

Technical Documentation

Remote MNOPL

Product series: mc² series, Nova73 HD

Version: 5.0

Revision 12.05.2014

Copyright

All rights reserved. Permission to reprint or electronically reproduce any document or graphic in

whole or in part for any reason is expressly prohibited, unless prior written consent is obtained from

the Lawo AG.

All trademarks and registered trademarks belong to their respective owners. It cannot be

guaranteed that all product names, products, trademarks, requisitions, regulations, guidelines,

specifications and norms are free from trade mark rights of third parties.

All entries in this document have been thoroughly checked, however no guarantee for correctness

can be given. Lawo AG cannot be held responsible for any misleading or incorrect information

provided throughout this manual.

Lawo AG reserves the right to change specifications at any time without notice

© Lawo AG, May 2014

 Technical Documentation

 Remote MNOPL

Version: 5.0 Revision: 12.05.2014

Contents
1 Introduction .. 7

1.1 General Overview ... 7
1.2 Establishing a Connection .. 7
1.3 Login Sequence .. 7
1.4 Streams .. 7
1.5 Polling ... 7
1.6 Terminating the Session ... 7

2 MNOPL protocol... 8
2.1 General Data Types .. 8
2.2 High Level Signal Definitions .. 8
2.3 Global Device Addresses (GDA) ... 9
2.4 Signal Mapping ... 9
2.5 Message Structure .. 9
2.6 Message Types ... 10

2.6.1 General remarks about message types and data format ... 10
2.6.2 PK_EVENT .. 11
2.6.3 PK_CHANGE .. 11
2.6.4 PK_QUERY ... 11
2.6.5 PK_QUERY_REPLY ... 11
2.6.6 PK_QUERY_NOREPLY .. 12
2.6.7 PK_ACCESS_DENIED ... 12

3 Detailed Description ... 13
3.1 Topology ... 13

3.1.1 Standalone Server ... 13
3.1.2 Redundant Servers ... 13
3.1.3 Dual Star Configuration ... 13

3.2 Connecting to a Server ... 13
3.2.1 Login Sequence .. 13
3.2.2 Connection Timing Constraints ... 13

4 General Messages ... 14
4.1 Login Message.. 14
4.2 Login Reply Message ... 14
4.3 Subscription .. 15
4.4 Unsubscription .. 15
4.5 Polling ... 15
4.6 Router Activity ... 16
4.7 Server Activity ... 16

5 Client Configuration in Service ... 17
5.1 Getting the List of Signal Definitions ... 17
5.2 Working with Signal Labels ... 17
5.3 Retrieval of Device Types ... 18
5.4 Retrieval of Extended Device Type Information .. 18
5.5 Compact State Query ... 20
5.6 Iterating Mapping Tables .. 21

6 Parameter Control .. 23
6.1 Microphone/Line Inputs Parameter Control .. 23
6.2 IO Board DSP Parameter Control ... 25

6.2.1 IO Board DSP Level Change Request .. 25
6.3 IO Board DSP Phase Inversion Request .. 25
6.4 IO Board DSP Mono Mix Request .. 25
6.5 IO Board DSP Mono Mixer Mode Settings .. 26
6.6 IO Board DSP Balance ... 26
6.7 I/O Board Mixing Matrix .. 26

6.7.1 Retrieving Unit Information .. 27
6.7.2 Configuring Mixing Unit Inputs (DEVICETYPE_SUM_IN) ... 28
6.7.3 Configuring Mixing Unit Outputs (DEVICETYPE_SUM_OUT) .. 29
6.7.4 Fading ... 30
6.7.5 Single Parameter Control .. 30

6.8 Stereo Monitoring Units (valid for mc² HD) ... 33
6.9 Surround Monitoring Units .. 37
6.10 Silence Detect .. 42
6.11 DALLIS SDI HD/SD Units... 44

6.11.1 Input and output sections .. 45
6.11.2 Input section .. 45
6.11.3 Output section ... 46
6.11.4 Device section ... 47

6.12 DALLIS SDI 3G Units ... 48
6.12.1 Output section ... 49
6.12.2 Device section ... 49

6.13 DALLIS IP Codec Units .. 53
6.13.1 IP Codec Control ... 53
6.13.2 IP Codec Status .. 54

7 Generic Control .. 56
7.1 Working with Audio-Follows-Video .. 56
7.2 Working with GPIO ... 56

7.2.1 GPI State (DEVICETYPE_GPI) ... 56
7.2.2 GPO State (DEVICETYPE_GPO) ... 57

7.3 Setting two Signals to Stereo Mode .. 57
8 Working with Protections .. 58

8.1 Request Level ... 59
8.1.1 Request Level Event ... 59
8.1.2 Request Level Change .. 59
8.1.3 Querying a Request Level ... 59
8.1.4 Query Reply for a Request Level .. 59
8.1.5 Reply for Unsuccessful Request Level Query ... 60

8.2 Protect Level ... 60
8.2.1 Protect Level Request Message .. 60
8.2.2 Protect Level change Reply Message ... 61
8.2.3 Querying a Protect Level ... 61
8.2.4 Query Reply for a Protect Level .. 61
8.2.5 Reply for Unsuccessful Protect Level Query ... 61

8.3 Behaviour on protection violations .. 62
9 Matrix DSP Units .. 63

9.1 Matrix DSP Short Delay Module ... 63
9.2 Matrix DSP Fader Module ... 64
9.3 Matrix DSP Compressor Module ... 65
9.4 Matrix DSP Limiter Module ... 67
9.5 Matrix DSP Parametric EQ Module ... 68

9.5.1 Filter Slope and Type .. 68
9.5.2 Valid types per band .. 68
9.5.3 Slope and Quality per Type ... 68

9.6 Matrix DSP Graphic EQ Module ... 69
9.7 Matrix DSP Gate Module .. 70
9.8 Matrix DSP Automatic Gain Control Module ... 70

9.8.1 Side Chain Filter Types ... 71
9.9 Matrix DSP Input Mixer ... 71
9.10 Matrix DSP Timed Fader .. 72
9.11 Matrix DSP Signal Condition Monitor ... 72
9.12 Matrix DSP Channel Metering .. 73

 Technical Documentation

 Remote MNOPL

Version: 5.0 Revision: 12.05.2014

9.13 Matrix DSP Correlation Metering .. 74
9.14 Matrix DSP Mixing Matrix ... 75

10 DSP Parameter Control (valid for mc² series only) .. 77
10.1 DSP Main Level ... 77
10.2 DSP Channel Cut ... 78
10.3 DSP Panpot Balance ... 78
10.4 DSP Panpot Frontback .. 78
10.5 DSP Access Channel ... 78
10.6 DSP Audio Follows Video .. 78
10.7 DSP PFL On/Off, PFL 1 Clear, Aux Send On/Off, PEQ, PF, AF .. 80

11 Snapshots .. 81
11.1 Loading and Saving Snapshots.. 81
11.2 Using Snapshot Filters ... 82
11.3 Working with Snapshot Isolate ... 83

12 Access Channel Presets (valid for mc² series only) ... 85
12.1 Querying a Channel Preset .. 85
12.2 Recalling a Channel Preset .. 85

13 Working with Routings ... 87
13.1 Basic Routing Messages .. 87

13.1.1 Routing Request Message .. 87
13.1.2 Routing Reply Message .. 87
13.1.3 Querying a Routing ... 88
13.1.4 Query Reply for a Routing ... 88
13.1.5 Reply for Unsuccessful Routing Query .. 88

13.2 Static Routing ... 88
13.2.1 Static Routing Request .. 88
13.2.2 Static Routing Change .. 89
13.2.3 Static Routing Query ... 89
13.2.4 Static Routing Reply .. 89
13.2.5 Unsuccessful Static Routing Query ... 89

14 Using signal generators (noise & tone) .. 90
14.1 Signal generators on DALLIS I/O units .. 90
14.2 Signal generators on Router Card 980/33 .. 91

14.2.1 Automatic generation of HLSDs .. 91
14.2.2 Controlling the core sine generators .. 91
14.2.3 Controlling the core noise generators .. 92

15 Receiving Error Messages and Warnings .. 93
15.1 Errorinfo Struct ... 93

16 Manufacturer and Device ID Table... 94
17 Information Element Table ... 95
18 Error classes and error types ... 96
19 Appendix A – Mic/Line card dynamic range design limits .. 98

19.1 Basic Condition .. 98
19.2 Adjustment Range .. 98

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 7 Revision: 12.05.2014

1 Introduction

The remote control protocol RemoteMNOPL is a LAN based client-server network byte order protocol to enable third

party systems to control Lawo’s digital mixing consoles or standalone routers. It is based on TCP/IP and implements the

philosophy of categorized streams of control data for communication. The functionality described here is valid for mc² HD

series and Nova 73.

1.1 General Overview

Digital mixing consoles or routers from Lawo AG are servers for third party equipment. They provide services for external

systems to remotely control Lawo products. In the further description we will refer to Lawo products as the “server” and

third party equipment as the “client”.

1.2 Establishing a Connection

Connection establishment is similar to any other TCP/IP based client server architecture. The client is asking the server

for a connection via a TCP socket with a known port number. After the connection has been accepted by the server the

login sequence is the first communication flow.

1.3 Login Sequence

The client has to send a login message with an identification structure. The server is responding to this message with its

own identification.

1.4 Streams

The server is using various messages and data types but only a limited number is in the interest of a client. Therefore a

possibility to filter all these information elements has been created. RemoteMNOPL is defining streams as sequences of

messages and data types of a specific family of information elements. The client can subscribe to these streams to

receive the respective information.

1.5 Polling

During the communication session the server is sending keepalive messages to the client. These messages have to be

answered immediately. If the client does not answer on more than 4 keepalive queries, the server will close the

communication socket. A new connection has to be established by the client passing through a new login sequence.

1.6 Terminating the Session

A remote control session is terminated by closing the communication socket.

Revision: 12.05.2014 Page 8 Version: 5.0

2 MNOPL protocol

The used MNOPL protocol is an event based communication protocol. Events can be sent at any time except during the

start-up synchronization where the login sequence and the subscription to streams are done.

2.1 General Data Types

Data Type Size

byte 1 octet unsigned

unsigned short 2 octets unsigned

unsigned int 4 octets unsigned

signed short 2 octets signed

signed int 4 octets signed

string[x] sequence of x bytes

Client Signal Address Type (CSA) unsigned int

High Level Signal Definition (HLSD) unsigned int

Global Device Addresses (GDA) unsigned int

head.m message types (M_NUM) unsigned short

STATE8 byte

STATE16 unsigned short

STATE32 unsigned int

KEYS unsigned short

DEVICETYPE unsigned short

Extended Device Type (MCX_DEVICETYPE) unsigned int

LEVEL signed short

RANGE signed short

TIME unsigned int

STIME unsigned short

RATIO unsigned short

FREQ unsigned short

QUALITY unsigned short

The order in data types containing multiple octets is big endian (network byte order).

2.2 High Level Signal Definitions

The High Level Signal Definitions (HLSD) are special entities of four octets (unsigned int) each describing one level of

the signal definition hierarchy. This is the addressing scheme for Lawo systems. Every signal in a system can be

addressed by an HLSD.

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Signal class Subclass Component Subcomponent

The most significant bit (bit 31) is also called the ‘target flag’ since it can be used to determine sources and targets. If this

bit is set, the signal definition points to a target otherwise to a source. The signal class is used to group signals by type.

The subclass (sub signal) and component fields identify the signal mostly but not necessarily hardware oriented. The

subcomponent field identifies single signals of multi-channel formats. Currently only the formats mono (subcomponent 0)

and stereo (subcomponent 0 = left or 1 = right) are supported.

DSP signal HLSDs in mixing consoles use a different meaning for the subcomponent field: if the signal index which is

normally represented in the component field exceeds 256 the subcomponent field will contain the high byte of the signal

index.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 9 Revision: 12.05.2014

2.3 Global Device Addresses (GDA)

The Global Device Address is used for a tree-based addressing of devices in Lawo systems. Descending from an

unnamed root node the GDA tree levels are like follows:

 HD Core level

 HD Core IO card level (MADI card, ATM card, DSP card etc.)

 IO card port level (MADI ports, ATM ports)

 DALLIS IO card level (Microphone & Line interfaces, AES interfaces etc.)

 Signal index level

The tree is represented by a 32-bit number with the following structure:

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 HD Core HD Core IO card IO port DALLIS IO card S T Signal index

“S” in the table above marks the subdevice bit (which is always set to 0 for standard audio signals); “T” marks the target

bit. This bit is set to 1 if the signal is a matrix destination and to 0 if it is a matrix source.

Global Device Addresses are currently used for the Extended Device Type Information telegram. Using the GDA

information the client is able to determine the physical position of a signal.

2.4 Signal Mapping

Some clients are not able to use HLSD addresses for a couple of reasons. These clients can use the signal mapping

feature of RemoteMNOPL. With signal mapping any addressing scheme with signal addresses of up to 31 bit in size can

be mapped to values compatible with this protocol.

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 T External Address

The client can use the 32 bit frame above to send any client specific address to the server. Bit 32 is still used as the

‘target flag’ to distinguish source addresses from target addresses. In the server maps can be configured for up to 15

different clients to associate the client specific numbers to the HLSD addresses the server uses. Note: A client that uses

signal mapping has to send the index of the appropriate map to the server in the login message.

Example: A client is using 10 bit addresses for sources and targets. To send a connect request source 17 to target 431 in

signal mapping mode the client has to write the small addresses in unsigned int fields and set bit 31 for the target

address. These unsigned int values then will be used for the RemoteMNOPL message datagram.

Source 17:

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 0 0 0 1

Target 431:

bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 0 1 0 1 1 1 1

2.5 Message Structure

The message structure of a protocol message is as follows:

Message ID unsigned short head.m

Message Sub ID unsigned short head.n

Origin ID byte head.o

Message Type byte head.p

Message Length unsigned short head.l

[Data] 0...x octets data

Revision: 12.05.2014 Page 10 Version: 5.0

Explanation:

• Message ID (m): Defines the message type. Please refer to chapter 17 for a list of available message types.

• Message Sub ID (n): Contains further information depending on the message id. Must be set to 0 until otherwise

stated in the message description.

• Origin ID (o): The unique ID for external controllers. This ID is assigned to the client by the server in the login

sequence. The client has to use this ID in every message it is sending to the server.

• Message Type (p): Messages are divided into the following package types.

Request for data change PK_EVENT

Report of a data change PK_CHANGE

Query for data PK_QUERY

Successful query reply PK_QUERY_REPLY

Unsuccessful query reply PK_QUERY_NOREPLY

Access denied PK_ACCESS_DENIED

Note: A query will be replied only to the inquirer – even if the client did not subscribe to the corresponding

message stream. Server changes are broadcasted in the system and will be transmitted to the client if the

corresponding message stream is subscribed.

• Message Length (l): Number of octets of the message head (8 octets) plus the number of data octets contained.

• [Data]: The number of octets in the data field depends on the message ID and the message type. Some

messages have no data.

2.6 Message Types

The RemoteMNOPL protocol contains six different types of messages:

• Event (PK_EVENT): the event message is a request for a data change in the system’s database.

• Change (PK_CHANGE): a change message is the result of an action taken on the system’s database. It is the

reply to an event message (see above).

• Query (PK_QUERY): a query for certain parameters in the system.

• Query reply (PK_QUERY_REPLY): the query reply contains the information requested from the system by a

query message.

• Unsuccessful query reply (PK_QUERY_NOREPLY): if unavailable or non-existent data has been requested the

system’s response will be an unsuccessful query reply.

• Access denied reply (PK_ACCESS_DENIED): Access denied due to restrictions for the client.

The following sections contain examples for every type of message possible. As a demonstration the messages will work

with matrix connects.

2.6.1 General remarks about message types and data format

In most cases the data format of a Remote MNOPL message depends on its message type and there is a common

concept for deducing the data format of any other message type if one data format is known. This concept for the data

format is as follows:

PK_EVENT contains one or more data elements including an address and a parameter

PK_CHANGE same as PK_EVENT

PK_QUERY contains one or more addresses (and no parameter)

PK_QUERY_REPLY same as PK_EVENT

PK_QUERY_NOREPLY same as PK_QUERY

PK_ACCESS_DENIED same as PK_QUERY

Please note that all query and event messages support a single address only unless otherwise stated.

The following chapters give an example for a routing message.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 11 Revision: 12.05.2014

2.6.2 PK_EVENT

The PK_EVENT message encapsulates requests for data changes in the system database. In this example the target

0x9B000200 shall be connected to the source 0x23000100.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_EVENT Request for data change.

head.l E.g. 16 8 octets for the message head and 8 octets of data for 2 Client Signal Addresses

(source and target)

Data E.g. 0x23000100 Client Signal Address (CSA) of an audio source

 E.g. 0x9B000200 Client Signal Address (CSA) of an audio target

2.6.3 PK_CHANGE

The server would reply to the routing request message in the example above with:

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Server’s Origin ID.

head.p PK_CHANGE Report of data change.

head.l 16 8 octets for the message head and 8 octets of data for 2 Client Signal Addresses

(source and target).

Data 0x23000100 Client Signal Address (CSA) of an audio source.

 0x9B000200 Client Signal Address (CSA) of an audio target.

2.6.4 PK_QUERY

The source connected to a target can be queried by a MX_CONNECT message with packet type PK_QUERY.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_QUERY Query for data.

head.l 12 8 octets for the message head and 4 octets of data for a Client Signal Address

(target).

Data E.g. 0x9B000200 Client Signal Address (CSA) of the audio target.

This request will be answered with one of the following replies:

2.6.5 PK_QUERY_REPLY

If the query can be processed successfully the system responds with a PK_QUERY_REPLY message.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Server’s OriginID.

head.p PK_QUERY_REPLY Query reply.

Revision: 12.05.2014 Page 12 Version: 5.0

Field Value Description

head.l 16 8 octets for the message head and 8 octets of data for two Client Signal

Addresses (source and target).

Data 0x23000100 Client Signal Address (CSA) of the audio source.

 0x9B000200 Client Signal Address (CSA) of the audio target.

2.6.6 PK_QUERY_NOREPLY

In case a problem occurs during the processing of the query the system will inform the client with a

PK_QUERY_NOREPLY message.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Server’s OriginID.

head.p PK_QUERY_NOREPLY Query unsuccessful.

head.l 12 8 octets for the message head and 4 octets of data for a Client Signal

Address.

data 0x9B000200 Client Signal Address (CSA) of the audio target.

