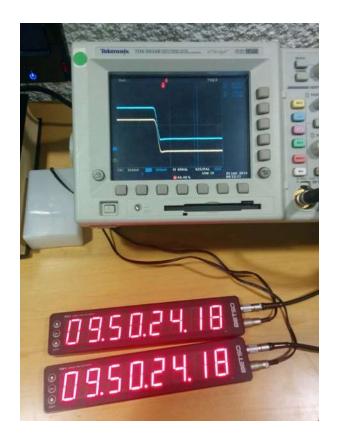
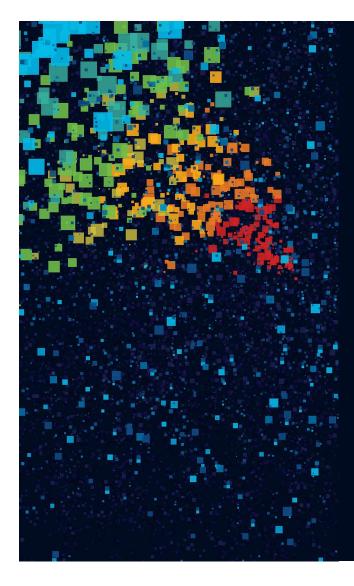
Architecting and Operating PTP

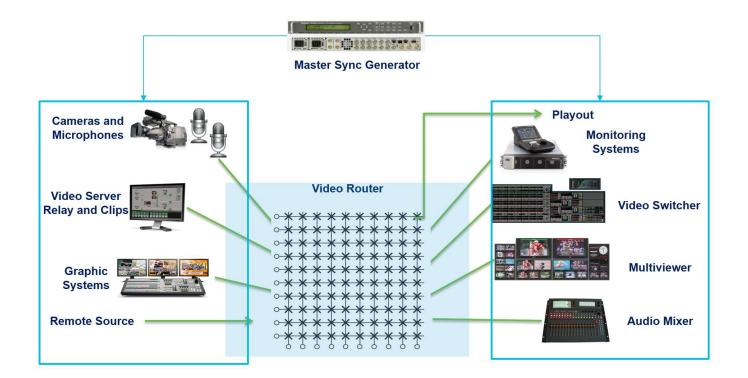

In IP based Production Facility


Rahul Parameswaran Sr. Technical Marketing Engineer www.linkedin.com/in/rparames June 2020

ılıılıı cısco

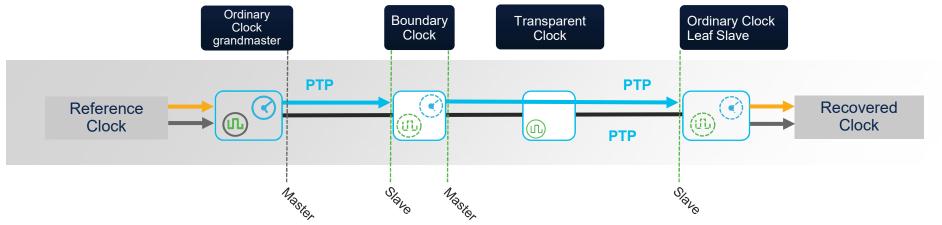
How do I generate a stable timing signal from an Ethernet port?

Source: an anonymous broadcast engineer

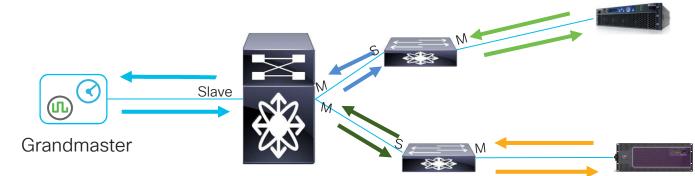


Agenda

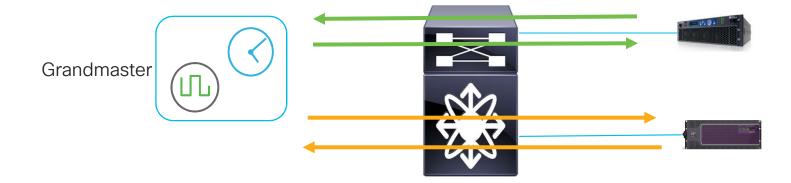
- How PTP works
- PTP Media Profiles
- Design Considerations
- Lessons Learnt from Deployments
- Troubleshooting tips
- Conclusion


