUT HD connector of the multiviewer board is connected to the MULTIVIEWER HD SDI connector on the rear panel of the server.
OUT2 SD	The OUT SD connector of the multiviewer board is connected to the MULTIVIEWER SD SDI connector on the rear panel of the server.
DA-15	The DA-15 connector of the multiviewer board is connected to the MULTI DA-15 connector on the rear panel of the server.

LED Information

Internal EVS information

Board Configuration

HPOL, VPOL and ENVS are used to configure the composite sync generator used in LSM TV mode (no effect if the server is only used with a VGA monitor).

The HPOL jumper can be used to invert or not the VGA HS signal (Horizontal Sync) to generate the composite output signal (TV mode)

The VPOL jumper can be used to invert or not the VGA VS signal (Vertical Sync) to generate the composite output signal (TV mode)

The ENVS jumper can be used to enable or not the presence of the VGA VS signal (Vertical Sync) in the composite output signal (TV mode)

If the LSM TV mode is used, these jumpers must be set up according to EVS recommendations, which depend on software version and CPU board model/revision:

Set up the jumpers as follows:

HPOL=On; VPOL=Off; ENVS=On

REMOTE RESET jumpers are available to designate the remote(s) from which the RESET command can be sent.

This command resets the whole system: PC and video hardware.

In standard configuration only Remote one (on RS422 port 1) is allowed to reset the system.

Remote Reset

Warning

This jumper should be removed if the device connected to the RS422 port is NOT an EVS controller. Maximum voltage on pin 5 of an RS422 port of the server should not exceed 5 Volt when the corresponding jumper is engaged. Applying a higher voltage on pin 5 when the corresponding jumper is engaged will result in permanent electronic damage to the board.

Corporate +32 4 361 7000

North & Latin America +1 973 575 7811

Asia & Pacific +852 2914 2501

Other regional offices www.evs.com/contact

EVS Headquarters

Liège Science Park 16, rue Bois St Jean B-4102 Seraing Belgium