2.6.7 PK_ACCESS_DENIED

Due to configuration restrictions it is possible that the client is not allowed to access the audio target. The server will

respond with a PK_ACCESS_DENIED message.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Server’s OriginID.

head.p PK_ACCESS_DENIED Access to this audio target is prohibited.

head.l 12 8 octets for the message head and 4 octets of data for a Client Signal Address.

data 0x9B000200 Client Signal Address (CSA) of the audio target.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 13 Revision: 12.05.2014

3 Detailed Description

3.1 Topology

3.1.1 Standalone Server

In a standalone server configuration the client only has to connect to the server as described in chapter 1 to control the

router and automatically keep in sync with the server.

3.1.2 Redundant Servers

For high availability reasons it is possible to have two servers in hot standby mode. A client has to connect to both

servers at the same time. One of these servers is running in active mode, the other in passive or “standby” mode.

The client must send requests to both servers in parallel. The server in active mode is working the same way as a

standalone server. Only the active server is sending responses to the client’s requests. The server in passive mode

responds to login messages and stream subscriptions only and expects polling replies on its polling messages. All other

messages to the passive server will be accepted and ignored.

When a passive server is becoming active it is sending an activity message to inform all clients that a redundancy

takeover has taken place. The clients must reply to this message by sending all outstanding connection data to the

server to resynchronize with the router.

3.1.3 Dual Star Configuration

In a dual star configuration each star is providing its own server. Both servers are working in parallel and audio data will

be routed in each star. Therefore a client also has to connect to both servers at the same time. All connection requests

have to be sent to both servers.

The client can request a switchover to the redundant star. The server of the star that has become active is sending an

activity message to inform all clients that a switchover has taken place. This activity message is also sent unsolicited

when e.g. a manual switchover has been initiated.

Of course each star can also be built with redundant servers. In that case the client has to connect to each star the way

described above.

3.2 Connecting to a Server

The client is connecting to the server by opening a socket to TCP port

55555 at the server side. As soon as a connection is established

successfully the client has to send the login message first.

3.2.1 Login Sequence

The login message contains a set of configuration information needed

to initialize the server. The server will respond with a login reply

message.

As the next step the client has to subscribe to the data streams

needed in order to take part of the internal communication flow. The

subscription request message will be answered by a subscription reply

message.

By receiving the subscription reply message the client is fully accepted

by the server and the necessary configuration has taken place.

3.2.2 Connection Timing Constraints

Cf. MX_HELLO, chapter 4.5.

Revision: 12.05.2014 Page 14 Version: 5.0

4 General Messages

4.1 Login Message

The login message and the login reply message are special messages used for the initial connection setup. These

messages contain information necessary to start the MNOPL communication. Both messages have a size of 48 octets.

Field Type Description

head.m REMOTE_LOGIN Remote Login Request.

head.n 0 Don’t care.

head.o 0 Don’t care.

head.p PK_EVENT Request for data change.

head.l 56 8 octets for the message head and 48 octets of data.

Label string[32] A small text describing the client type.

ManufacturerID unsigned short Identification of the manufacturer of the connecting client. Valid

ManufacturerIDs can be found in chapter 16. You can apply for an ID at

Lawo AG.

DeviceID unsigned short Identification of the manufacturer’s device. Valid DeviceIDs can be found

in chapter 16. You can apply for an ID at Lawo AG.

MappingMode byte 0 = off; the type of signal definitions is set to HLSD. This is the normal

operating mode providing the full functionality.

Values between 1 and 15 choose the appropriate map for signal

mapping. Signal mapping requires the configuration of client specific

addresses that the server can translate to HLSDs.

ProjectID unsigned int Supported for legacy systems.

ControlSystemID byte Supported for legacy systems.

Client Major Version byte
Version of the documentation the client complies with.

Client Minor Version byte

Reserved string[4] Reserved for future use.

After the login message has been sent, the server is reading the appropriate configuration data for serving the client. The

client must set a timeout on this process not shorter than 10 seconds.

4.2 Login Reply Message

Field Type Description

head.m REMOTE_LOGIN Remote Login Request

head.n 0 Don’t care.

head.o 0 Don’t care.

head.p PK_CHANGE Report of data change.

head.l 56 8 octets for the message head and 48 octets of data.

Label string[32] A small text describing the server type.

ManufacturerID unsigned short 0, if the system is a server of Lawo AG.

DeviceID unsigned short Identification of the manufacturer’s device.

DeviceNumber byte Needed to distinguish multiple servers.

OriginID byte The OriginID that has to be used by the client in further communication

(see note below).

Server State byte Describes whether the server is in STATE_ACTIVE or in

STATE_PASSIVE.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 15 Revision: 12.05.2014

Field Type Description

Router State byte Describes whether the router is in STATE_ACTIVE or in

STATE_PASSIVE.

Server Major Version byte
Version of the MNOPL documentation the server complies with.

Server Minor Version byte

Reserved string[6] Reserved for future use.

Note: The OriginID sent by the server in the login reply must be used by the client in the head.o field of every message it

is sending to the server later. The server will use an origin ID in the range of 0 to 31 depending on the configuration. The

default server origin ID is 0.

4.3 Subscription

Note: From now on the message descriptions will be less detailed. The table headers state the RemoteMNOPL

message ID (head.m) and the parameters for all message types are explained in the table body. For more

detailed information about the basic message structure please refer to chapters 2.5 and 2.6. For constant values

(which are mostly mentioned CAPITALIZED) please refer to chapter 17.

OPEN_STREAM

Message Type Parameter Comment

PK_EVENT [Sequence of] M_NUM This subscription message is opening the stream of message replies

in which head.m contains M_NUM. You can subscribe to more than

one stream by sending this message with multiple M_NUMs in the

data field. The length of the message (head.l) must be set to the

appropriate value.

PK_CHANGE [Sequence of] M_NUM The server will respond with a change message where the data field

contains all the streams that were successfully registered for the

client. The length of the message (head.l) is set to the appropriate

value.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

4.4 Unsubscription

CLOSE_STREAM

Message Type Parameter Comment

PK_EVENT [Sequence of] M_NUM This unsubscription request message is closing the stream of

message replies in which head.m contains M_NUM. You can close

more than one stream by sending this message with multiple

M_NUMs in the data field.

PK_CHANGE [Sequence of] M_NUM The server will respond with a change message where the data field

contains all the streams that were successfully closed by the server.

The length of the message (head.l) is set to the appropriate value.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

4.5 Polling

The server will supervise the availability of the client by sending polling messages frequently. Server polling has to be

answered at once sending a polling response back to the server.

Revision: 12.05.2014 Page 16 Version: 5.0

Note: If neither a polling message nor any other message was sent by the server for longer than 30 seconds the client

should close the socket and try to connect to the server again.

MX_HELLO

Message Type Parameter Comment

PK_EVENT None The client has to respond with the same message (PK_EVENT) containing its

own OriginID.

PK_CHANGE None Not implemented.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

4.6 Router Activity

ER_BECOME_ACTIVE_ROUTER

Message Type Parameter Comment

PK_EVENT None In configurations with two redundant routers (‘dual star’ configuration) only audio

data of one routing facility is used at a time. The client can switch over to the

redundant system by sending a router activity request to the server of the

standby system. Initially the client receives the router state information in the

login reply message where the field ‘router state’ contains the value

STATE_ACTIVE for the active system or STATE_PASSIVE for the redundant

system.

PK_CHANGE None If the server has set the routing facility as the active system it is sending a router

activity reply message to all connected clients.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

4.7 Server Activity

MX_SERVER_ACTIVE

Message Type Parameter Comment

PK_EVENT None The client is able to switch the standby server to active mode by

sending the server activity change request.

PK_CHANGE None The server will reply with an appropriate server activity change

message after having switched to active mode. The second

server which is switching from active to standby mode will block

server activity change requests for the next 10 seconds.

PK_QUERY None The client may query the current server and router state using

the MX_SERVER_ACTIVE query.

PK_QUERY_REPLY struct

{

 byte routerState;

 byte serverState;

}

If the server activity is queried the system’s reply contains two

bytes reporting the router state and the server state.

routerState Current router state, valid states are

STATE_ACTIVE and STATE_PASSIVE.

serverState Current server state, valid states are

STATE_ACTIVE and STATE_PASSIVE.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 17 Revision: 12.05.2014

5 Client Configuration in Service

A client can request the router’s configuration data dynamically at runtime by querying the complete list of high level

signal definitions and the labeling information for each CSA received.

5.1 Getting the List of Signal Definitions

ER_SYSTEM_HLSDS

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY None The client can request the complete list of signal definitions available

in the system by sending the ER_SYSTEM_HLSD query.

PK_QUERY_REPLY [Sequence of] CSA The reply to the query is a complete list of signal definitions available

in the mapping table selected via the login message.

Note: The list of CSAs contains signal definitions for all sources and targets available to the client. Due to the nature of

CSAs, sources can be distinguished from targets by looking at the most significant bit (the ‘target flag’). If the most

significant bit is set the signal is a target.

If the number of CSAs in the system exceeds 15000 the query reply will be segmented. The segment index will be

counted backwards in the head.n field. E.g. if we have 16000 CSAs, two messages will be sent: segment 1 (head.n = 1)

containing 15000 CSAs and segment 2 (head.n = 0) containing 1000 CSAs.

5.2 Working with Signal Labels

Each signal can have up to five labels: LABEL_SIGNALNAME, LABEL_STARTUP, LABEL_USER, LABEL_INHERITED

and LABEL_GROUP. The label selection has to be defined in the head.n field of the message by using the appropriate

value according to the following table:

ER_LABEL 0xF2A6

LABEL_SIGNALNAME 0

LABEL_STARTUP 1

LABEL_USER 2

LABEL_INHERITED 3

LABEL_GROUP 4

Labels always have a fixed size of 8 octets. A label does not necessarily contain a NULL byte at the end. Therefore it

cannot be seen as a string at a “C” point of view.

Any label can be changed by sending a new label value.

It is strongly recommended to change only the user label by using LABEL_USER the head.n field of the message.

Please note that labels of DSP master channels cannot be changed.

ER_LABEL

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte label[8];

}

Request to change a label.

PK_CHANGE struct

{

 CSA address;

 byte label[8];

}

Automatically generated message when a label has been

changed.

Revision: 12.05.2014 Page 18 Version: 5.0

ER_LABEL

Message Type Parameter Comment

PK_QUERY [Sequence of] CSA The client can ask for signal labels with the ER_LABEL query. The

label that shall be included in the response has to be defined by

setting the appropriate index in the head.n field.

PK_QUERY_REPLY struct

{

 CSA address;

 byte label[8];

}

5.3 Retrieval of Device Types

The physical device that hosts the signal identified by a CSA can have special parameters to be controlled. To use the

right parameter set it is first necessary to identify the type of a device by sending the following query.

IO_DEVICE_TYPE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY [Sequence of] CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 DEVICETYPE type;

}

The returned DEVICETYPE value specifies the type of the signal.

For a table of available device types please refer to chapter 17.

5.4 Retrieval of Extended Device Type Information

In special appliances the simple device information as described in chapter 5.3 provides not enough information.

Therefore, the Extended Device Type offers a more detailed view including the physical device position and the

hardware device types of all parent devices.

IO_EXTENDED_DEVICE_TYPE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY [Sequence of] CSA The parameter query is referenced by

the CSA of the audio signal.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 19 Revision: 12.05.2014

IO_EXTENDED_DEVICE_TYPE

Message Type Parameter Comment

PK_QUERY_REPLY struct

{

 CSA address;

 DEVICETYPE type;

 unsigned int gda;

 unsigned int devicetype_box;

 unsigned int devicetype_slot;

 unsigned int devicetype_port;

 unsigned int devicetype_dallisslot;

 string[42] reserved;

}

The query reply for an Extended Device

Type Information query also contains

the reply for a standard Device Type

query in the first 6 data octets.

address Signal CSA.

type Device Type (see 5.3)

gda Physical device position

(see 2.3).

The following elements device-

type_box, _slot, _port and _dallisslot

can be used to determine the device

types of the signal’s parent devices.

Please note that the values of these

elements are different from DEVICE-

TYPE values.

Please refer to chapter 17 for more

details.

Revision: 12.05.2014 Page 20 Version: 5.0

5.5 Compact State Query

ER_COMPACT_STATE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio

signal.

PK_QUERY_REPLY struct

{

 CSA address;

 CSA conn_source;

 byte lbl_user[8];

 byte lbl_group[8];

 byte lbl_inhrt[8];

 DEVICETYPE type;

 byte protect_level;

}

address The CSA of the queried signal.

conn_source If the queried signal is a source - always

NO_SIGNAL (0xFFFFFFFF).

If the queried signal is a target:

A source CSA If a source is

connected to the

target.

NO_SIGNAL

(0xFFFFFFFF)

If no source is

connected to the

target.

UNKNOWN_SIGNAL

(0xFFFEFFFF)

If a source is

connected to a

target which is

unknown to the

client.

lbl_user The LABEL_USER of the queried signal.

lbl_group The LABEL_GROUP of the queried signal.

lbl_inhrt If the queried signal is a source the

LABEL_INHERITED is always its own

LABEL_USER.

If the queried signal is a target:

LABEL_USER of

a source

If a source is

connected to the

target.

Its own

LABEL_USER

If no source is

connected to the

target.

type The device type of the queried signal.

protect_level The protect level for routing modifications. If

protection is not supported for the queried

signal, this field will contain

PROTECT_NO_SUCCESS (0xFF).

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 21 Revision: 12.05.2014

5.6 Iterating Mapping Tables

Revision: 12.05.2014 Page 22 Version: 5.0

ER_STATE_SEQUENCE_GET_FIRST

Message Type Parameter Comment

PK_EVENT None The server will set its sequence pointer to the first mapping table entry,

irrespective of the current position of the sequence pointer.

The server will reply to ER_STATE_SEQUENCE_GET_FIRST with one of

the following messages:

ER_COMPACT_STATE - Query Reply of the first signal in the mapping

table.

ER_STATE_SEQUENCE_END - If the mapping table is empty.

PK_CHANGE None Not implemented.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

ER_STATE_SEQUENCE_GET_NEXT

Message Type Parameter Comment

PK_EVENT None The server will set the sequence pointer to the next mapping table entry, if

the sequence pointer doesn't point to the last mapping table entry. If the

sequence pointer points to the last mapping table entry, it will not be set to

the first entry of the mapping table.

The server will reply to ER_STATE_SEQUENCE_GET_NEXT with one of

the following messages:

ER_COMPACT_STATE - Query Reply of the next signal in the mapping

table.

ER_STATE_SEQUENCE_END - If the mapping table is empty.

PK_CHANGE None Not implemented.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

ER_STATE_SEQUENCE_END

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Table pointer reached the end of the compact state query sequence.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 23 Revision: 12.05.2014

6 Parameter Control

6.1 Microphone/Line Inputs Parameter Control

IO_MICLINE_BLOCK

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte mode;

 LEVEL amp;

 byte phantom;

 byte lowcutmode;

 byte pad;

}

address The CSA of the mic/line input.

mode Set to MODE_MIC or MODE_LINE.

Please note that LINE only IO cards do not

support switching to MODE_MIC. Nevertheless

the switching will be tried – so there will be a

success message first. After a short moment the

actual hardware will deny the request by

sending another PK_CHANGE with the

MODE_LINE value.

amp Contains the amplification in dB in steps of 1 dB

with a resolution of 1/32 dB (e.g. 32 = 1 dB, 64

= 2 dB). Please note that this 1 dB step

restriction applies to Remote MNOPL clients

only and other clients might send different

values.

The general range is -20 to +70 dB, which yields

LEVEL values of -640 to +2240. Depending on

the hardware type, the hardware mode (MIC,

LINE), the system headroom and the system

reference level, the valid range might be limited.

In such a case the full control range is not

available.

If you try to set a value exceeding the range the

hardware is capable of, the hardware will deny

the request and send a PK_CHANGE message

containing the corrected value which has been

set.

phantom Set this field to ON if you want to switch

phantom power on for microphone inputs.

Otherwise set it to OFF. Phantom power switch

requests will be ignored for line inputs.

lowcutmode Switches the low cut filter. Defined values are

OFF, LOWCUT_40HZ, LOWCUT_80HZ,

LOWCUT_140HZ.

pad Switches pad ON or OFF. Pad will not be

available for line inputs.

Revision: 12.05.2014 Page 24 Version: 5.0

IO_MICLINE_BLOCK

Message Type Parameter Comment

PK_CHANGE struct

{

 CSA address;

 byte mode;

 LEVEL amp;

 byte phantom;

 byte lowcutmode;

 byte pad;

}

Contains the values that have been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte mode;

 LEVEL amp;

 byte phantom;

 byte lowcutmode;

 byte pad;

}

See PK_EVENT above.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 25 Revision: 12.05.2014

6.2 IO Board DSP Parameter Control

6.2.1 IO Board DSP Level Change Request

The digital amplification level on I/O boards can be controlled by using the following RemoteMNOPL messages.

IO_BOARD_DSP_GAIN

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 LEVEL amp;

}

address The CSA of the input or output signal.

amp Contains the amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This yields LEVEL values

of -4096 to +480.

PK_CHANGE struct

{

 CSA address;

 LEVEL amp;

}

Contains the values that have been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 LEVEL amp;

}

See PK_EVENT above.

6.3 IO Board DSP Phase Inversion Request

Phase inversion with DSPs on I/O boards is controlled similar to the IO board DSP gain by using

IO_BOARD_DSP_INV_PHASE in the head.m field.

The following structure can be used as the parameter set.

struct

{

 CSA address;

 byte inversion;

}

The parameter “inversion” contains ON or OFF.

6.4 IO Board DSP Mono Mix Request

Mono mix for matrix outputs on I/O boards is controlled similar to the IO board DSP gain by using

IO_BOARD_DSP_OUT_MONOMIX in the head.m field.

The following structure can be used as the parameter set.

struct

{

 CSA address;

 byte monomix;

}

The parameter “monomix” contains ON or OFF.

Revision: 12.05.2014 Page 26 Version: 5.0

6.5 IO Board DSP Mono Mixer Mode Settings

The configuration of mono mixers for matrix outputs on I/O boards is controlled similar to the above by using

IO_BOARD_DSP_OUT_MONOMODE in the head.m field. A mono mixer is always using two physical outputs with

sequent resources. These resources depend on the configuration of the matrix and are used in a project specific way.

The following structure can be used as the parameter set.

struct

{

 CSA address;

 byte mixermode;

}

The parameter “mixermode” can contain one of the following modes for the mono mixer:

0 Mono mix

1 Left channel to both outputs

2 Right channel to both outputs

3 Left Right Swap

6.6 IO Board DSP Balance

The control of the balance parameter of stereo inputs and outputs on I/O boards is controlled similar to the above by

using IO_BOARD_DSP_BALANCE in the head.m field. Balance is always used with two physical inputs or outputs with

sequent resources. These resources depend on the configuration of the matrix and are used in a project specific way.