Introduction to PTP

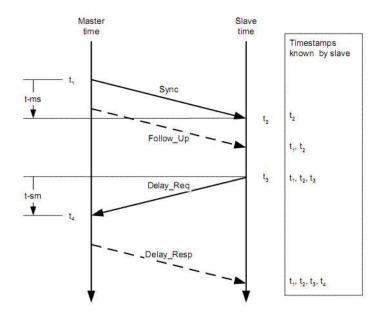
Time Sync in SDI facility


Precision Time Protocol

- Two Way Time Transfer protocol (TWTT)
- Accuracy in a well designed E2E model in the nanosecond range
- Boundary Clocks (BC) and Transparent Clocks (TC) aim correcting delay variations, in both directions (asymmetry)

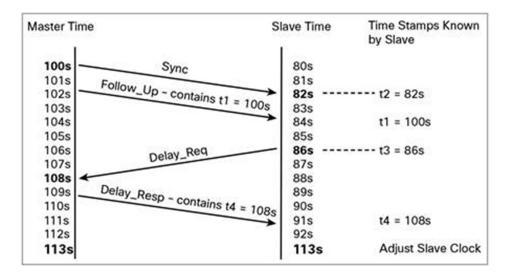

Boundary Clock

- Boundary Clock
 - Has multiple PTP ports in a domain and maintains the timescale used in the domain. It has both master and slave ports.
 - It terminates the PTP flow, recovers the clock and timestamp, and regenerates the PTP flow



Transparent Clock

- Transparent clock (TC)
 - A device that measures the time taken for a PTP event message to transit the device and compensate the packet delay by updating the timestamp.

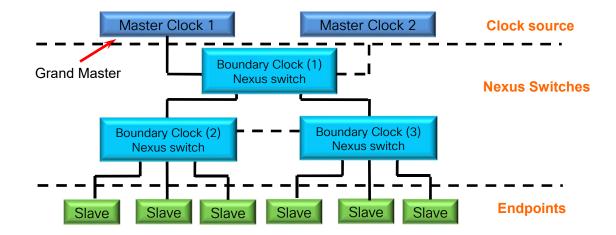


How PTP Works?

After the synchronization

Slave clock derives Time of Day, phase and frequency signals from the master

Mean Path Delay $((t_2 - t_1) + (t_4 - t_3)) / 2$


 $t_2 - t_1$ - mean path delay

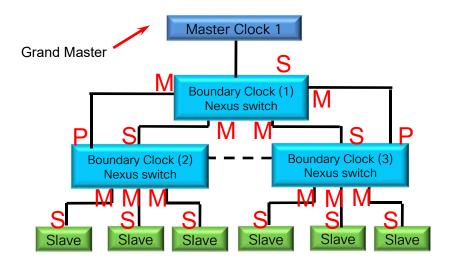
Mean Path Delay = ((t2 - t1) + (t4 - t3)) / 2 = (-18 + 22) / 2 = 2

Clock Offset

Offset = t2 - t1 - Mean Path Delay = 82 - 100 - 2 = -20

Hierarchy Network Clock Topology

- 1 Elect the grand master, form a master-slave hierarchy. Grand master is selected based on Best Master Clock selection Algorithm (BMCA). (Master clock 1 is selected as Grand Master in the diagram)
- 2 Each slave clock synchronizes itself to the master clock


Master Clock Selection

- BMCA (Best Master Clock Algorithm) runs locally on each port.
- It determines the best clock based on the attributes with following priority:
 - 1. **priority1**: User configurable designation that a clock belongs to an ordered set of clocks from which a master is selected
 - 2. clockClass: Defines a clock's TAI traceability
 - 3. **clockAccuracy**: Defines the accuracy of a clock
 - 4. offsetScaledLogVariance: Defines the stability of a clock
 - 5. **priority2**: User configurable designation providing finer grained ordering among otherwise equivalent clocks
 - 6. clockldentity: A tie-breaker based on unique identifiers
 - 7. StepsRemoved: Selection of shortest path to the GrandMaster (for BC)
- BMCA determines the status of the port: master, slave or passive.
- BMCA runs continuously.