The following structure can be used as the parameter set.

struct

{

 CSA address;

 RANGE balance;

}

The range of the balance value is -20…+20.

6.7 I/O Board Mixing Matrix

A matrix system can have multiple small mixing units that can be inserted into a signal path. With these mixing units i t is

possible to implement signal fading or small mixing entities. The structure of these devices is shown in the following

diagram:

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 27 Revision: 12.05.2014

The inputs and outputs of the mixing units are internal targets and sources of the matrix and identified by CSAs.

Therefore the units can be inserted into a signal path by standard connect procedures.

To identify the sources and targets of a mixing unit the IO_DEVICE_TYPE query message can be used. The query result

will be DEVICE_TYPE_SUM_IN for the inputs of the mixing units (target CSAs from the matrix point of view) and

DEVICE_TYPE_SUM_OUT for the outputs (source CSAs for the matrix).

There are two types of mixing units available: 8x8 as shown in the diagram and 4x4 with the same functionality but

smaller in size. The unit size can be queried with the ER_UNIT_INFO message. The ER_UNIT_INFO query delivers the

dimension of the mixing unit (4 or 8), the ID of the unit in the matrix system and the ID of the channel within the mixing

unit per CSA.

6.7.1 Retrieving Unit Information

ER_UNIT_INFO

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE None Not implemented.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte dimension;

 byte unitID;

 byte channelID;

}

address CSA of the input or output of a mixing unit.

dimension Dimension of the mixing unit (4 or 8).

unitID Unit ID of the mixing unit.

channelID Channel ID of the mixing unit.

Revision: 12.05.2014 Page 28 Version: 5.0

6.7.2 Configuring Mixing Unit Inputs (DEVICETYPE_SUM_IN)

IO_BOARD_SUM_IN_CONFIG

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 STIME fadeInTime;

 STIME fadeInWaitTime;

 STIME fadeOutTime;

}

address CSA of the mixing unit input.

mute Input mute (ON/OFF).

invPhase Input phase inversion (ON/OFF).

gain Contains the input amplification in dB

in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to +480.

fadeInTime Fade-in time in milliseconds.

Recommended time settings are 20 to

65535 ms.

fadeInWaitTime Fade-in-wait time in milliseconds (fade

in starts after [fadeWaitTime] ms).

Recommended time settings are 20 to

65535 ms.

fadeOutTime Fade-out time in milliseconds.

Recommended time settings are 20 to

65535 ms.

PK_CHANGE struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 STIME fadeInTime;

 STIME fadeInWaitTime;

 STIME fadeOutTime;

}

Contains the values that have been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio

signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 STIME fadeInTime;

 STIME fadeInWaitTime;

 STIME fadeOutTime;

}

See PK_EVENT above.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 29 Revision: 12.05.2014

6.7.3 Configuring Mixing Unit Outputs (DEVICETYPE_SUM_OUT)

IO_BOARD_SUM_OUT_CONFIG

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 byte XPSet[8];

 byte invXPPhase[8];

 LEVEL XPGain[8];

}

address CSA of the mixing unit output.

mute Output mute (ON/OFF).

invPhase Output phase inversion (ON/OFF).

gain Contains the output amplification in dB in

steps of 1/32.

The range is -128 to +15 dB. This yields

LEVEL values of -4096 to +480.

XPSet[8] Set to ON if the corresponding input

shall be contained in the output,

otherwise OFF.

invXPPhase[8] Set to ON if the corresponding input

shall be contained in the output with

inverted phase, otherwise OFF.

XPGain[8] Contains the amplification at the

crosspoint in dB in steps of 1/32.

The range is -128 to +15 dB. This yields

LEVEL values of -4096 to +480.

PK_CHANGE struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 byte XPSet[8];

 byte invXPPhase[8];

 LEVEL XPGain[8];

}

Contains the values that have been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio

signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte mute;

 byte invPhase;

 LEVEL gain;

 byte XPSet[8];

 byte invXPPhase[8];

 LEVEL XPGain[8];

}

See PK_EVENT above.

Revision: 12.05.2014 Page 30 Version: 5.0

With this message it is possible to configure a complete output as shown in the block diagram above. To configure the

whole mixing unit it is necessary to send four/eight messages, one for each output of the unit.

6.7.4 Fading

To use the fading function of the mixing units it is necessary to configure the inputs and outputs appropriately. For

example a crossfade in 100ms can be done by configuring the FadeInTime and the FadeOutTime of two inputs to 100ms

and the FadeWaitTime to 0ms each. An output is mixing both channels together. The fading procedure itself is started

with the following message:

IO_BOARD_SUM_IN_FADE

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte fadingtype;

}

With this message it is possible to start fade procedures. Every

fade procedure is identified by the CSA of the unit’s input channel

plus the procedure type (i.e. “fade in” or “fade out”).

address CSA of the mixing input.

fadingtype Specifies whether the signal should be faded in

(FADE_IN) or faded out (FADE_OUT).

PK_CHANGE struct

{

 CSA address;

 byte fadingtype;

}

Sending this PK_CHANGE the server confirms a fade request.

Note that receiving this message does not mean that the fade has

already been carried out. If a wait time of e.g. 1 second is set, the

change will probably arrive before the fade starts.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

6.7.5 Single Parameter Control

head.m Parameter Set Comments

IO_BOARD_SUM_IN_GAIN

IO_BOARD_SUM_OUT_GAIN

struct

{

 CSA address;

 LEVEL gain;

}

The parameter “gain” contains the

amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to

+480.

IO_BOARD_SUM_IN_MUTE

IO_BOARD_SUM_OUT_MUTE

struct

{

 CSA address;

 byte mute;

}

The parameter “mute” contains ON or

OFF depending on whether the

signal shall be muted or not.

IO_BOARD_SUM_IN_PHASE

IO_BOARD_SUM_OUT_PHASE

struct

{

 CSA address;

 byte invPhase;

}

The parameter “invPhase” contains

ON or OFF depending on whether

the signal shall be phase inverted or

not.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 31 Revision: 12.05.2014

head.m Parameter Set Comments

IO_BOARD_SUM_IN_FADE_IN_TIME struct

{

 CSA address;

 STIME fadeInTime;

}

The fadeInTime contains the fade-in

time in milliseconds.

Recommend settings are 20 to 65535

ms.

IO_BOARD_SUM_IN_FADE_IN_WAIT_TIME struct

{

 CSA address;

 STIME fadeInWaitTime;

}

The fadeInWaitTime contains the

fade-in-wait time in milliseconds.

Recommend settings are 20 to 65535

ms.

IO_BOARD_SUM_IN_FADE_OUT_TIME struct

{

 CSA address;

 STIME fadeOutTime;

}

The fadeOutTime contains the fade-

out time in milliseconds.

Recommend settings are 20 to 65535

ms.

IO_BOARD_SUM_OUT_XPOINT_SET struct

{

 CSA address;

 byte XPSet;

}

The index of the mixing unit input for

the crosspoint setting is determined

in the head.n field in the range of 0 to

3 or 0 to 7, depending on the

dimension of the mixing unit (4 or 8).

The parameter “XPSet” contains ON

or OFF depending on whether the

given input shall be mixed to the

output or not.

IO_BOARD_SUM_OUT_XPOINT_PHASE struct

{

 CSA address;

 byte invXPPhase;

}

The index of the mixing unit input is

determined in the head.n field in the

range of 0 to 3 or 0 to 7, depending

on the dimension of the mixing unit (4

or 8).

The parameter “invXPPhase”

contains ON or OFF depending on

whether the corresponding signal

shall be phase inverted in the

crosspoint or not.

IO_BOARD_SUM_OUT_XPOINT_GAIN struct

{

 CSA address;

 LEVEL XPGain;

}

The index of the mixing unit input is

determined in the head.n field in the

range of 0 to 3 or 0 to 7, depending

on the dimension of the mixing unit (4

or 8).

The parameter “XPGain” contains the

amplification at the crosspoint in dB

in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to

+480.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 32 Version: 5.0

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 33 Revision: 12.05.2014

6.8 Stereo Monitoring Units (valid for mc² HD)

A system can include multiple stereo monitoring units. With these stereo monitoring units it is possible to realize a

comfortable stereo monitoring. The structure of these devices is shown in the diagram.

The inputs and outputs of the stereo monitoring unit are internal targets and sources of the matrix and identified by

CSAs. Therefore the units can be inserted into a signal path by standard routing procedures.

Please note that the maximum output level is a result of a computation including all parameters of the levelling chain

(e.g. Talkback Dimlevel, Trimlevels, etc.) and is altogether limited to +15 dB. The same procedure applies to the

minimum output level (limit: -128 dB). The “input parameters” for these computations, i.e. the levelling chain parameters,

are not limited in range, i.e. the full (signed) 16-bit range of the LEVEL type may be used.

IO_BOARD_STEREO_MON_VOLUME

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 LEVEL volume;

}

address CSA of the monitoring input or output signal.

volume Contains the amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This yields LEVEL values

of -4096 to +480.

PK_CHANGE struct

{

 CSA address;

 LEVEL volume;

}

Contains the values that have been set by the hardware.

PK_QUERY None Not implemented.

PK_QUERY_REPLY struct

{

 CSA address;

 LEVEL volume;

}

See PK_EVENT above.

All further parameters are controlled similar to the stereo monitoring volume by using the appropriate message type in

the head.m field and its control structure. All parameters are written down in the following table:

head.m Parameter Set Comments

IO_BOARD_STEREO_DIMLEVEL struct

{

 CSA address;

 LEVEL dimLevel;

}

The parameter “dimLevel”

determines the volume decrease

when dim is active.

(IO_BOARD_STEREO_DIM).

IO_BOARD_STEREO_TB_DIMLEVEL struct

{

 CSA address;

 LEVEL talkbackDimLevel;

}

The parameter “talkbackDimLevel”

determines the volume decrease

when talkback dim

(IO_BOARD_STEREO_TB_DIM)

is active.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 34 Version: 5.0

IO_BOARD_STEREO_TB_PRELEVEL struct

{

 CSA address;

 LEVEL talkbackPreLevel;

}

The talkback pre level determines

the amplification of the talkback

signal if talkback pre left

(IO_BOARD_STEREO_TB_PRE_

L) or talkback pre right

(IO_BOARD_STEREO_TB_PRE_

R) is active.

IO_BOARD_STEREO_TB_POSTLEVEL struct

{

 CSA address;

 LEVEL talkbackPostLevel;

}

The talkback post level determines

the amplification of the talkback

signal if talkback post left

(IO_BOARD_STEREO_TB_POST

_L) or talkback post right

(IO_BOARD_STEREO_TB_POST

_R) is active.

IO_BOARD_STEREO_TRIMLEVEL1,

IO_BOARD_STEREO_TRIMLEVEL2 or

IO_BOARD_STEREO_TRIMLEVEL3

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_STEREO_BALANCE struct

{

 CSA address;

 RANGE balance;

}

The valid range of the balance

value is -20…+20.

IO_BOARD_STEREO_PHASE_

INVERSION_L

IO_BOARD_STEREO_PHASE_

INVERSION _R

struct

{

 CSA address;

 byte phaseInversion;

}

The parameter “phaseInversion”

contains ON or OFF depending on

whether the phase inversion is

used or not.

IO_BOARD_STEREO_SWAP struct

{

 CSA address;

 byte swap;

}

The parameter “swap” contains ON

or OFF depending on whether the

swap left right is used or not.

IO_BOARD_STEREO_MONOMIX struct

{

 CSA address;

 byte monomix;

}

The parameter “monomix” contains

ON or OFF depending on whether

the mono mixer is used or not.

IO_BOARD_STEREO_LEFT_TO_BOTH struct

{

 CSA address;

 byte leftToBoth;

}

The parameter “leftToBoth”

contains ON or OFF depending on

whether left-to-both is used or not.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 35 Revision: 12.05.2014

IO_BOARD_STEREO_RIGHT_TO_BOTH struct

{

 CSA address;

 byte rightToBoth;

}

The parameter “rightToBoth”

contains ON or OFF depending on

whether right-to-both is used or

not.

IO_BOARD_STEREO_SOLO_L struct

{

 CSA address;

 byte soloLeft;

}

The parameter “soloLeft” contains

ON or OFF depending on whether

solo-left is used or not.

IO_BOARD_STEREO_SOLO_R struct

{

 CSA address;

 byte soloRight;

}

The parameter “soloRight”

contains ON or OFF depending on

whether solo-right is used or not.

IO_BOARD_STEREO_DIM struct

{

 CSA address;

 byte dim;

}

The parameter “dim” contains ON

or OFF depending on whether the

monitoring is dimmed or not.

IO_BOARD_STEREO_TB_DIM struct

{

 CSA address;

 byte talkbackDim;

}

The parameter “talkbackDim”

contains ON or OFF depending on

whether talkback is dimmed or not.

IO_BOARD_STEREO_BALANCE_OFF struct

{

 CSA address;

 byte balanceOff;

}

The parameter “balanceOff”

contains ON or OFF depending on

whether balance is switched on or

off.

IO_BOARD_STEREO_CUT_L

IO_BOARD_STEREO_CUT_R

struct

{

 CSA address;

 byte cut;

}

The parameter “cut” contains ON

or OFF depending on whether the

left (respective the right) channel is

cut or not.

IO_BOARD_STEREO_CUT_PRETBPOST

_L

IO_BOARD_STEREO_CUT_PRETBPOST

_R

struct

{

 CSA address;

 byte cut;

}

The parameter “cut” contains ON

or OFF depending on whether cut

left pre talkback or cut right pre

talkback is used or not.

IO_BOARD_STEREO_TB_PRE_L

IO_BOARD_STEREO_TB_PRE_R

struct

{

 CSA address;

 byte talkback;

}

The parameter “talkback” contains

ON or OFF depending on whether

talkback pre left or talkback pre

right is used or not.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 36 Version: 5.0

IO_BOARD_STEREO_TB_POST_L

IO_BOARD_STEREO_TB_POST_R

struct

{

 CSA address;

 byte talkback;

}

The parameter “talkback” contains

ON or OFF depending on whether

talkback post left or talkback post

right is used or not.

IO_BOARD_STEREO_TB_SELECT_2 struct

{

 CSA address;

 byte talkbackSelect2;

}

The parameter “talkbackSelect2”

contains ON if the talkback input 2

is used or OFF if the talkback input

1 is used.

IO_BOARD_STEREO_PPM_PRE struct

{

 CSA address;

 byte ppmPre;

}

The parameter “ppmPre” contains

ON if the PPM output is connected

to the input signals of the

monitoring device or OFF if the

PPM output is connected to the

output of the balance section of the

monitoring device.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 37 Revision: 12.05.2014

6.9 Surround Monitoring Units

A system can include multiple surround monitoring units. With these monitoring units it is possible to realize a comfortable surround monitoring. The structure of these devices is

shown in the following diagram:

The inputs and outputs of the surround monitoring unit are internal targets and sources of the matrix and identified by CSAs. Therefore the units can be inserted into a signal path by

standard connect procedures. All parameters of the surround monitoring units are controlled similar to the stereo monitoring units.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 39 Revision: 12.05.2014

head.m Parameter Set Comments

IO_BOARD_SURROUND_MON_VOLUME struct

{

 CSA address;

 LEVEL volume;

}

The volume parameter contains the

amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to

+480.

IO_BOARD_SURROUND_DIMLEVEL struct

{

 CSA address;

 LEVEL dimLevel;

}

The dim level determines the

lowering of the volume if dim

(IO_BOARD_SURROUND_DIM) is

active.

IO_BOARD_SURROUND_TB_DIMLEVEL struct

{

 CSA address;

 LEVEL dimLevel;

}

The talkback dim level determines

the lowering of the volume if

talkback dim

(IO_BOARD_SURROUND_TB_DI

M) is active.

IO_BOARD_SURROUND_MONO_DIMLEVEL struct

{

 CSA address;

 LEVEL monoDimLevel;

}

The mono dim level determines the

lowering of the volume if the mono

matrix

(IO_BOARD_SURROUND_MONO)

is active.

IO_BOARD_SURROUND_TRIM1_FL,

IO_BOARD_SURROUND_TRIM2_FL or

IO_BOARD_SURROUND_TRIM3_FL

for front left channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_FR,

IO_BOARD_SURROUND_TRIM2_FR or

IO_BOARD_SURROUND_TRIM3_FR

for front right channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_FC,

IO_BOARD_SURROUND_TRIM2_FC or

IO_BOARD_SURROUND_TRIM3_FC

for front center channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_LFE,

IO_BOARD_SURROUND_TRIM2_LFE or

IO_BOARD_SURROUND_TRIM3_LFE

for LFE

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 40 Version: 5.0

IO_BOARD_SURROUND_TRIM1_S1L,

IO_BOARD_SURROUND_TRIM2_S1L or

IO_BOARD_SURROUND_TRIM3_S1L

for surround 1 left channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_S1R,

IO_BOARD_SURROUND_TRIM2_S1R or

IO_BOARD_SURROUND_TRIM3_S1R

for surround 1 right channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_S2L,

IO_BOARD_SURROUND_TRIM2_S2L or

IO_BOARD_SURROUND_TRIM3_S2L

for surround 2 left channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_TRIM1_S2R,

IO_BOARD_SURROUND_TRIM2_S2R or

IO_BOARD_SURROUND_TRIM3_S2R

for surround 2 left channel

struct

{

 CSA address;

 LEVEL trimLevel;

}

Trim levels are preset level offsets

which can e.g. be used for

adjusting different sets of

loudspeakers to the same level.

IO_BOARD_SURROUND_BALANCE_LR

for Balance Front Left – Front Right

IO_BOARD_SURROUND_BALANCE_FB

for Balance Front – Back

struct

{

 CSA address;

 RANGE balance;

}

The range of the balance value is -

20…+20

IO_BOARD_SURROUND_TB_DIM struct

{

 CSA address;

 byte talkbackDim;

}

The parameter “talkbackDim”

contains ON or OFF depending on

whether talkback dim is used or

not.

IO_BOARD_SURROUND_

 PHASE_INVERSION_L

struct

{

 CSA address;

 byte phaseInversion;

}

The parameter “phaseInversion”

contains ON or OFF depending on

whether the phase inversion is

used or not.

IO_BOARD_SURROUND_

 PHASE_INVERSION_R

struct

{

 CSA address;

 byte phaseInversion;

}

The parameter “phaseInversion”

contains ON or OFF depending on

whether the phase inversion is

used or not.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 41 Revision: 12.05.2014

Please note that the maximum output level is a result of a computation including all parameters of the levelling chain

(e.g. Talkback Dimlevel, Trimlevels, etc.) and is altogether limited to +15 dB. The same procedure applies to the

minimum output level (limit: -128 dB). The “input parameters” for these computations, i.e. the levelling chain parameters,

are not limited in range, i.e. the full (signed) 16-bit range of the LEVEL type may be used.

IO_BOARD_SURROUND_MONOMIX struct

{

 CSA address;

 byte monomix;

}

The parameter “monomix” contains

ON or OFF depending on whether

the mono mixer is used or not.

IO_BOARD_SURROUND_LEFT_TO_BOTH struct

{

 CSA address;

 byte leftToBoth;

}

The parameter “leftToBoth”

contains ON or OFF depending on

whether left-to-both is used or not.

IO_BOARD_SURROUND_RIGHT_TO_BOTH struct

{

 CSA address;

 byte rightToBoth;

}

The parameter “rightToBoth”

contains ON or OFF depending on

whether right-to-both is used or not.

IO_BOARD_SURROUND_SWAP struct

{

 CSA address;

 byte swap;

}

The parameter “swap” contains ON

or OFF depending on whether the

swap-left-right is used or not.

IO_BOARD_SURROUND_DIM struct

{

 CSA address;

 byte dim;

}

The parameter “dim” contains ON

or OFF depending on whether dim

is used or not.

IO_BOARD_SURROUND_BALANCE_OFF struct

{

 CSA address;

 byte balanceOff;

}

The parameter “balanceOff”

contains ON or OFF depending on

whether balance is switched off or

not.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 42 Version: 5.0

6.10 Silence Detect

Silence detect units can be configured in inputs and/or in outputs of the matrix. If a signal is detected as silent or as

available again the following message is sent:

IO_SILENCE_DETECT

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 byte silence;

}

address CSA of the input or output.

silence The detected state of the signal. Specifies whether the

signal has changed from silence to signal (SIGNAL) or

from signal to silence (SILENCE).

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte silence;

}

See PK_CHANGE above.

Note: The system can handle a maximum of 512 simultaneous (mono or stereo linked) silence detects.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 43 Revision: 12.05.2014

IO_SILENCE_DETECT_CONFIG

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte mode;

 LEVEL thresholdLeft;

 LEVEL thresholdRight;

 byte silenceDetTime_L;

 byte silenceDetTime_R;

 byte signalDetTime_L;

 byte signalDetTime_R;

}

address CSA of the input or output.

mode A bitwise coded flag for the silence

detector mode:

Bit 0 = 1: Left Channel on

Bit 1 = 1: Right Channel on

Bit 2 = 1: Stereo Link

Stereo Link means that all

configuration settings are mirrored

for the left and the right channel

and both channels will be treated

as a unit. Therefore, a silent signal

has to be silent on both channels

for the configured duration.

As a precondition for the Stereo

Link feature, the Left Channel On

and Right Channel On bits have to

be set.

thresholdLeft Threshold level for the left channel.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to

+480.

thresholdRight Threshold level for the right

channel.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to

+480.

silenceDetTime_L Determines the timespan in

seconds used to detect silence (0-

255s).

silenceDetTime_R Determines the timespan in

seconds used to detect silence (0-

255s).

signalDetTime_L Determines the timespan in

seconds used to detect a signal (0-

255s).

signalDetTime_R Determines the timespan in

seconds used to detect a signal (0-

255s).

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 44 Version: 5.0

IO_SILENCE_DETECT_CONFIG

Message Type Parameter Comment

PK_CHANGE struct

{

 CSA address;

 byte Mode;

 LEVEL ThresholdLeft;

 LEVEL ThresholdRight;

 byte SilenceDetectT_L;

 byte SilenceDetectT_R;

 byte SignalDetectT_L;

 byte SignalDetectT_R;

}

Contains the values that have been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio

signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte Mode;

 LEVEL ThresholdLeft;

 LEVEL ThresholdRight;

 byte SilenceDetectT_L;

 byte SilenceDetectT_R;

 byte SignalDetectT_L;

 byte SignalDetectT_R;

}

See PK_EVENT above.

6.11 DALLIS SDI HD/SD Units

8 CHANNEL

SRC Dthr DLY

BYPASS

RECEIVER

TRANSMITTER

Test

Pattern

Generator

DE-/

EMBEDDER

DE-/

EMBEDDER

ROUTING

8 8

16

16

VIDEO

SDI

HARDWARE

BYPASS

BLOCK DIAGRAM HD/SD SDI-INTERFACE

SD/HD

INPUT

THROUGH

SD/HD

OUTPUT

1

SD/HD

OUTPUT

2

D
A

L
L

IS
 B

A
C

K
P

L
A

N
E

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 45 Revision: 12.05.2014

6.11.1 Input and output sections

Inputs and outputs of SDI embedder/deembedder boards can be controlled via the commands listed in the following

paragraphs. The parameters of the SDI units are generally in stereo format. These parameters are indexed by the CSA

of the left input and left output signal respectively. SDI inputs are identified by DEVICETYPE_SDI_IN, outputs are

identified by DEVICETYPE_SDI_OUT.

6.11.2 Input section

head.m Parameter Set Comments

IO_SDI_DEEMB_GROUP_CHAN_SELECT struct

{

 CSA address;

 byte select;

}

The select parameter selects the SDI channel

pair for deembedding into this matrix source.

The valid range of select is 1 to 8.

group 1, channel 1 and 2 1

group 1, channel 3 and 4 2

group 2, channel 1 and 2 3

group 2, channel 3 and 4 4

group 3, channel 1 and 2 5

group 3, channel 3 and 4 6

group 4, channel 1 and 2 7

group 4, channel 3 and 4 8

IO_SDI_DEEMB_DELAY struct

{

 CSA address;

 TIME delayTime;

}

The delayTime determines the delay of the

deembedded audio signal in milliseconds in

steps of 1 millisecond. The valid range is 0 to

240.

IO_SDI_DEEMB_DELAY_ON struct

{

 CSA address;

 byte delayOn;

}

The parameter delayOn contains ON or OFF

depending on whether the delay is active or

not.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 46 Version: 5.0

6.11.3 Output section

head.m Parameter Set Comments

IO_SDI_EMB_GROUP_CHAN_SELECT struct

{

 CSA address;

 byte select;

}

The select parameter selects the SDI channel

pair for embedding from this matrix target.

The range of select is 0 to 8.

no embedding 0

group 1, channel 1 and 2 1

group 1, channel 3 and 4 2

group 2, channel 1 and 2 3

group 2, channel 3 and 4 4

group 3, channel 1 and 2 5

group 3, channel 3 and 4 6

group 4, channel 1 and 2 7

group 4, channel 3 and 4 8

IO_SDI_EMB_DELAY struct

{

 CSA address;

 TIME delayTime;

}

The delayTime determines the delay of the

embedded audio signal in milliseconds in steps

of 1 millisecond.

The valid range is 0 to 240.

IO_SDI_EMB_DELAY_ON struct

{

 CSA address;

 byte delayOn;

}

The parameter delayOn contains ON or OFF

depending on whether the delay is active or

not.

IO_SDI_EMB_WORDLENGTH struct

{

 CSA address;

 byte wordLength;

}

The parameter wordLength determines the

wordlength of the embedded audio signal.

16 bit 0

20 bit 4

24 bit 8

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 47 Revision: 12.05.2014

6.11.4 Device section

The device section of the SDI HD/SD unit contains all device control elements. Since the device section has no input and

output signals, it is indexed by the CSA of any left input signal or left output signal respectively. Parameter changes in

the device section will be reported with the CSA of the first left input signal or the first left output signal, depending on

whether the operating mode defines input signals or not.

Message Type Indication

Request for data

change

PK_EVENT Any left input signal or left output signal.

Query for data PK_QUERY

Successful query

reply

PK_QUERY_REPLY

Unsuccessful query

reply

PK_QUERY_NOREPLY

Access denied PK_ACCESS_DENIED

Report of a data

change

PK_CHANGE The first left input signal or the first left output signal, if the operating

mode defines no input signals

head.m Parameter Set Comments

IO_SDI_SRC struct

{

 CSA address;

 byte src;

}

The parameter src contains ON or OFF

depending on whether the sample rate

converter is active or not.

IO_SDI_DELAY_SELECT struct

{

 CSA address;

 byte delaySelect;

}

The parameter delaySelect determines the

assignment of the delays. The delays can be

assigned to the input section (deembedder) or

to the output section (embedder)

Delays are assigned to the

input section

(deembedder)

0

Delays are assigned to the

output section (embedder)

1

IO_SDI_EMBEDDER_MODE struct

{

 CSA address;

 byte embedderMode;

}

The parameter embedderMode determines the

operation mode of the embedders.

On 0

Clean 1

Off 2

IO_SDI_GENERATOR_MODE struct

{

 CSA address;

 byte generatorMode;

}

The parameter generatorMode determines the

operation mode of the video generator.

automatic (if lock fails) 0

On 1

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 48 Version: 5.0

6.12 DALLIS SDI 3G Units

As of version 4.12 of the Remote MNOPL protocol, 3
rd

 generation DALLIS SDI units are supported.

IO_SDI_GENERATOR_COLOR struct

{

 CSA address;

 byte generatorColor;

}

The parameter generatorColor determines the

color of the video generator.

black 0

color bars 1

IO_SDI_GENERATOR_FORMAT

struct

{

 CSA address;

 byte generatorFormat;

}

The parameter generatorFormat determines

the format of the video generator.

The range of generatorFormat is 0 to 13.

automatic 0

720p50 1

720p59_94 2

720p60 3

1080i50 4

1080i59_94 5

1080i60 6

1080p23_98 7

1080p24 8

1080p25 9

1080p29_97 10

1080p30 11

SD NTSC 12

SD PAL 13

The abbreviations above are based on the

following structure:

lines – progressive/interlaced – frame rate

Example:

720p50 720 lines

 progressive

 50 frames per second

Note:

For SD-Board only the following values are

valid:

automatic 0

SD NTSC 12

SD PAL 13

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 49 Revision: 12.05.2014

6.12.1 Output section

Inputs and outputs of SDI 3G embedder/deembedder boards can be controlled via the commands listed in the following

paragraphs. The parameters of the SDI 3G units are generally in stereo format. These parameters are indexed by the

CSA of the left input or output signal. SDI 3G inputs are identified by DEVICETYPE_3G_SDI_IN, outputs are identified

by DEVICETYPE_3G_SDI_OUT when querying the device type.

Please note that SDI 3G input signals do not provide controllable elements in the signal layer. For controlling the device

layer, please refer to chapter 6.12.2.

For information about the general data format structure of the different available message types, please refer to chapter

2.6.1.

head.m Parameter Set Comments

IO_SDI_3G_EMB_DELAY struct

{

 CSA address;

 TIME time;

}

The delay time determines the delay of the

embedded audio signal in milliseconds in steps of

1 millisecond.

The valid range is 0 to 160.

IO_SDI_3G_EMB_DELAY_ON struct

{

 CSA address;

 byte on;

}

The parameter “on” contains ON or OFF

depending on whether the delay shall be active or

not.

IO_SDI_3G_EMB_WORDLENGTH struct

{

 CSA address;

 byte wordlength;

}

The parameter “wordlength” determines the

wordlength of the embedded audio signal.

16 bit 0

20 bit 4

24 bit 8

6.12.2 Device section

The device section of the SDI 3G unit contains all device control elements. Since the device section has no input and

output signals, it is indexed by the CSA of any of its left input signals or left output signals respectively. Parameter

changes in the device section will be reported with the CSA of the first left input signal or the first left output signal,

depending on whether the operating mode defines input signals or not.

Message Type Indication

Request for data

change

PK_EVENT Any left input signal or left output signal.

Query for data PK_QUERY

Successful query

reply

PK_QUERY_REPLY

Unsuccessful query

reply

PK_QUERY_NOREPLY

Access denied PK_ACCESS_DENIED

Report of a data

change

PK_CHANGE The first left input signal or the first left output signal, if the operating

mode defines no input signals

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 50 Version: 5.0

head.m Parameter Set Comments

IO_SDI_3G_CTRL_SRC struct

{

 CSA address;

 byte src;

}

The parameter “src” contains ON or OFF

depending on whether the sample rate converter

is active or not.

IO_SDI_3G_CTRL_CLEAN struct

{

 CSA address;

 byte clean;

}

Valid settings for “clean” : ON / OFF

If “clean” is switched to ON, the SDI embedder

removes all upstream audio and metadata

information and generates a new ancilary data

space structure.

IO_SDI_3G_CTRL_

VIDEO_DELAY_ENABLE

struct

{

 CSA address;

 byte enable;

}

The parameter “enable” contains ON or OFF

depending on whether the video delay shall be

used or not.

IO_SDI_3G_VIDEO_DELAY struct

{

 CSA address;

 byte frames;

}

The parameter “frames” contains the number of

frames for the video delay.

The valid range is 0 to 8.

IO_SDI_3G_GEN_PATTERN struct

{

 CSA address;

 byte pattern;

}

The parameter „pattern“ determines the pattern

that shall be used for the video generator.

Vaild settings are:

0 Color Bars

1 Black

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 51 Revision: 12.05.2014

IO_SDI_3G_GEN_SELECT struct

{

 CSA address;

 byte select;

}

The parameter “select” determines the video

format for the video generator signal.

Valid settings are:

0 Auto

1 3G 1080p60

2 3G 1080p59.94

3 3G 1080p50

4 HD 1080i60

5 HD 1080i59.94

6 HD 1080i50

7 HD 1080p30

8 HD 1080p29.97

9 HD 1080p25

10 HD 1080p24

11 HD 1080p23.98

12 HD 720p60

13 HD 720p59.94

14 HD 720p50

15 SD 525

16 SD 625

The abbreviations above are based on the

following structure:

lines – progressive/interlaced – frame rate

Example:

720p50 720 lines

 progressive

 50 frames per second

IO_SDI_3G_CTRL_

VIDEOGEN_FORCE

struct

{

 CSA address;

 byte force;

}

If the parameter “force” is set to OFF, the video

generator will automatically use the detected

frame format of the SDI video input signal (if

available).

If this behaviour is inappropriate, setting the

parameter “force” to ON forces the generator to

use the preselected video format

(IO_SDI_3G_GEN_SELECT).

IO_SDI_3G_METADATA_

EMBEDDER_ENABLE

struct

{

 CSA address;

 byte enable;

}

If the parameter “enable” is set to ON, the SDI

metadata embedder will be enabled, if set to

OFF, the metadata embedder will be disabled.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 52 Version: 5.0

IO_SDI_3G_METADATA_

EMBEDDER_MODE

struct

{

 CSA address;

 byte mode;

}

Using the “mode” parameter, the behaviour of

the metadata embedder can be changed

between:

0 for automatic line selection

1 for using the pre-selected video

line (see IO_SDI_3G_META_

EMBEDDER_LINE_SELECT)

IO_SDI_3G_META_

EMBEDDER_LINE_SELECT

struct

{

 CSA address;

 byte select;

}

Using the “select” parameter, the metadata

embedder line can be preselected.

The valid range is 11 to 18.

IO_SDI_3G_META_

EMBEDDER_SELECT

struct

{

 CSA address;

 byte select;

}

For each of the two metadata embedders, this

control parameter selects, into which stream the

metadata shall be embedded.

The index of the metadata embedder is

specified in the head.n field (0 or 1).

The “select” parameter specifies the VANC

stream index for the embedding in a range of 1

to 9.

IO_SDI_3G_META_

DEEMBEDDER_SELECT

struct

{

 CSA address;

 byte select;

}

For each of the two metadata deembedders, this

control parameter selects, from which stream the

metadata shall be deembedded.

The index of the metadata deembedder is

specified in the head.n field (0 or 1).

The “select” parameter specifies the VANC

stream index for the deembedding in a range of

1 to 9.

IO_SDI_3G_EMBEDDER_ROUTING struct

{

 CSA address;

 byte routing;

}

The embedder routing specifies the device from

which the audio signal to be embedded is taken

on a per-channel basis.

The channel index is specified in the head.n field

in a range from 0 to 15, where 0 means group

1/channel 1, 1 means group 1/channel 2, ..., 15

means group 4/channel 4.

The “routing” parameter specifies the source for

the embedder in a range of

0 – 15 to take the audio from the linked

deembedder

16 – 31 to take the audio from the DALLIS

output channel

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 53 Revision: 12.05.2014

IO_SDI_3G_DEEMBEDDER_ROUTING struct

{

 CSA address;

 byte routing;

}

The deembedder routing specifies the

assignment of the SDI audio information to the

DALLIS input channels.

The DALLIS input signal index is specified in the

head.n field in a range from 0 to 15.

The “routing” parameter specifies the source for

the embedder in a range of 0 to 15, where 0

means group 1/channel 1, 1 means group

1/channel 2, ..., 15 means group 4/channel 4.

IO_SDI_3G_GROUP1_EMBEDDER_ON

IO_SDI_3G_GROUP2_EMBEDDER_ON

IO_SDI_3G_GROUP3_EMBEDDER_ON

IO_SDI_3G_GROUP4_EMBEDDER_ON

struct

{

 CSA address;

 byte on;

}

The parameter “on” dis-/enables the audio

embedder for the specified SDI group. Valid

settings for “on” are ON and OFF.

IO_SDI_3G_SDHD_LOCK_STATE struct

{

 CSA address;

 byte lock;

}

This is a read only parameter which determines

the lock state of the SDI signal.

Only PK_QUERY messages are allowed for this

head.m value and the parameter “lock” has to be

interpreted as follows:

0 SDI signal unlocked or invalid

1 SDI signal is locked.

6.13 DALLIS IP Codec Units

The DALLIS IP Codec control is only available for devices with device types “DEVICETYPE_IPCODEC_IN” and

“DEVICETYPE_IPCODEC_OUT”. The control commands are accepted on all signal CSAs but the real control will be

done by the IP Codec board (which has no own CSA). Therefore all returned values from the server will be addressed

using the first available source signal CSA for the accessed board. Best practice is to also send the control commands

using the first source signal CSA.

6.13.1 IP Codec Control

The DALLIS IP codec offers three GPO controls, providing the possibility to map some user functions via the IP codec’s

web browser setup utility. They are addressed using the Remote MNOPL head.n field zero based. This means that e.g.

for addressing the 2
nd

 GPO value the head.n field has to be set to “1”.

IO_DALLIS_IPCODEC_GPO_VALUE

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte value;

}

Sets the GPO indexed by the head.n field to the specified “value”.