 $\ensuremath{\textcircled{\sc 0}}$ 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

PTP Port States

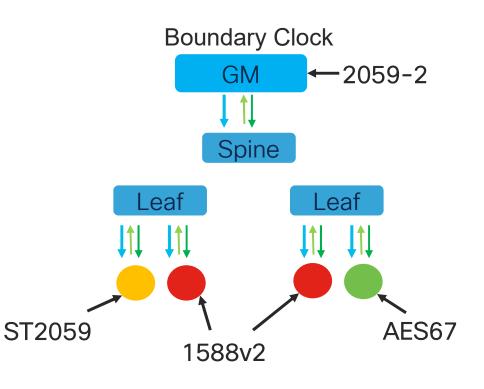
- MASTER: the port is advertising the time to a slave.
- SLAVE: the port is receiving the time from a master.
- PASSIVE: the port is connected to a master which is not the best clock.

PTP Media Profiles

PTP profiles for media & broadcast

- AES67 (Audio driven)
 - Based on IEEE 1588-2008 default profile /w specific message rates
 - Announce: 1 {0,4}
 - Sync: -3 {-4,1}
 - DelayReq: 0 {-3,Sync +5}*
 - Allow all devices to be either Master or Slave
 - Multicast messages only
 - Default PTP domain: 0 {0-255}

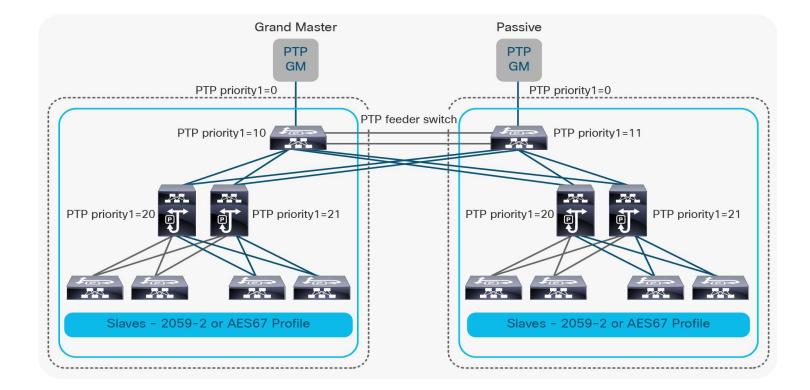
PTP profiles for media & broadcast


SMPTE 2059 (Video driven)

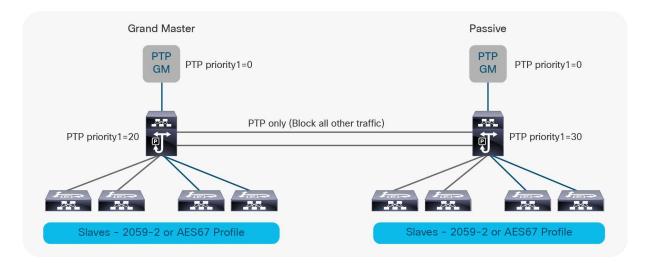
- Based on a 5 sec fast locking requirement for endpoints /w spec rates
 - Announce: 1 {-3,1}
 - Sync: -3 {-7,-1}
 - DelayReq: 0 {Sync +0, Sync +5}
- Default Slave mode unless can operate as Master
- Additional PTP TLV with media specific information
 - Daily Jam Time, Default Frame rate, ...
- Supports Multicast, Mixed (Mcast/Ucast) and Unicast modes
- Default PTP domain: 127 {0-127}

NX-OS implementation

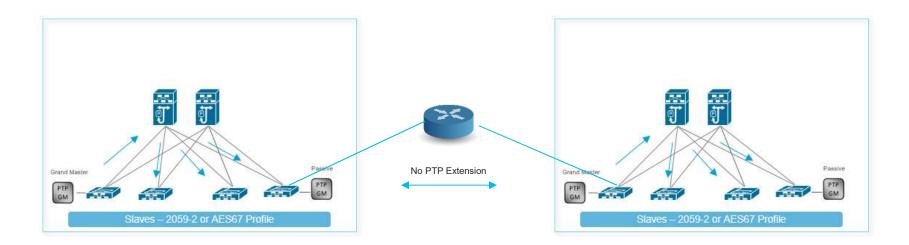
- Support for AES67 message rates
 - ptp announce interval aes67 <value>
 - ptp sync interval aes67 <value>
 - ptp delay-request minimum interval aes67 <value>
- Support for SMPTE 2059 message rates (and PTP mgmt TLV)
 - ptp announce interval smpte-2059-2
 <value>
 - ptp sync interval smpte-2059-2 <value>
 - ptp delay-request minimum interval smpte-2059-2 <value>