Valid “value” settings are 0 and 1.

PK_CHANGE struct

{

 CSA address;

 byte value;

}

Informs whenever the state of value changes.

PK_QUERY CSA Queries the state of the GPO value.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 54 Version: 5.0

IO_DALLIS_IPCODEC_GPO_VALUE

Message Type Parameter Comment

PK_QUERY_REPLY struct

{

 CSA address;

 byte value;

}

See PK_EVENT above.

6.13.2 IP Codec Status

There are four status information bits that can be retrieved from the system. The values are read only, so PK_EVENT

messages are not processed. Please refer to the following tables:

IO_DALLIS_IPCODEC_ALARM_STATE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 byte value;

}

Informs whenever the DALLIS IP Codec Alarm state changes. Valid

values are:

“0” for no alarm.

“1” for alarm.

PK_QUERY CSA Queries the state of the IP Codec alarm.

PK_QUERY_REPLY struct

{

 CSA address;

 byte value;

}

See PK_EVENT above.

IO_DALLIS_IPCODEC_NETWORK_CONNECTION_STATE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 byte value;

}

Informs whenever the DALLIS IP Codec network connection state

changes. Valid values are:

“0” for no network connection.

“1” for established network connection.

PK_QUERY CSA Queries the state of the IP Codec network connection.

PK_QUERY_REPLY struct

{

 CSA address;

 byte value;

}

See PK_EVENT above.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 55 Revision: 12.05.2014

IO_DALLIS_IPCODEC_AUDIO_CONNECTION_STATE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 byte value;

}

Informs whenever the DALLIS IP Codec audio connection state

changes. Valid values are:

“0” for no audio connection.

“1” for established audio connection.

PK_QUERY CSA Queries the state of the IP Codec audio connection.

PK_QUERY_REPLY struct

{

 CSA address;

 byte value;

}

See PK_EVENT above.

IO_DALLIS_IPCODEC_TRANSPARENT_MODE_STATE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 byte value;

}

Informs whenever the DALLIS IP Codec transparent mode is switched

on or off. Valid values are:

“0” for non-transparent mode.

“1” for transparent mode.

PK_QUERY CSA Queries the state of the IP Codec transparent mode setting.

PK_QUERY_REPLY struct

{

 CSA address;

 byte value;

}

See PK_EVENT above.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 56 Version: 5.0

7 Generic Control

7.1 Working with Audio-Follows-Video

To work with audio-follows-video the client has to subscribe to the AFV_EVENT stream at the server. If the AFV_EVENT

stream is enabled the client will get any changes concerning audio-follows-video events (PK_CHANGE messages). If the

server creates a change for an audio-follows-video event requested by a client, the appropriate information is

automatically mirrored to all clients. More detailed information about AFV configuration can be found in chapter 10.6.

AFV_EVENT

Message Type Parameter Comment

PK_EVENT byte switch; The head.n field contains the audio-follows-video event number (1…127).

The switch parameter defines whether the audio-follows-video event state

shall be set to ON or OFF.

PK_CHANGE byte switch; Contains the value that has been set by the hardware.

PK_QUERY None Query for the audio-follows-video event state

PK_QUERY_REPLY byte switch; The audio-follows-video event state

7.2 Working with GPIO

General Purpose Inputs and Outputs are also addressed by CSAs. If necessary, the client can distinguish between GPIO

signals and audio signals using a device type query. The result of such a device type query for a GPIO signal will be

DEVICETYPE_GPI or DEVICETYPE_GPO depending on the type of signal.

7.2.1 GPI State (DEVICETYPE_GPI)

IO_GPIO_VALUE

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 STATE8 state;

}

Notification of a state change for a GPI signal.

address CSA of the changed GPI.

state State for the GPI (ON/OFF).

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 STATE8 state;

}

See PK_CHANGE above.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 57 Revision: 12.05.2014

7.2.2 GPO State (DEVICETYPE_GPO)

IO_GPIO_VALUE

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 STATE8 state;

}

The state of a GPO can be changed by sending a new state.

address CSA of the changed GPI.

state New state requested for the GPO (ON/OFF).

PK_CHANGE struct

{

 CSA address;

 STATE8 state;

}

Contains the value that has been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 STATE8 state;

}

See PK_EVENT above.

7.3 Setting two Signals to Stereo Mode

With this command two signals may be switched to stereo mode, e.g. matrix dsp channels. The second signal that will be

combined with the signal identified by the used CSA will automatically be chosen by the matrix. In case of an even

numbered signal it will be the next odd numbered signal. In case of an odd number the previous even numbered signal

will be used. If the router is configured with user-defined CSAs please refer to your configuration.

SIGNAL_STEREO

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 byte stereo;

}

Request to set a signal to stereo mode linking it with the

corresponding partner signal.

address CSA of the signal.

stereo ON or OFF depending on whether the signal shall

be in stereo mode or not.

PK_CHANGE struct

{

 CSA address;

 byte stereo;

}

Contains the value that has been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio

signal.

PK_QUERY_REPLY struct

{

 CSA address;

 byte stereo;

}

See PK_CHANGE above.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 58 Version: 5.0

8 Working with Protections

To work with protections, the client has to subscribe to the CLIENT_REQUEST_LEVEL and the DATA_PROTECT_LEVEL

stream at the server. If the DATA_PROTECT_LEVEL stream is enabled, the client will get any changes concerning Protect

Levels (PK_CHANGE messages) the server is sending to any other client. If the CLIENT_REQUEST_LEVEL stream is

enabled, the client will get any changes concerning Request Levels (PK_CHANGE messages) the server is sending to the

inquirer. This way it can automatically stay in sync with the routing entity in the server. If the server creates changes for

the Protect Levels of sources, targets or data areas for a client, the appropriate information is automatically mirrored to

all clients.

Note: If the data field contains definitions of unknown signals, the client does not get any answer. This is usually a

configuration problem. To prevent from such problems the dynamic client configuration should be used.

Request Level (RL) Each client has a Request Level which indicates

• the level for the processing of all of its change requests

• the maximum protect level the client can set

Protect Level (PL) Use with sources and targets of the router:

The Protect Level indicates the protection level for routing request messages.

Use with data areas:

The Protect Level indicates the protection level for data modification request

messages.

Interaction of Request Level and Protect Level

A client with

Request Level…

… can read data with

Protection Level

… can modify data with

Protection Level

.. can read the

Protect Level

..can set the

Protect Level to

0 0 - 3 No modification 0 - 3 No modification

1 0 - 3 0 0 - 3 0 -1

2 0 - 3 0 – 1 0 - 3 0 -2

3 0 - 3 0 – 2 0 - 3 0 -3

Initializations

Request Level After having received a Login Message from a client, the server sets the Request Level to

an initial value of 1. The Request Level can be modified by the client with a Request Level

request message.

Protect Level During a coldstart procedure all Protect Levels are set to an initial value of 0. During a

warmstart procedure all Protect Levels remain unaffected.

Example of a client with Request Level 2 and audio targets

The client is allowed to query (read) the routing of all Targets with Protect Level 0 – 3 (all)

The client is allowed to modify (write) the routing of all Targets with Protect Level 0 – 1

The client is allowed to query (read) the Protect Level of all Targets with Protect Level 0 – 3 (all)

The client is allowed to modify (write) the Protect Level of all Targets with Protect Level 0 – 2 to 0 – 2

Notes:

If a Protect Level has been set to 2, only clients with Request Level 3 can modify the routing. Clients with Request Level

2 have to decrease the Protect Level, before change requests will be accepted.

If a Protect Level has been set to 3, no clients can modify the routing. A Client with Request Level 3 has to decrease the

Protect Level, before change requests will be accepted.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 59 Revision: 12.05.2014

8.1 Request Level

8.1.1 Request Level Event

The Request Level of a client can be controlled by using the following RemoteMNOPL messages

Field Value Description

head.m CLIENT_REQUEST_LEVEL Request Level (0xFE30)

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_EVENT Request for data change.

head.l 9 8 octets for the message head and 1 octet for data.

data E.g. 2 Request Level, 1 octet [0, 1, 2, 3]

The following structure can be used as the parameter set. The range of requestLevel is 0

to 3.

struct RequestLevel

{

 byte requestLevel;

}

8.1.2 Request Level Change

Field Value Description

head.m CLIENT_REQUEST_LEVEL Request Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_CHANGE Report of data change.

head.l 9 8 octets for the message head and 1 octet for data.

data E.g. 2 Request Level of the client.

8.1.3 Querying a Request Level

Field Value Description

head.m CLIENT_REQUEST_LEVEL Request Level

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY Query for data.

head.l 8 8 octets for the message head.

This request will be answered with one of the following replies:

8.1.4 Query Reply for a Request Level

Field Value Description

head.m CLIENT_REQUEST_LEVEL Request Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_REPLY Query reply.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 60 Version: 5.0

Field Value Description

head.l 9 8 octets for the message head and 1 octet for data.

data E.g. 2 Request Level of the client.

8.1.5 Reply for Unsuccessful Request Level Query

Field Value Description

head.m CLIENT_REQUEST_LEVEL Request Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_NOREPLY Query unsuccessful.

head.l 8 8 octets for the message head.

8.2 Protect Level

8.2.1 Protect Level Request Message

The Protect Level of sources and targets of the router and data areas can be controlled by using the following

RemoteMNOPL messages

Field Value Description

head.m DATA_PROTECT_LEVEL Protect Level (0xFE31)

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_EVENT Request for data change.

head.l E.g. 15 8 octets for the message head and 4 octets of data for a CSA, 2

octets for a Message ID and 1 octet of data for the Protect Level.

data E.g. 0x9B000200 CSA of a source, target or a data area

 E.g. MX_CONNECT To protect a source or target from routing modifications

 E.g. 1 Protect Level

The following structure can be used as the parameter set.

messageID Determines the protection area

MX_CONNECT To protect a source or target from routing modifications

Any Parameter Message ID To protect a complete data area from data modifications

protectLevel In the range of 0 to 3

struct ProtectLevel

{

 CSA address;

 unsigned short messageID;

 byte protectLevel;

}

Multiple Protect Levels can be sent within a single Protect Level Request Message. The length of the message (head.l)

must be set to the appropriate value.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 61 Revision: 12.05.2014

8.2.2 Protect Level change Reply Message

Field Value Description

head.m DATA_PROTECT_LEVEL Protect Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_CHANGE Report of data change.

head.l 15 8 octets for the message head and 4 octets of data for a CSA, 2

octets for a Message ID and 1 octet of data for the Protect Level.

data E.g. 0x9B000200 CSA of a source, target or a data area

 E.g. MX_CONNECT To protect a source or target from routing modifications

 E.g. 1 Protect Level

8.2.3 Querying a Protect Level

Field Value Description

head.m DATA_PROTECT_LEVEL Protect Level

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY Query for data.

head.l 14 8 octets for the message head and 4 octets of data for a CSA and

2 octets for a Message ID

data E.g. 0x9B000200 CSA of a source, target or a data area.

 E.g. MX_CONNECT To query the Protect Level against routing modifications

This request will be answered with one of the following replies:

8.2.4 Query Reply for a Protect Level

Field Value Description

head.m DATA_PROTECT_LEVEL Protect Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_REPLY Query reply.

head.l 15 8 octets for the message head and 4 octets of data for a CSA, 2

octets for a Message ID and 1 octet of data for the Protect Level.

data E.g. 0x9B000200 CSA of a source, target or a data area.

 E.g. MX_CONNECT The Protect Level against routing modifications

 E.g. 1 Protect Level

8.2.5 Reply for Unsuccessful Protect Level Query

Field Value Description

head.m DATA_PROTECT_LEVEL Protect Level

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_NOREPLY Query unsuccessful.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 62 Version: 5.0

Field Value Description

head.l 12 8 octets for the message head and 4 octets of data for a CSA and

2 octets for a Message ID

data E.g. 0x9B000200 CSA of a source, target or a data area.

 E.g. MX_CONNECT The Protect Level against routing modifications

8.3 Behaviour on protection violations

There are two kinds of protection violations:

• A client requests a Protect Level modification higher than its own Request Level (PL > RL)

E.g. sending a Protect Level Request Message (head.m: DATA_PROTECT_LEVEL) with a Protect Level of 3, but the

Request Level of the client is 2.

• A client requests a routing or data modification and the request target is protected by a Protect Level equal or higher

than the client’s Request Level (PL >= RL)

E.g. sending a data modification request message (e.g. head.m: MX_CONNECT) and the Protect Level of the audio

target (or source) is 2, but the Request Level of the client is 2.

In both cases the message will be resent to the inquirer with a PK_ACCESS_DENIED in the message type field

(head.p). The message data will remain unaffected.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 63 Revision: 12.05.2014

9 Matrix DSP Units

A system can have multiple matrix DSP units. These units contain

various DSP modules which are combined to module chains.

The inputs and outputs of the DSP channels are internal targets and

sources of the matrix and identified by CSAs. Therefore the DSP

channels can be inserted into a signal path by standard connect

procedures. Each parameter of the DSP modules in a DSP channel

is indicated by the CSA of the DSP channel input or output signal.

When querying the device type of a DSP channel the query reply is

DEVICETYPE_MXDSP_CHANNEL.

Each DSP channel can have one of the structures shown in the

diagram to the right. The structure used in a DSP channel may be

queried on demand similar to the device type query by a special

query message of type MX_DSP_CHANNEL_MODULES. The reply

is a list of unsigned short values identifying the available modules in the DSP channel (e.g.

MXDSP_MODULE_LIMITER). Please refer to the information element table for a list of possible modules.

Please note: Due to the automatic generation of Matrix DSP HLSDs, the Signal Mapping feature as described in

chapter 2.4 is not available for Matrix DSP signals. This means that if a client wants to control Matrix DSP

settings, it currently has to use the HLSD addressing scheme (mapping mode 0).

9.1 Matrix DSP Short Delay Module

MXD_BOARD_SHORT_DELAY_TIME

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 TIME delay;

}

address CSA of the matrix input or output signal.

delay Contains the delay time in milliseconds in steps of 1/48.

The range is 0 to 600 milliseconds, which yields TIME

values of 0 to 28800.

PK_CHANGE struct

{

 CSA address;

 TIME delay;

}

Contains the value that has been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 TIME delay;

}

See PK_EVENT above.

All further parameters are controlled similar to the delay time by using the appropriate message type in the head.m field

and its control structure. Please refer to the following tables:

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 64 Version: 5.0

head.m Parameter Set Comments

MXD_BOARD_SHORT_DELAY_ON struct

{

 CSA address;

 byte on;

}

The parameter on contains ON or OFF depending on

whether the delay module is switched on or off.

9.2 Matrix DSP Fader Module

All parameters of the matrix DSP fader module units are controlled similar to the matrix DSP short delay module. A list of

parameters is written down in the following table:

head.m Parameter Set Comments

MXD_ BOARD_FADER_GAIN struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the amplification in dB in

steps of 1/32.

The range is -128 to +15 dB. This yields LEVEL

values of -4096 to +480.

MXD_ BOARD_FADER_BYPASS struct

{

 CSA address;

 byte bypass;

}

The parameter bypass contains ON or OFF

depending on whether the bypass is switched on or

off.

MXD_ BOARD_FADER_MUTE struct

{

 CSA address;

 byte mute;

}

The parameter mute contains ON or OFF depending

on whether the signal is muted or not.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 65 Revision: 12.05.2014

9.3 Matrix DSP Compressor Module

All parameters of the matrix DSP compressor module units are controlled similar to the matrix DSP short delay module.

The list of parameters is written down in the following table:

head.m Parameter Set Comments

MXD_

BOARD_COMPRESSOR_ATTACK

struct

{

 CSA address;

 TIME attack;

}

The attack parameter contains the

compressor attack time in milliseconds in

steps of 1/48.

The range is 0 to 250 milliseconds which

yields TIME values of 0 to 12000.

MXD_

BOARD_COMPRESSOR_RELEASE

struct

{

 CSA address;

 TIME release;

}

The release parameter contains the

compressor release time in milliseconds in

steps of 1/48.

The range is 0 to 10000 milliseconds which

yields TIME values of 0 to 480000.

MXD_

BOARD_COMPRESSOR_DELAYTIME

struct

{

 CSA address;

 TIME delay;

}

The delay parameter contains the

compressor delay time in milliseconds in

steps of 1/48.

The range is 0 to 10 milliseconds which

yields TIME values of 0 to 480.

MXD_ BOARD_COMPRESSOR_ON struct

{

 CSA address;

 byte on;

}

The parameter on contains ON or OFF

depending on whether the compressor

module is switched on or off.

MXD_

BOARD_COMPRESSOR_SOFTKNEE

struct

{

 CSA address;

 byte softknee;

}

The parameter softknee contains ON or OFF

depending on whether the softknee mode is

switched on or off.

MXD_ BOARD_COMPRESSOR_STEREO struct

{

 CSA address;

 byte stereo;

}

The parameter stereo contains ON or OFF

depending on whether the stereo mode is

switched on or off.

MXD_

BOARD_COMPRESSOR_THRESHOLD

struct

{

 CSA address;

 LEVEL threshold;

}

The threshold parameter contains the

compressor threshold in dB in steps of 1/32.

The range is -128 to +15 dB. This yields

LEVEL values of -4096 to +480.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 66 Version: 5.0

head.m Parameter Set Comments

MXD_ BOARD_COMPRESSOR_GAIN struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the compressor

gain in dB in steps of 1/32.

The range is -20 to +20 dB which yields LEVEL

values of -640 to +640.

MXD_ BOARD_COMPRESSOR_RATIO struct

{

 CSA address;

 RATIO data;

}

The data parameter describes the compressor

ratio and can be computed using the following

equation:

data = 2048 * log (ratio)

The range is -2048 to 3898 (0.1 to 80).

Examples:

data ratio

- 2048 0.1

0 1

3898 80

MXD_

BOARD_COMPRESSOR_SCF_GAIN

struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the compressor

SCF gain in dB in steps of 1/32.

The range is -24 to +24 dB which yields LEVEL

values of -768 to +768.

MXD_

BOARD_COMPRESSOR_SCF_FREQ

struct

{

 CSA address;

 FREQ data;

}

The frequency parameter describes the

compressor SCF frequency and can be

computed using the following equation:

data = 1638 * log (frequency/Hz)

The range is 2131 to 7045 (20 Hz to 20.000 Hz).

Examples:

data frequency [Hz]

2131 20

4914 1.000

7045 20.000

MXD_

BOARD_COMPRESSOR_SCF_ON

struct

{

 CSA address;

 byte on;

}

The parameter on contains ON or OFF

depending on whether the compressor SCF is

switched on or off.

MXD_

BOARD_COMPRESSOR_SCF_TYPE

struct

{

 CSA address;

 byte type;

}

The type parameter contains the compressor

SCF type.

data type

2 high pass

3 low pass

4 shelving high

5 shelving low

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 67 Revision: 12.05.2014

9.4 Matrix DSP Limiter Module

All parameters of the Matrix DSP Limiter Module units are controlled similar to the matrix DSP short delay module. The

list of parameters is written down in the following table:

head.m Parameter Set Comments

MXD_ BOARD_LIMITER_ATTACK struct

{

 CSA address;

 TIME attack;

}

The attack parameter contains the limiter attack time in

milliseconds in steps of 1/48.

The range is 0 to 250 milliseconds which yields TIME

values of 0 to 12000.

MXD_ BOARD_LIMITER_HOLD struct

{

 CSA address;

 TIME hold;

}

The hold parameter contains the limiter hold time in

milliseconds in steps of 1/48.

The range is 0 to 500 milliseconds which yields TIME

values of 0 to 24000.

MXD_

BOARD_LIMITER_RELEASE

struct

{

 CSA address;

 TIME release;

}

The release parameter contains the limiter release time

in milliseconds in steps of 1/48.

The range is 0 to 10000 milliseconds which yields TIME

values of 0 to 480000.

MXD_

BOARD_LIMITER_DELAYTIME

struct

{

 CSA address;

 TIME delay;

}

The delay parameter contains the limiter delay time in

milliseconds in steps of 1/48.

The range is 0 to 10 milliseconds which yields TIME

values of 0 to 480.

MXD_ BOARD_LIMITER_ON struct

{

 CSA address;

 byte on;

}

The parameter on contains ON or OFF depending on

whether the limiter module is switched on or off.

MXD_

BOARD_LIMITER_SOFTKNEE

struct

{

 CSA address;

 byte softknee;

}

The parameter softknee contains ON or OFF

depending on whether the softknee mode is switched

on or off.

MXD_

BOARD_LIMITER_STEREO

struct

{

 CSA address;

 byte stereo;

}

The parameter stereo contains ON or OFF depending

on whether the Stereo mode is switched on or off.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 68 Version: 5.0

head.m Parameter Set Comments

MXD_

BOARD_LIMITER_THRESHOLD

struct

{

 CSA address;

 LEVEL threshold;

}

The threshold parameter contains the limiter

threshold in dB in steps of 1/32.

The range is -128 to +15 dB. This yields LEVEL

values of -4096 to +480.

MXD_ BOARD_LIMITER_GAIN struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the limiter gain in dB

in steps of 1/32.

The range is -20 to +20 dB which yields LEVEL

values of -640 to +640.

9.5 Matrix DSP Parametric EQ Module

All parameters of the Matrix DSP Parametric EQ Module units are controlled similar to the matrix DSP short delay

module. Additional parameters are explained in the tables below:

9.5.1 Filter Slope and Type

Slope 0 = 6dB/Oct.(N=1)

1 = 12dB/Oct.(N=2)

2 = 18dB/Oct.(N=3)

Type

0 = Constant Q

1 = Bell

2 = High Pass

3 = Low Pass

4 = Shelving High

5 = Shelving Low

9.5.2 Valid types per band

Band Types

1 0, 1, 2, 5

2 0, 1

3 0, 1

4 0, 1, 3, 4

9.5.3 Slope and Quality per Type

Type Slope Quality

0 = Constant Q don't care (internally always 1 (N=2) 0.1 to 80 (* 64)

1 = Bell don't care (internally always 1 (N=2) 0.1 to 80 (* 64)

2 = High Pass 0, 1, 2 (all) don't care

3 = Low Pass 0, 1, 2 (all) don't care

4 = Shelving High 0, 1, 2 (all) don't care

5 = Shelving Low 0, 1, 2 (all) don't care

Due to the similar handling all DSP modules, the list of parameters for the parametric EQ is documented in short form in

the following table:

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 69 Revision: 12.05.2014

head.m Comments

MXD_BOARD_PARAM_EQ_BAND_1_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_PARAM_EQ_BAND_1_FREQ Parameter: FREQUENCY - The parameter contains the frequency

in Hz computed by data = 1638 * log(freq).

MXD_BOARD_PARAM_EQ_BAND_1_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64. See

tables above.

MXD_BOARD_PARAM_EQ_BAND_1_ON Parameter: byte - ON or OFF.

MXD_BOARD_PARAM_EQ_BAND_1_SLOPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_1_TYPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_2_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_PARAM_EQ_BAND_2_FREQ Parameter: FREQUENCY - The parameter contains the frequency

in Hz computed by data = 1638 * log(freq).

MXD_BOARD_PARAM_EQ_BAND_2_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64. See

tables above.

MXD_BOARD_PARAM_EQ_BAND_2_ON Parameter: byte - ON or OFF.

MXD_BOARD_PARAM_EQ_BAND_2_SLOPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_2_TYPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_3_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_PARAM_EQ_BAND_3_FREQ Parameter: FREQUENCY - The parameter contains the frequency

in Hz computed by data = 1638 * log(freq).

MXD_BOARD_PARAM_EQ_BAND_3_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64. See

tables above.

MXD_BOARD_PARAM_EQ_BAND_3_ON Parameter: byte - ON or OFF.

MXD_BOARD_PARAM_EQ_BAND_3_SLOPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_3_TYPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_4_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_PARAM_EQ_BAND_4_FREQ Parameter: FREQUENCY - The parameter contains the frequency

in Hz computed by data = 1638 * log(freq).

MXD_BOARD_PARAM_EQ_BAND_4_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64. See

tables above.

MXD_BOARD_PARAM_EQ_BAND_4_ON Parameter: byte - ON or OFF.

MXD_BOARD_PARAM_EQ_BAND_4_SLOPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_BAND_4_TYPE Parameter: byte – See tables above.

MXD_BOARD_PARAM_EQ_EFFECT_GAIN Parameter: LEVEL – Level of the after EQ gain in dB in steps of

1/32.

MXD_BOARD_PARAM_EQ_ON Parameter: byte – Switches the whole module ON or OFF.

9.6 Matrix DSP Graphic EQ Module

Due to the similar handling all DSP modules the list of parameters for the graphic EQ is documented in short form in the

following table:

head.m Comments

MXD_BOARD_GRAPHIC_EQ_BAND_1_GAIN

…

MXD_BOARD_GRAPHIC_EQ_BAND_31_GAIN

Parameter: LEVEL - The gain in dB in steps of 1/32.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 70 Version: 5.0

head.m Comments

MXD_BOARD_GRAPHIC_EQ_HIGHPASS_FREQ Parameter: FREQUENCY - The parameter contains the

frequency in Hz computed by data = 1638 * log(freq).

MXD_BOARD_GRAPHIC_EQ_LOWPASS_FREQ Parameter: FREQUENCY - The parameter contains the

frequency in Hz computed by data = 1638 * log(freq).

MXD_BOARD_GRAPHIC_EQ_NOTCH_1_FREQ Parameter: FREQUENCY - The parameter contains the

frequency in Hz computed by data = 1638 * log(freq).

MXD_BOARD_GRAPHIC_EQ_NOTCH_1_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64.

See tables above.

MXD_BOARD_GRAPHIC_EQ_NOTCH_2_FREQ Parameter: FREQUENCY - The parameter contains the

frequency in Hz computed by data = 1638 * log(freq).

MXD_BOARD_GRAPHIC_EQ_NOTCH_2_QUALITY Parameter: QUALITY – The filter quality Q in steps of 1/64.

See tables above.

MXD_BOARD_GRAPHIC_EQ_EFFECT_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_GRAPHIC_EQ_ON Parameter: byte - ON or OFF.

MXD_BOARD_GRAPHIC_EQ_TRUECURVE_ON Parameter: byte - ON or OFF.

MXD_BOARD_GRAPHIC_EQ_HIGHPASS_ON Parameter: byte - ON or OFF.

MXD_BOARD_GRAPHIC_EQ_LOWPASS_ON Parameter: byte - ON or OFF.

MXD_BOARD_GRAPHIC_EQ_NOTCH1_ON Parameter: byte - ON or OFF.

MXD_BOARD_GRAPHIC_EQ_NOTCH2_ON Parameter: byte - ON or OFF.

9.7 Matrix DSP Gate Module

Due to the similar handling all DSP modules the list of parameters for the gate module is documented in short form in the

following table:

head.m Comments

MXD_BOARD_GATE_ATTACK Parameter: TIME - The parameter contains the time in milliseconds in steps of

1/48.

MXD_BOARD_GATE_HOLD Parameter: TIME - The parameter contains the time in milliseconds in steps of

1/48.

MXD_BOARD_GATE_RELEASE Parameter: TIME - The parameter contains the time in milliseconds in steps of

1/48.

MXD_BOARD_GATE_DELAYTIME Parameter: TIME - The parameter contains the time in milliseconds in steps of

1/48.

MXD_BOARD_GATE_ON Parameter: byte - ON or OFF.

MXD_BOARD_GATE_STEREO Parameter: byte - ON or OFF.

MXD_BOARD_GATE_THRESHOLD Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_GATE_FLOOR Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_GATE_HYSTERESIS Parameter: LEVEL - The gain in dB in steps of 1/32.

9.8 Matrix DSP Automatic Gain Control Module

Due to the similar handling all DSP modules the list of parameters for the AGC module is documented in short form in

the following table:

head.m Comments

MXD_BOARD_AGC_ATTACK Parameter: TIME - The parameter contains the time in milliseconds in

steps of 1/48.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 71 Revision: 12.05.2014

head.m Comments

MXD_BOARD_AGC_HOLD Parameter: TIME - The parameter contains the time in milliseconds in

steps of 1/48.

MXD_BOARD_AGC_RELEASE Parameter: TIME - The parameter contains the time in milliseconds in

steps of 1/48.

MXD_BOARD_AGC_DELAYTIME Parameter: TIME - The parameter contains the time in milliseconds in

steps of 1/48.

MXD_BOARD_AGC_ON Parameter: byte - ON or OFF.

MXD_BOARD_AGC_STEREO Parameter: byte - ON or OFF.

MXD_BOARD_AGC_EXP_THRESHOLD Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_AGC_EXP_RATIO Parameter: RATIO - The parameter contains the ratio computed by data

= 2048 * log (ratio).

MXD_BOARD_AGC_COMP_ROT_THRES Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_AGC_COMP_RATIO Parameter: RATIO - The parameter contains the ratio computed by data

= 2048 * log (ratio).

MXD_BOARD_AGC_MAX_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_AGC_MIN_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_AGC_SCF_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_AGC_SCF_FREQ Parameter: FREQUENCY - The parameter contains the frequency in Hz

computed by data = 1638 * log(freq).

MXD_BOARD_AGC_SCF_ON Parameter: byte - ON or OFF.

MXD_BOARD_AGC_SCF_TYPE Parameter: byte – See table below.

9.8.1 Side Chain Filter Types

Type Slope Quality

2 = High Pass don't care (internal always 0 (N=1) don't care

3 = Low Pass don't care (internal always 0 (N=1) don't care

4 = Shelving High don't care (internal always 0 (N=1) don't care

5 = Shelving Low don't care (internal always 0 (N=1) don't care

9.9 Matrix DSP Input Mixer

Due to the similar handling all DSP modules the list of parameters for the input mixer module is documented in short

form in the following table:

head.m Comments

MXD_BOARD_INPUT_MIXER_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_INPUT_MIXER_BALANCE Parameter: RANGE – Contains -20 to 20 (from left to right)

MXD_BOARD_INPUT_MIXER_ON Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_PHASE Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_SIDE_EXCHANGE Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_LEFT_TO_BOTH Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_RIGHT_TO_BOTH Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_MS Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_MONO_TO_BOTH Parameter: byte - ON or OFF.

MXD_BOARD_INPUT_MIXER_STEREO Parameter: byte - ON or OFF.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 72 Version: 5.0

9.10 Matrix DSP Timed Fader

Due to the similar handling all DSP modules the list of parameters for the input mixer module is documented in short

form in the following table:

head.m Comments

MXD_BOARD_TIMED_FADER_GAIN Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_TIMED_FADER_BYPASS Parameter: byte - ON or OFF.

MXD_BOARD_TIMED_FADER_MUTE Parameter: byte - ON or OFF.

MXD_BOARD_TIMED_FADER_FADE_BY_TIME Parameter: byte - ON or OFF.

MXD_BOARD_TIMED_FADER_MUTE_BY_TIME Parameter: byte - ON or OFF.

MXD_BOARD_TIMED_FADER_STEREO Parameter: byte - ON or OFF.

MXD_BOARD_TIMED_FADER_FADE_TIME Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_TIMED_FADER_MUTE_TIME Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_TIMED_FADER_UNMUTE_TIME Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_TIMED_FADER_UNMUTE_DELAY_TIME Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

9.11 Matrix DSP Signal Condition Monitor

Due to the similar handling all DSP modules the list of parameters for the input mixer module is documented in short

form in the following table:

head.m Comments

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

OVER_DURATION_ALARM_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

OVER_ALARM_HOLD_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

UNDER_DURATION_ALARM_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

UNDER_ALARM_HOLD_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

SILENCE_DURATION_ALARM_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

SILENCE_ALARM_HOLD_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

CORRELATION_DURATION_ALARM_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

CORRELATION_ALARM_HOLD_TIME

Parameter: TIME - The parameter contains the time in

milliseconds in steps of 1/48.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

OVER_THRESHOLD

Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

UNDER_THRESHOLD

Parameter: LEVEL - The gain in dB in steps of 1/32.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 73 Revision: 12.05.2014

head.m Comments

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

SILENCE_THRESHOLD

Parameter: LEVEL - The gain in dB in steps of 1/32.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

CORRELATION_THRESHOLD

Parameter: RANGE – Contains -100 (out-of-phase) to 100

(in-phase); 0 means incoherent signals.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

ALARM_ENABLE

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

OVER_ALARM_ENABLE

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

UNDER_ALARM_ENABLE

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

SILENCE_ALARM_ENABLE

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

CORRELATION_ALARM_ENABLE

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

STEREO

Parameter: byte - ON or OFF.

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

LEVEL_ALARM_STATE

Parameter:

0 = Target range

1 = Silence

2 = Under Range

3 = Over Range

MXD_BOARD_SIGNAL_CONDITION_MONITOR_

CORRELATION_ALARM

Parameter: byte - ON or OFF.

9.12 Matrix DSP Channel Metering

Note: Due to the required processing power, this functionality requires a matrix control server (router modules 980/31

and 980/32) or a router module type 980/33. The total number of metering subscriptions (level metering and/or

correlation metering) is limited to 512 mono channels per client. The maximum number of metering channels per system

is 1024 since at most four matrix-DSP-boards with DSP configurations containing metering may be used.

Only five clients may subscribe to metering data at the same time. Subscription requests of further clients will be

rejected.

MXD_BOARD_METERING

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 LEVEL meter_level;

}

The metering_level contains the signal level in dB in steps of

1/32.

The range is -128 to 40 dB. This yields LEVEL values of -4096

to +1280.

The metering information for all channels will be updated

periodically.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 74 Version: 5.0

MXD_BOARD_ADD_METERING

Message Type Parameter Comment

PK_EVENT [Sequence of] CSAs Selection of DSP channels for which the client wishes to receive

metering information. The channels will be added to a client

specific list of metered DSP channels in the server. The

maximum number of channels to meter simultaneously is 128.

PK_CHANGE [Sequence of] CSAs Includes the CSAs of all metering enabled DSP channels.

PK_QUERY None Query for all signals of the client specific list in the server.

PK_QUERY_REPLY [Sequence of] CSAs Includes all signals of the client specific list in the server.

MXD_BOARD_REMOVE_METERING

Message Type Parameter Comment

PK_EVENT [Sequence of] CSAs Selection of DSP channels the client wishes to remove from the

list of metered DSP channels.

PK_CHANGE [Sequence of] CSAs Includes the CSAs of the DSP channels that have been removed

successfully from the list of metered channels.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

9.13 Matrix DSP Correlation Metering

MXD_BOARD_CORRELATION_METERING

Message Type Parameter Comment

PK_EVENT None Not implemented.

PK_CHANGE struct

{

 CSA address;

 RANGE degree;

}

The degree contains the degree of correlation in %.

The range is -100 to +100.

The metering information for all channels in the list of metered

DSP channels will be updated periodically.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

MXD_BOARD_ADD_CORRELATION_METERING

Message Type Parameter Comment

PK_EVENT [Sequence of] CSAs Selection of even outputs of DSP channels for which the client

wishes to receive correlation information. The HLSDs will be

added to a client specific list in the server.

e.g. 0x730b0000, 730b0002, …

PK_CHANGE [Sequence of] CSAs Includes the CSAs of all signals added to the client specific list in

the server.

PK_QUERY None Query for all signals of the client specific list in the server.

PK_QUERY_REPLY [Sequence of] CSAs Includes all signals of the client specific list in the server.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 75 Revision: 12.05.2014

MXD_BOARD_REMOVE_CORRELATION_METERING

Message Type Parameter Comment

PK_EVENT [Sequence of] CSAs Selection of even outputs of DSP channels which the client

wishes to remove from the specific list in the server.

e.g. 0x730b0000, 730b0002, …

PK_CHANGE [Sequence of] CSAs Includes the CSAs of the DSP channels that have been removed

successfully from the list of metered channels.

PK_QUERY None Not implemented.

PK_QUERY_REPLY None Not implemented.

Note again: The total number of metering subscriptions (level metering and/or correlation metering) is limited to 512

mono channels per client. The maximum number of metering channels per system is 1024 since at most four matrix-

DSP-boards with DSP configurations containing metering may be used.

Only five clients may subscribe to metering data at the same time. Subscription requests of further clients will be

rejected.

9.14 Matrix DSP Mixing Matrix

The Matrix DSP boards may contain mixing units similar to the mixing units of I/O boards depending on the configuration.

The appropriate input and output signals may be identified by the device type query (IO_DEVICE_TYPE). The query

result will be DEVICETYPE_MXDSP_SUM_IN for the inputs of the matrix DSP mixing units (target CSAs from the matrix

point of view) and DEVICETYPE_MXDSP_SUM_OUT for the outputs (source CSAs for the matrix). The unit size can be

queried with the ER_UNIT_INFO message. The ER_UNIT_INFO query delivers the dimension of the mixing unit (64), the

ID of the unit in the matrix system and the ID of the channel within the mixing unit per CSA.

head.m Parameter Set Comments

MXD_BOARD_SUM_IN_GAIN struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the

amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to +480.