Design Considerations

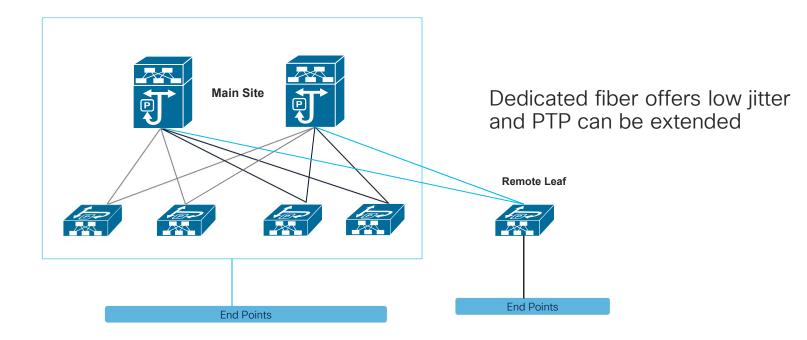
Studio Production

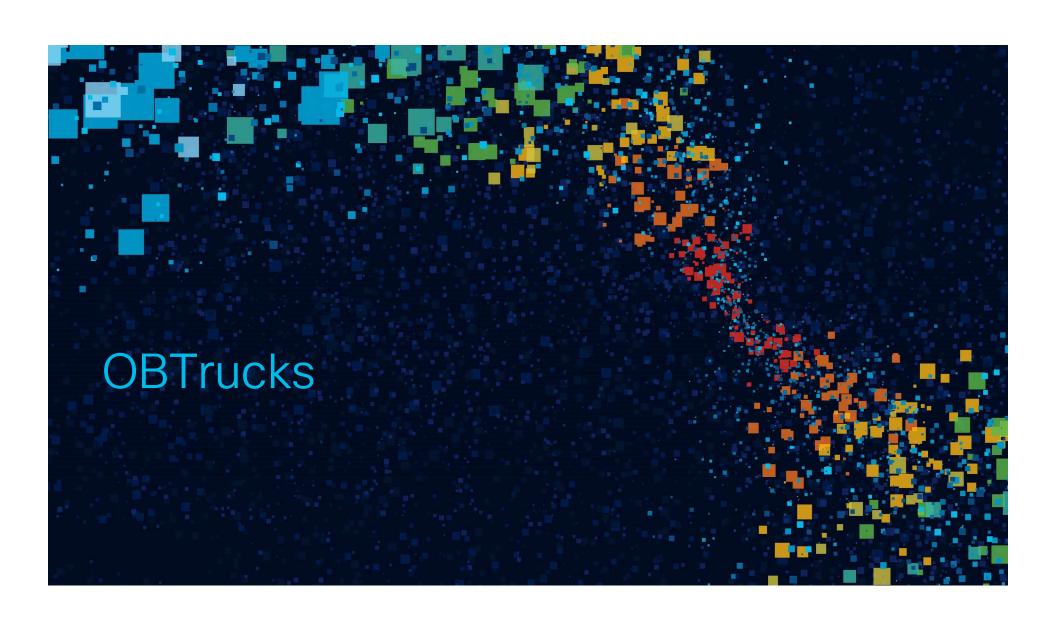

PTP GM PTP GM Grand Master Passive PTP Feeder Switch i. i. i. i. THE /

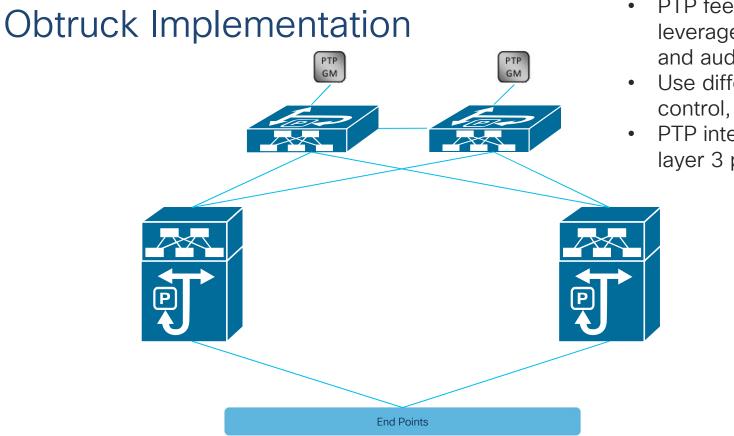
2020-7 and PTP design


Setting the Priority1 values

Alternate designs No PTP feeder switch


PTP and Multi Site




- WAN could introduce high jitter that could result in high PTP offset
- Also PTP assumes symmetric delays in all calculations

What about Remote Production

Smaller Remote Studios

- PTP feeder switch also leveraged for control and audio
- Use different VLAN for control, audio
- PTP interfaces can be layer 3 point to point

What did we learn?