MXD_BOARD_SUM_IN_MUTE struct

{

 CSA address;

 byte mute;

}

The parameter mute contains ON or

OFF depending on whether mute is

switched on or off.

MXD_BOARD_SUM_IN_PHASE struct

{

 CSA address;

 byte invPhase;

}

The parameter invPhase contains ON

or OFF depending on whether phase

inversion is used or not.

MXD_BOARD_SUM_OUT_GAIN struct

{

 CSA address;

 LEVEL gain;

}

The gain parameter contains the

amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to +480.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 76 Version: 5.0

head.m Parameter Set Comments

MXD_BOARD_SUM_OUT_MUTE struct

{

 CSA address;

 byte mute;

}

The parameter mute contains ON or

OFF depending on whether mute is

switched on or off.

MXD_BOARD_SUM_OUT_PHASE struct

{

 CSA address;

 byte invPhase;

}

The parameter invPhase contains ON

or OFF depending on whether phase

inversion is used or not.

MXD_BOARD_SUM_OUT_XPOINT_GAIN

struct

{

 CSA address;

 LEVEL gain;

}

The index of the mixing unit input is

determined in the head.n field in the

range of 0 to 63.

The gain parameter contains the

amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This

yields LEVEL values of -4096 to +480.

MXD_BOARD_SUM_OUT_XPOINT_SET struct

{

 CSA address;

 byte crosspointSet;

}

The index of the mixing unit input is

determined in the head.n field in the

range of 0 to 63.

The crosspointSet parameter contains

ON or OFF depending on whether the

given input is used or not.

MXD_BOARD_SUM_OUT_XPOINT_PHASE struct

{

 CSA address;

 byte invPhase;

}

The index of the mixing unit input is

determined in the head.n field in the

range of 0 to 63.

The invPhase parameter contains ON

or OFF depending on whether phase

inversion is used or not.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 77 Revision: 12.05.2014

10 DSP Parameter Control (valid for mc² series only)

Please note: Due to the automatic generation of DSP HLSDs, the Signal Mapping feature as described in chapter

2.4 is not available for DSP signals. This means that if a client wants to control DSP settings, it currently has to

use the HLSD addressing scheme (mapping mode 0).

10.1 DSP Main Level

EU_DSP_MAINLEVEL

Message Type Parameter Comment

PK_EVENT struct

{

 CSA address;

 LEVEL amp;

}

The main level of a DSP channel can be changed by sending a new

amplification value.

address The CSA of the DSP’s direct out signal.

amp Contains the amplification in dB in steps of 1/32.

The range is -128 to +15 dB. This yields LEVEL

values of -4096 to +480.

If you try to set a value out of the range the hardware

is capable to, the corresponding PK_CHANGE

message will contain the value that has really been

set.

PK_CHANGE struct

{

 CSA address;

 LEVEL amp;

}

Contains the value that has been set by the hardware.

PK_QUERY CSA The parameter query is referenced by the CSA of the audio signal.

PK_QUERY_REPLY struct

{

 CSA address;

 LEVEL amp;

}

See PK_EVENT above.

For controlling the DSP main level the direct out signal address of the DSP channel will be used. HLSDs for the direct out

signal are built using the following values:

Signalclass Subclass Component Subcomponent

SCL_DIROUT (0x01) FU_INPUT (0x00) 0..255 0..2

 FU_MONITOR (0x01) 0..255 0..2

 FU_GROUP (0x02) 0..191 0

 FU_SUMM (0x03) 0..191 0

 FU_AUX (0x04) 0..31 0

 FU_MASTER (0x05) 0..127 0

 FU_GPC (0x06) 0..255 0

 FU_SURROUND_MASTER (0x09) 0..255 0..1

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 78 Version: 5.0

These values represent the current maximum ranges. The real number of available DSP units depends on the system

and the DSP usage configuration. Please note that the high byte of the signal index is represented in the Subcomponent

value if the index exceeds 255, e.g. Surround Master 256 has the HLSD 0x01090001 or Input 514 has the HLSD

0x01000202.

10.2 DSP Channel Cut

DSP channel cut is working similar to DSP main level by using EU_CUT_CUT for head.m with the following data struct in

the message body. Cut can be switched ON or OFF.

struct

{

 CSA address;

 KEYS cut;

}

10.3 DSP Panpot Balance

DSP panpot balance is working similar to DSP main level by using EU_PANPOT_PANBAL for head.m with the following

data struct in the message body. The range of PanpotBalance is -20 to 20.

struct

{

 CSA address;

 RANGE PanpotBalance;

}

10.4 DSP Panpot Frontback

DSP panpot frontback is working similar to DSP main level by using EU_PANPOT_FRONTBACK for head.m with the

following data struct in the message body. The range of FrontBack is -20 to 20.

struct

{

 CSA address;

 RANGE FrontBack;

}

10.5 DSP Access Channel

The current mixing console access channel can be modified and queried using the EC_ACCESS1 command. The

command syntax and signal addressing scheme are again similar to the DSP main level control feature. The data part of

the command (when sending an event or receiving a query reply) just consists of a CSA value. The query command just

consists of a header and has no data attached.

10.6 DSP Audio Follows Video

All parameters of Audio Follows Video are controlled similar to the DSP Main Level parameter. The list of parameters is

written down in the following table:

head.m Parameter Set Comments

AFV_ENABLED struct

{

 CSA address;

 KEYS enable;

}

This enables the Audio Follows Video functionality.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 79 Revision: 12.05.2014

AFV_EVENTNUMBER struct

{

 CSA address;

 STATE8 eventno;

}

One of up to 128 events can be assigned for AFV functions.

AFV_ONLEVEL struct

{

 CSA address;

 LEVEL level;

}

This is the level to which the fader will open when triggered by

the AFV event. If AFV is in ON state, this parameter will also

control the DSP Main Level.

The level may be adjusted from -128dB to +15dB which yields

LEVEL values from -4096 to +480.

AFV_OFFLEVEL struct

{

 CSA address;

 LEVEL level;

}

This is the level to which the fader will be reset as soon as the

event is switched off.

If AFV is in OFF state, this parameter will also control the DSP

Main Level.

The level may be adjusted from -128dB to +15dB which yields

LEVEL values from -4096 to +480.

AFV_HOLDTIME

struct

{

 CSA address;

 TIME time;

}

The HOLD TIME delays the opening of the fader after the event

on trigger.

The time may be adjusted in steps of 1/48 from 0 to 10

seconds which yields TIME values from 0 to 480000.

AFV_RISETIME struct

{

 CSA address;

 TIME time;

}

The RISE TIME sets the time taken for the fader to move from

off to on level after the hold time has expired.

The time may be adjusted in steps of 1/48 from 0 to 10

seconds which yields TIME values from 0 to 480000.

AFV_MAXEVENTTIME struct

{

 CSA address;

 TIME time;

}

The MAX EVENT TIME sets the time the fader will stay open

even if the event is not switched off.

The time may be adjusted in steps of 1/48 from 0 to 10

seconds which yields TIME values from 0 to 480000.

AFV_ONTIME

struct

{

 CSA address;

 TIME time;

}

The ON TIME sets the time the fader stays at the on level after

the event has been switched off.

The time may be adjusted in steps of 1/48 from 0 to 10

seconds which yields TIME values from 0 to 480000.

AFV_FALLTIME struct

{

 CSA address;

 TIME time;

}

The FALL TIME sets the time for the fader to move from on to

off level.

The time may be adjusted in steps of 1/48 from 0 to 10

seconds which yields TIME values from 0 to 480000.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 80 Version: 5.0

Symbolic head.m Name Hex Value Type

AFV_ONLEVEL 0x19C1 LEVEL

AFV_OFFLEVEL 0x19C2 LEVEL

AFV_RISETIME 0x19C3 TIME

AFV_ONTIME 0x19C4 TIME

AFV_FALLTIME 0x19C5 TIME

AFV_EVENTNUMBER 0x19C6 STATE8

AFV_ENABLED 0x19C8 KEYS

AFV_HOLDTIME 0x19CA TIME

AFV_MAXEVENTTIME 0x19CB TIME

10.7 DSP PFL On/Off, PFL 1 Clear, Aux Send On/Off, PEQ, PF, AF

All parameters of Pre Fader Listening are controlled similar to the DSP Main Level parameter. The list of parameters is

written down in the following table:

head.m Parameter Set Comments

EU_PFL struct

{

 CSA address;

 KEYS on;

}

Routes a signal to the PFL 1 bus depending on the
parameter “on” which can be ON or OFF.

Please note the size of 2 bytes for “on”.

EU_CLEAR_PFL

No Data

This command clears all PFL 1 routings.

EU_AUX_ON

struct

{

 CSA address;

 KEYS on;

}

Switches the Aux Send on or off depending on the
parameter “on” which can be ON or OFF.

Please note the size of 2 bytes for “on”.

The index of the Aux Send is determined by the
head.n field.

The valid range is 0 to 31 for the Aux Send 1 to 32.

EU_AUX_SOURCE_SIGNAL

(0x1320)

struct

{

 CSA address;

 byte source;

}

Controls the Aux Sends Source Signal in the channel
area.

Valid sources are

Pre Equalizer 10

Pre Fader 37

After Fader 46

Please note that different values might occur on
monitor channels 17 to 32 if “Cue Aux Send/Return”
is active. If this is the case, the client is allowed to
switch between the following sources only:

Aux Cue 47

Tape Return 48

Tape Send 49

The index of the Aux Send is determined by the
head.n field.

The valid range to 0 to 31 for the Aux Sends 1 to 32.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 81 Revision: 12.05.2014

11 Snapshots

The snapshot feature offers the possibility to save and recall many system settings within a so-called “production”. While

productions additionally contain many configuration parameters, snapshots are limited to operational parameters such as

routings, mixing console channel settings, mixing console desk assignments, user labels etc.

Please note that loading or saving productions is not yet available in Remote MNOPL.

11.1 Loading and Saving Snapshots

Remote MNOPL clients can subscribe to the MX_LOAD_SNAPSHOT or the MX_SAVE_SNAPSHOT stream in order to

receive system notifications when a snapshot has been recalled or saved. Currently, the system does not support

querying the active snapshot, i.e. a resynchronization after connection loss has to be done by loading a defined

snapshot, saving a snapshot or waiting for the next MX_LOAD_SNAPSHOT or MX_SAVE_SNAPSHOT change.

Note: Saving a snapshot usually replaces the currently active snapshot by the newly created (saved) snapshot.

The data structure used for the snapshot folder and name is the SnapshotPath structure which assembles like follows:

struct SnapshotPath

{

 string[32] folder;

 string[32] filename;

}

Please note that the folder and filename strings have to be null-terminated. Therefore the folder name and the

filename are limited to 31 characters. Please also note that the system uses a latin1 encoding for file transfers. This is

especially important when dealing with German umlauts or other “special” characters.

The client is also allowed to load or save snapshots by sending MX_LOAD_SNAPSHOT or MX_SAVE_SNAPSHOT

events:

Field Value Description

head.m MX_LOAD_SNAPSHOT Load Snapshot.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_EVENT Request for data change.

head.l 8 + 32 + 32 = 72 8 octets for the message head, 32 octets for the snapshot folder and 32 octets

for the snapshot filename

data string[32] null-terminated 31 characters snapshot folder name

 string[32] null-terminated 31 characters snapshot name

Note: If the snapshot folder or file cannot be located, the system will not respond with a snapshot change or any error

message. The request will simply be ignored. As already mentioned above, to receive notifications when loading or

saving snapshots completed successfully the respective head.m stream has to be subscribed (OPEN_STREAM

message).

Saving snapshots is performed using the same message structure already described above except for the head.m field

which has to be replaced by MX_SAVE_SNAPSHOT.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 82 Version: 5.0

Here is a message sample which tries to load the snapshot “snap0001” from the folder “TestFolder”:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Hex FE 00 00 00 20 02 00 48 54 65 73 74 46 6F 6C 64 65 72 00 x x ...

Chr T e s t F o l d e r \0

Index ... 40 41 42 43 44 45 46 47 48 49 50 ... 70 71

Hex ... 73 6E 61 70 30 30 30 31 00 x x ... x x

Chr s n a p 0 0 0 1 \0

11.2 Using Snapshot Filters

When working with complete snapshots of all available operational parameters, users sometimes need the possibility to

exclude some of the system’s aspects from the modification by loading the snapshot. Regarding the mixing console

appliance, the Lawo system offers two major possibilities to prevent settings from snapshot modifications:

1. Isolation of DSP channels on a per-channel basis.

2. Global snapshot filters.

This chapter deals with the second possibility: the global snapshot filters.

The available filters are:

 The CONNECTS snapshot filter (MX_SNAPSHOT_FILTER_CONNECTS) which prevents matrix routings from

being modified by the snapshot.

 The IO snapshot filter (MX_SNAPSHOT_FILTER_IO) which prevents IO settings (such as SRC, Microphone

Preamp parameters etc.) from being modified by the snapshot.

 The LABELS snapshot filter (MX_SNAPSHOT_FILTER_LABELS) which prevents all labels from being modified

by the snapshot.

 The MX_DSP snapshot filter (MX_SNAPSHOT_FILTER_MX_DSP) which prevents Matrix DSP card settings

from being modified by the snapshot.

 The DESK snapshot filter (MX_SNAPSHOT_FILTER_DESK) which prevents the console from being modified

by the snapshot.

 The DSP snapshot filter (MX_SNAPSHOT_FILTER_DSP) which prevents mixing console channels from being

modified by the snapshot.

The filters can be queried and modified using the corresponding PK_EVENT or PK_QUERY messages.

Field Value Description

head.m MX_SNAPSHOT_FILTER_CONNECTS Specifies the snapshot filter that shall be modified, e.g. the

CONNECTS snapshot filter. Other head.m values can be found in

the filter description above.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_EVENT Request for data change.

head.l 9 8 octets for the message head and 1 octet for the state value.

data byte: 0 or 1 Switches the filter OFF or ON.

Please remember that the client has to subscribe to the respective snapshot filter stream in order to receive change

notifications.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 83 Revision: 12.05.2014

To query the state of a snapshot filter, please use the PK_QUERY message without any data – the PK_QUERY_REPLY

response from the system will contain one data byte describing the filter state (0 = off, 1 = on).

Field Value Description

head.m MX_SNAPSHOT_FILTER_CONNECTS Specifies the snapshot filter that shall be queried, e.g. the

CONNECTS snapshot filter. Other head.m values can be found in

the filter description above.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY Query for data.

head.l 8 8 octets for the message head.

11.3 Working with Snapshot Isolate

DSP Channel settings in mixing console appliances can be saved from being overwritten by a snapshot using the

snapshot isolate feature. The control messages for this feature are implemented with a different addressing scheme

which is intended to be used for further DSP related controls in future. The scheme provides functional unit indices which

have to be used in the MNOPL header “N” field. The addresses of the functional units can be taken from the following

table.

Functional Unit Address [From ... To] Address Hex [From ... To]

DSP Input 0 ... 767 0x0 ... 0x2FF

DSP Monitor 768 ... 1535 0x300 ... 0x5FF

DSP Group 1536 ... 1727 0x600 ... 0x6BF

DSP Sum 1728 ... 1919 0x6C0 ... 0x77F

DSP Aux 1920 ... 1951 0x780 ... 0x79F

DSP Master 1952 ... 2079 0x7A0 ... 0x81F

DSP General Purpose Channel 2080 ... 2335 0x820 ... 0x91F

DSP Surround Master 2416 ... 2927 0x970 ... 0xB6F

Currently, the number of available DSP units has to be taken from the available CSAs of their Direct Out signals (please

refer to chapter 10.1). A change of the mixing console’s DSP preset will not be reflected to the Remote MNOPL interface,

i.e. the controller has to be reset to re-query all available CSAs. This behaviour is subject to change in future versions.

The control command for setting the Snapshot Isolate flag is defined as follows:

Field Value Description

head.m SNAP_ISO_CHANNEL Isolate command.

head.n Functional Unit Address (see

above)

Address of the functional DSP unit.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_EVENT Request for data change.

head.l 9 8 octets for the message head and 1 octet of data.

data Values 0 or 1 as byte Status of Snapshot Isolate flag (0 = inactive, 1 = active)

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 84 Version: 5.0

The corresponding system response when a flag change is requested uses the same message structure with the

difference that the head.p field is changed to PK_CHANGE.

The status of the Snapshot Isolate flag can be queried using the following command:

Field Value Description

head.m SNAP_ISO_CHANNEL Isolate query.

head.n Functional Unit Address (see

above)

Address of the functional DSP unit.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY Query for data.

head.l 8 8 octets for the message head.

The response is similar to the PK_CHANGE message. Again, the head.p field is changed, for replies to

PK_QUERY_REPLY. If the queried address is invalid or if the status cannot be determined the server will send a

PK_QUERY_NOREPLY message:

Field Value Description

head.m SNAP_ISO_CHANNEL Isolate query.

head.n Functional Unit Address (see

above)

Address of the functional DSP unit.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY_NOREPLY Query reply.

head.l 8 or 9 8 octets for the message head, 1 byte data (on some server

versions).

Please note that some server versions send a data byte (value 0) in the QUERY_NOREPLY message which has to be

ignored by the client.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 85 Revision: 12.05.2014

12 Access Channel Presets (valid for mc² series only)

RemoteMNOPL clients may modify the current mixing console access channel by sending a binary Channel Preset.

Such Presets can be queried from the system as binary dumps containing the whole mixing console channel related

settings like dynamics, eq, upmix, bus assignment etc. The contents of the preset are identical compared to the contents

of Channel Presets written by the Lawo GUI application.

If the client wishes to save a preset of another channel than the current access channel, it is suggested to query the

current access channel (cf- chapter 10.5), change it temporarily to the channel to be saved, save the preset and reset the

access channel to the previous value. This also yields for recalling presets on channels different from the current access

channel.

12.1 Querying a Channel Preset

The current access channel settings can be queried using the following telegram message:

Field Value Description

head.m GET_ACCESS_PRESET Telegram identifier for the access channel preset query.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_QUERY Query for data.

head.l 8 8 octets for the message head.

Note: Nova73 setups do not support Channel Presets. Hence queries for the preset will not be successful.

The query will be replied with a GET_ACCESS_PRESET PK_QUERY_REPLY with the following structure:

Field Value Description

head.m GET_ACCESS_PRESET Telegram identifier for the access channel preset query.

head.n 0 Don’t care.

head.o Server OriginID The server’s origin ID. Usually 0.

head.p PK_QUERY_REPLY Query Reply.

head.l 8 + x 8 octets for the message head and an arbitrary amount of octets

for binary data.

data <binary> Contains a binary dump of the current access channel settings.

The binary data can be stored and recalled at any time using the SET_ACCESS_PRESET telegram.

12.2 Recalling a Channel Preset

Saved access channel preset can be recalled using the SET_ACCESS_PRESET telegram. Please be sure to send data

which was created using the GET_ACCESS_PRESET feature only due to the fact that the binary data validity checks will

not always be successful and the system can be harmed by sending wrong contents accidentally.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 86 Version: 5.0

Field Value Description

head.m SET_ACCESS_PRESET Telegram identifier for the access channel preset recall.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the

login reply.

head.p PK_EVENT Request for data change.

head.l 8 + x 8 octets for the message head and an arbitrary amount of octets

for binary data.

data <binary> Contains a binary dump saved with the GET_ACCESS_PRESET

feature.

Please be aware that the system currently does not support sending changes (i.e. confirmations) when recalling presets.

Therefore, there is also no stream subscription for the SET_ACCESS_PRESET feature.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 87 Revision: 12.05.2014

13 Working with Routings

To work with routings, the client has to subscribe to the MX_CONNECT data stream at the server. If this stream is

enabled the client will get any changes concerning routings (PK_CHANGE messages) the server is sending to any other

client. This way it can automatically stay in sync with the routing entity in the server. If the server creates a routing for a

client, the appropriate information is mirrored to all clients automatically.

Note: If the data field contains definitions of unknown signals the client does not get any answer. This is usually a

configuration problem. To prevent from such problems, the dynamic client configuration should be used.

13.1 Basic Routing Messages

13.1.1 Routing Request Message

Routings are done by sending the following event:

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_EVENT Request for data change.

head.l E.g. 16 8 octets for the message head and 8 octets of data for 2 CSAs (source and target)

data E.g. 0x23000100 CSA of an audio source

 E.g. 0x9B000200 CSA of an audio target

The contained source CSA will be connected to the subsequent target CSA.

Multiple source target pairs can be sent within a single routing request. The length of the message (head.l) must be set

to the appropriate value. To disconnect a target it must be routed to the special source CSA “NO_SIGNAL”

(0xFFFFFFFF).

13.1.2 Routing Reply Message

The server would reply to the routing request message in the example above with:

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_CHANGE Report of data change.

head.l 16 8 octets for the message head and 8 octets of data for 2 CSAs (source and target).

data 0x23000100 CSA of an audio source.

 0x9B000200 CSA of an audio target.

Multiple source target pairs can be sent within a routing reply. The length of the message (head.l) is set to the

appropriate value. If the special CSA “NO_SIGNAL” (0xFFFFFFFF) is reported as source the target is not connected.

If the special CSA “UNKNOWN_SIGNAL” (0xFFFEFFFF) is reported in either the source or the target field, this signal is

not mentioned in the current configuration. Unknown signals are locally defined signals which are not available for the

control system that is receiving this message.

The system is sending a reply even if the requested routing already existed.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 88 Version: 5.0

13.1.3 Querying a Routing

The source connected to a target can be queried by an MX_CONNECT message with packet type PK_QUERY.

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login

reply.

head.p PK_QUERY Query for data.

head.l 12 8 octets for the message head and 4 octets of data for a CSA (target).

data E.g. 0x9B000200 CSA of the audio target.

This request will be answered with one of the following replies:

13.1.4 Query Reply for a Routing

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_REPLY Query reply.

head.l 16 8 octets for the message head and 8 octets of data for two CSAs (source

and target).

data E.g. 0x23000100 CSA of the audio source.

 E.g. 0x9B000200 CSA of the audio target.

13.1.5 Reply for Unsuccessful Routing Query

Field Value Description

head.m MX_CONNECT Matrix routing.

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_QUERY_NOREPLY Query unsuccessful.

head.l 12 8 octets for the message head and 4 octets of data for a CSA.

data E.g. 0x9B000200 CSA of the audio target.

13.2 Static Routing

As of version 4.12 of the Remote MNOPL protocol static routings are supported. The static routing flag is a target flag

and if set, it prevents from overwriting a routing accidentally. As long as a target is “protected”, all routing requests

concerning this target are rejected (without notification).

13.2.1 Static Routing Request

The routing can be declared static using the following message:

Field Value Description

head.m MX_TARGET_STATIC Identifier for static routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_EVENT Request for data change.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 89 Revision: 12.05.2014

Field Value Description

head.l 13 8 octets for the message header, 4 octets of data for the target CSA and 1 octet of

data for ON or OFF.

data E.g. 0x9B000200 CSA of an audio target

 0 or 1 OFF / ON

13.2.2 Static Routing Change

On success, the server will reply to the request above by sending a PK_CHANGE message with the server OriginID

containing the requested data.

If a target’s static flag is changed by any client, the server will create notifications for all clients which have subscribed to

the MX_TARGET_STATIC stream.

13.2.3 Static Routing Query

The client may query a target’s static routing flag by sending the following message:

Field Value Description

head.m MX_TARGET_STATIC Identifier for static routing.

head.n 0 Don’t care.

head.o OriginID Must be set to the OriginID the server has sent to the client in the login reply.

head.p PK_QUERY Request for data.

head.l 12 8 octets for the message header and 4 octets of data for the target CSA.

data E.g. 0x9B000200 CSA of an audio target

13.2.4 Static Routing Reply

If the specified target is found, the server will reply to the above sending a static routing reply message.

Field Value Description

head.m MX_TARGET_STATIC Identifier for static routing.

head.n 0 Don’t care.

head.o OriginID Server’s Origin ID.

head.p PK_QUERY_REPLY Information about queried data.

head.l 13 8 octets for the message header, 4 octets of data for the target CSA and 1 octet of

data for ON or OFF.

data E.g. 0x9B000200 CSA of an audio target

 0 or 1 OFF / ON

13.2.5 Unsuccessful Static Routing Query

If the specified target cannot be found or if the data is not available, the server will respond with the following message:

Field Value Description

head.m MX_TARGET_STATIC Identifier for static routing.

head.n 0 Don’t care.

head.o OriginID Server’s Origin ID.

head.p PK_QUERY_NOREPLY Unsuccessful query.

head.l 12 8 octets for the message header and 4 octets of data for the target CSA.

data E.g. 0x9B000200 CSA of an audio target

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 90 Version: 5.0

14 Using signal generators (noise & tone)

The Nova73 series router offers two different possibilities to implement a tone or noise generator. If the system is

equipped with a 980/31 or 980/32 audio router, the generators have to be installed as DALLIS I/O units. This implies, that

the HLSD or CSA can be set freely including the signal mapping feature as describe in chapter 2.4.

If the system is equipped with a 980/33 audio router, the signal generators are located on the router card and the HLSDs

are generated automatically. Therefore, the Remote MNOPL control is slightly different for the two cases and each of

them will be depicted in a separate chapter.

14.1 Signal generators on DALLIS I/O units

The device type query (cf. chapter 5.3) on a HLSD or CSA which represents a signal generator on a DALLIS I/O unit will

return DEVICETYPE_SIGGEN. In this case, the following control commands can be used to modify or query the settings:

head.m Parameter Set Comments

IO_DALLIS_SIGGEN_SIGTYPE struct

{

 CSA address;

 byte type;

}

The type of the generated signal. The
following values are allowed:

data type

0 off

1 sine generator

2 white noise generator

3 pink noise generator

IO_DALLIS_SIGGEN_FREQUENCY struct

{

 CSA address;

 FREQ freq;

}

The frequency of the generated signal if the
sigtype value above specifies a tone
generator. This setting has no effect on a
noise generator.

The following table declares the valid settings
for the freq parameter:

data freq

2131 20 Hz

2782 50 Hz

3276 100 Hz

3769 200 Hz

4262 400 Hz

4330 440 Hz

4914 1000 Hz

5407 2000 Hz

5695 3000 Hz

5900 4000 Hz

6057 5000 Hz

6298 7000 Hz

6552 10000 Hz

6840 15000 Hz

7045 20000 Hz

IO_DALLIS_SIGGEN_LEVEL struct

{

 CSA address;

 LEVEL level;

}

The output level of the generated signal with a
resolution of 1/32 dB.

The level may be adjusted from -128dB to 0
dB which yields LEVEL values from -4096 to
0.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 91 Revision: 12.05.2014

14.2 Signal generators on Router Card 980/33

14.2.1 Automatic generation of HLSDs

The HLSDs for signal generators on 980/33 router cards will be created automatically when the card is configured. The

created HLSDs can neither be modified nor mapped.

Please note: Due to the automatic generation of the generator’s HLSDs, the Signal Mapping feature as described

in chapter 2.4 is not available. This means that if a client wants to control generator settings, it currently has to

use the HLSD addressing scheme (mapping mode 0).

The structure of the generated HLSDs is as follows:

HLSD Class HLSD Subclass HLSD Component HLSD Subcomponent Function

GEN (=0x5C) System HLSD Prefix

as set in AdminHD,

usually 0

0 0 Sine generator

GEN (=0x5C) System HLSD Prefix

as set in AdminHD,

usually 0

1 0 2
nd

 sine generator

GEN (=0x5C) System HLSD Prefix

as set in AdminHD,

usually 0

2 0 White noise

generator

GEN (=0x5C) System HLSD Prefix

as set in AdminHD,

usually 0

3 0 Pink noise

generator

14.2.2 Controlling the core sine generators

The device type query (cf. chapter 5.3) on a HLSD which represents a core sine signal generator on a 980/33 unit will

return DEVICETYPE_CORE_SIGGEN_SINE. In this case, the following control commands can be used to modify or

query the settings:

head.m Parameter Set Comments

IO_BOX_SIGGEN_SINE_FREQUENCY struct

{

 HLSD address;

 FREQ freq;

}

The frequency of the generated signal. Freq

can be computed using the following

equation:

data = 1638 * log (frequency/Hz)

The valid range is 2131 to 7045 (20 Hz to

20.000 Hz).

Examples:

data frequency [Hz]

2131 20

4914 1.000

7045 20.000

IO_BOX_SIGGEN_SINE_LEVEL struct

{

 HLSD address;

 LEVEL level;

}

The output level of the generated signal
with a resolution of 1/32 dB.

The level may be adjusted from -96 dB to 0
dB which yields LEVEL values from -3072
to 0.

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 92 Version: 5.0

14.2.3 Controlling the core noise generators

The device type query (cf. chapter 5.3) on a HLSD which represents a core noise signal generator on a 980/33 unit will

return DEVICETYPE_CORE_SIGGEN_NOISE. In this case, the following control command can be used to modify or

query the settings:

head.m Parameter Set Comments

IO_BOX_SIGGEN_NOISE_LEVEL struct

{

 HLSD address;

 LEVEL level;

}

The output level of the generated signal with a
resolution of 1/32 dB.

The level may be adjusted from -96 dB to 0 dB
which yields LEVEL values from -3072 to 0.

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 93 Revision: 12.05.2014

15 Receiving Error Messages and Warnings

In order to receive error and warning messages from the server, the client has to subscribe to the

SA_ROUTERMESSAGE stream. The messages are unsolicited messages so it is not necessary to send queries in order

to receive error or warning information. The server is sending error and warning messages immediately after having

detected an abnormal state.

Field Value Description

head.m SA_ROUTERMESSAGE Router message.

head.n 0 Don’t care.

head.o OriginID OriginID of the server.

head.p PK_EVENT Message is of type event.

head.l 20 + x 8 octets for the message head, 14 octets for the messageinfo struct and the

number (x) of octets containing the description of the event occurred in the

system.

data Data structure defined in

15.1

Message info struct and a string of octets containing the event description.

15.1 Errorinfo Struct

The first six bytes contain a time stamp which is easily readable e.g. when sniffing the network protocol for debugging

purposes.

The routernr field is the number of the router in the system, the slotnr is the number of the slot where I/O boards are

integrated, the portnr is the port on the slot module where e.g. I/O systems can be connected and the ioslotnr is the

number of the board in the I/O system if such a system is used. If one of these fields is of no interest it will be set to

NONE (0xFF).

struct

{

 byte year;

 byte month;

 byte day;

 byte hour;

 byte minute;

 byte second;

 unsigned short errorkey;

 byte errorstate;

 byte severity;

 byte routernr;

 byte slotnr;

 byte portnr;

 byte ioslotnr;

};

The errorkey is a unique key value identifying the error. For details about the errorkey please refer to chapter 18.

The errorstate field may be set to ERR_OCCURRED or ERR_REMEDIED.

The severity field may contain one of the following values: MSG_CRITICAL, MSG_ERROR, MSG_WARNING,

MSG_INFO (in descending order).

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 94 Version: 5.0

16 Manufacturer and Device ID Table

Company Manufacturer ID Device Device ID

Lawo 0 Management Service 0

 Matrix Server 1

 NovaControl 2

 zirkon / crystal / sapphire 6

Thomson Multimedia 1 VM3000 1

 CM4000 2

Ingenieurbüro Veith 2 ROSY 0

BFE 3 KSC 9000 0

L-S-B Broadcast Technologies 4 Virtual Studio Manager 0

 Remote MNOPL Proxy Service 1

Otaritec 5 CB-179 0

BBC Technology 6 Colledia Control 0

Fraunhofer Gesellschaft 7 Spamix 0

Pharos Communications 8 Pilot 0

Mel Broadcast Solutions 9 generic 0

Netia 10 generic 0

DataPath 11 MaxView 0

Reserved 12 Reserved 0

Reserved: TV4 13 R2 protocol converter 0

Google, Inc. 14 Google Radio Automation 0

SWR Outdoor Broadcasting 15 Cassandra 0

Evertz 16 SC-1000 System Controller 0

Utah Scientific 17 SC-4 Control System 0

Sony 18 ELC-MVS01 0

IBT Interfaces 19 switch...it 0

Miranda 20 NV9000 router control system 0

Axon Digital Design 21 Cerebrum 0

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 95 Revision: 12.05.2014

17 Information Element Table

The Information Element Table is provided in a C++-Style source code format, included in the respective ZIP-file of the

documentation:

remote_mnopl_declarations.h for the basic MNOPL specifications

devicetype.h for the Extended Device Type Information

Labels Hex Value

LABEL_SIGNALNAME 0

LABEL_STARTUP 1

LABEL_USER 2

LABEL_INHERITED 3

LABEL_GROUP 4

Signals Hex Value

SIGNAL 0

SILENCE 1

Fade Hex Value

FADE_IN 1

FADE_OUT 0

Error Hex Value

ERR_OCCURRED 1

ERR_REMEDIED 0

Protect Check Hex Value

PROTECT_NO_SUCCESS 0xFF

SIGNAL_SET_STEREO Hex Value

SIGNAL_SET_STEREO 0xF29F

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 96 Version: 5.0

18 Error classes and error types

The following table serves as a brief description of error classes and error types within the RemoteMNOPL Error

Messages. The composition of error class and error type forms the so-called error key. The composition instruction is as

follows:

error key = (error class << 8) | error type;

Error class (hex) Error Type (hex) Meaning

00 - 0F - System Errors

01 - System Internal Errors

02 - System Redundancy Errors

02 00 - 1F Redundancy Takeover Errors

02 01 Redundancy Takeover

03 - System Doublestar Errors

03 00 - 1F Doublestar Takeover Errors

03 01 Doublestar Takeover

60 - 6F - Device Errors

61 - "Box" Device Errors

61 00 - 0F Box PSU Errors

61 01 48V Failure / Complete Power Failure

61 02 PSU1 Failure

61 03 PSU2 Failure

61 10 - 2F Box Temperature Errors

61 11 Box Fan Alarm

61 30 - 3F Box Network Errors

61 31 Network Connection Error

61 40 - 4F Box Sync Device Errors

61 41 Sync Source 1 Failure

61 42 Sync Source 2 Failure

61 43 Sync Source Port (Multichannel Sync) Failure

61 F0 - FD Box User Alarms

61 F1 User Alarm 1

61 F2 User Alarm 2

61 F3 User Alarm 3

61 F3 User Alarm 4

62 - Slot Device Errors

62 00 - 0F Slot Availability Errors

62 01 Slot Module Availability

63 - Port Device Errors

63 00 - 1F Common Port Errors

63 01 Link Error Port A (main)

63 02 Link Error Port B (redundant)

63 20 - 6F Madi Port Errors

 Technical Documentation

 Remote MNOPL

Version: 5.0 Page 97 Revision: 12.05.2014

63 20 - 2F Madi Port Common Errors

63 21 Madi Layer Error Port A (main)

63 22 Madi Layer Error Port B (redundant)

63 30 - 3F Madi Port Rawport Errors

63 40 - 4F Madi Port Dallisport Errors

63 70 - BF ATM Port Errors

63 70 - 7F ATM Port Common Errors

63 71 ATM Layer Error Port A (main)

63 72 ATM Layer Error Port B (redundant)

63 80 - 8F ATM Port Rawport Errors

63 90 - 9F ATM Port Dallisport Errors

64 - Dallisslot Device Errors

64 00 - 0F Dallisslot Availability Errors

64 01 Dallisslot Module Availability

65 - Resource Errors

6B - Dallis Device Errors

6B 00 - 0F Dallis PSU Errors

6B 01 Dallis PSU1 Failure

6B 02 Dallis PSU2 Failure

6B 10 - 2F Dallis Temperature Errors

Technical Documentation

Remote MNOPL

Revision: 12.05.2014 Page 98 Version: 5.0

19 Appendix A – Mic/Line card dynamic range design limits

19.1 Basic Condition

- The Control System sets the adjustable range to -20 dB to +70 dB.

- The value of the term (Headroom + Reference Level) is in the range of +12 dB to +24 dB in 1 dB steps.

19.2 Adjustment Range

The basic condition needs to apply:

941/51 Mic Line 8 Mono electric/symmetric

Mode Design Limit [dB]

Line

Min: - 24 (+Headroom + Reference level)

Max: + 35 (+Headroom + Reference level)

Mic

Min: - 4 (+Headroom + Reference level)

Max: + 55 (+Headroom + Reference level)

941/52 Mic Line 8 Mono trafo symmetric

941/62 Mic Line 8 Mono trafo symmetric

Mode Design Limit [dB]

Line

Min: - 30 (+Headroom + Reference level)

Max: + 18 (+Headroom + Reference level)

Mic, without Pad

Min: - 6.5 (+Headroom + Reference level)

Max: + 55 (+Headroom + Reference level)

Mic, with Pad

Min: - 30 (+Headroom + Reference level)

Max: + 55 (+Headroom + Reference level)

Example:

941/51 in Line-Mode with 9 dB Headroom and 6 dB Reference Level: Min: -9, Max +70 [dB].

Lawo AG, Germany

Phone: +49 7222 1002-0

Web: www.lawo.com