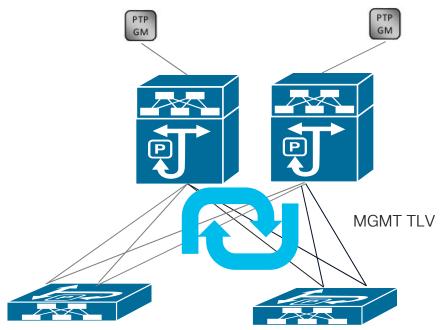
PTP Boundary Clock and Scale

How do you measure Boundary Clock Performance

- Questions to ask you network vendor
 - How many interfaces can PTP be enabled on (master ports)?
 - How many slaves can each interface support?
 - How many slaves can the system itself support?
 - How do you qualify the above scale?

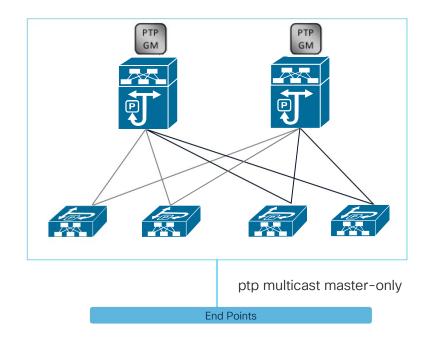
Achieving PTP Scale on a Modular Chassis Innovation through PTP Offload

- PTP Offloaded to Line card CPU
- Main Supervisor synchronizes the line card
- Each Line card services endpoints connected to it
- Results in increased scale with superior accuracy


Cisco Nexus 9000 PTP scale

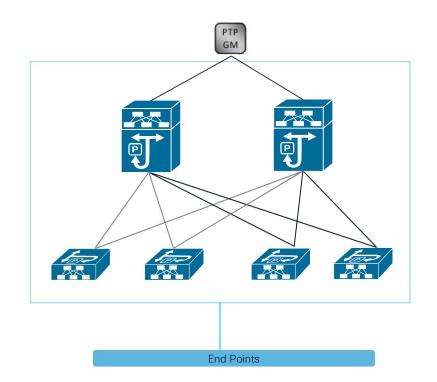
- Fixed Platform Nexus 9300 EX, FX, FX2, FX3,GX
 - Max PTP interfaces : 64 (Shipping), 144 (NXOS 9.3(5) and later)
 - Max number of slaves behind each interface 48
 - Max number of slaves 256
- Modular Platform like 9500-R
 - Max PTP interfaces per line card: 64 (Shipping), 144 (9.3(5) and later)
 - Max PTP interfaces per chassis : 512 (future release can support 1152)
 - Max number of slaves behind each interface 48
 - Max number of slaves per system 1152

ST2059-2 and Management TLV


Watch out for those loops!

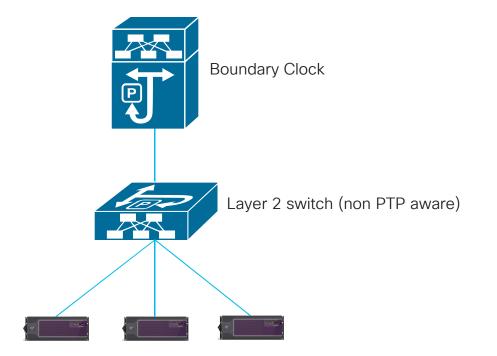
- During GM failure BMCA kicks in to elect new GM
- Interfaces state could go from slave to pre-master/master
- During that phase MGMT TLVs can loop
- NX-OS does not forward TLV on passive interfaces or pre-master

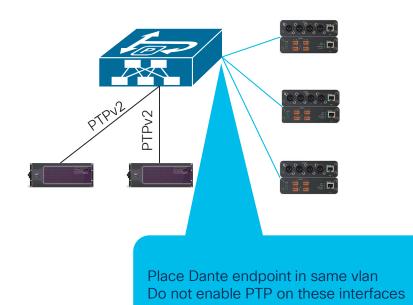
Who becomes the Master?

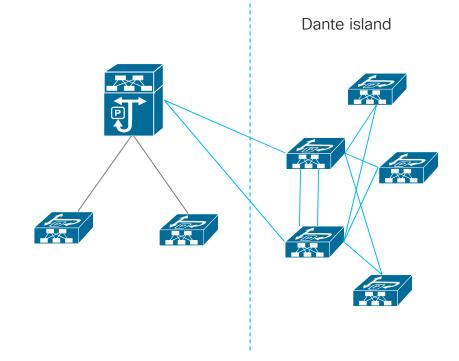

Basic Network Security for PTP

- PTP BMCA elects the GM
- Any device can send Announce messages with superior values
- Device can take over as GM!!

```
interface et1/1
description IPG
ptp
ptp multicast master-only
```


Using Redundant interfaces on GM Make sure they are isolated


- Make sure different interfaces on the GM are in isolated mode
- This ensures the delay request sent from one system does not get forwarded to other


Multicast mode vs Mixed Mode

- PTP multicast mode all messages are multicast
- PTP mixed mode Unicast delay request and response
- Mixed mode reduces the number of PTP packets hitting an endpoint
- Improved performance as a result of fewer PTP packets to be processed

Working with Dante (PTPv1) How to onboard Dante endpoints

PTP and Control Plane Policing Modify Default CoPP

Leaf-1 # show policy-map interface control-plane class nbmcopp-class-redirect

Control Plane

- CoPP protects CPU
- PTP rate limited by default to 128kbps
- Increase CIR to 1024 Kbps

Service-policy input: nbm-copp-policy-strictv

class-map nbm-copp-class-redirect (match-any)

match access-group name nbm-copp-acl-ptp

match access-group name nbm-copp-acl-ptp-12

match access-group name nbm-copp-acl-ptp-uc

set cos 1

police cir 1024 kbps , bc 32000 bytes

module 1 :

transmitted 1724750 bytes;

dropped 0 bytes;

PTP and Quality of Service Prioritizing PTP

- Ensure PTP is in highest
 Priority queue
- Nexus automatically places PTP in highest priority queue (control)

Comparing PTP performance

				ar ar Éirean								. •
					÷							
GRANDM												
UNANDIM												
	P SWITCH											
						- :	:			:		
n de la desta des					· · · ·		1	3				
i.												
TRANSP	ARENT CLOC	N A A A										
INANOL												
		1. A. 1. A. 1.	1		1							
· · · · · · · ·												
					+							
					. ‡							
BUUNDA	RY CLOCK											
					:							
				<u></u>	: :	 : :	 E : :		: :	<u> </u>	: : :	:

SMPTE PTP Demo at Annual Tech Conference 2016

Troubleshooting Tips

Checking PTP at the Switch

- · show ptp brief
- show ptp clock
- show ptp parent

Spine1# sh ptp brief

PTP port status

Port	State
Eth1/1	Master
Eth1/3	Master
Eth1/33	Slave
Eth1/34	Disabled
Eth1/35	Disabled
Eth1/36	Master

Spine1# show ptp clock PTP Device Type : boundary-clock PTP Device Encapsulation : layer-3 PTP Source IP Address: 172.16.1.1 Clock Identity : a8:b4:56:ff:fe:0c:f7:f3 Clock Domain: 100 Slave Clock Operation : Two-step Master Clock Operation : Two-step Slave-Only Clock Mode : Disabled Number of PTP ports: 6 Priority1:255 Priority2:255 **Clock Quality:** Class: 248 Accuracy: 254 Offset (log variance) : 65535 Offset From Master: 40 Mean Path Delay: 176 Steps removed : 2 Correction range : 100000 MPD range : 100000000 Local clock time : Tue Jun 11 19:39:37 2019 Hardware frequency correction : NA

Spine1# show ptp parent

PTP PARENT PROPERTIES

Parent Clock: Parent Clock Identity: 6c:b2:ae:ff:fe:9f:3e:1f Parent Port Number: 208 Observed Parent Offset (log variance): N/A Observed Parent Clock Phase Change Rate: N/A

Parent IP: 172.16.1.4 Grandmaster Clock: Grandmaster Clock Identity: 00:04:b3:ff:fe:f0:19:ca Grandmaster Clock Quality: Class: 6 Accuracy: 45 Offset (log variance): 16542 Priority1: 1 Priority2: 2

Checking PTP Messages at the Switch Port

- sh ptp port interface ethernet 1/x counters
- sh ptp corrections

Spine1# sh ptp counters int e1/36

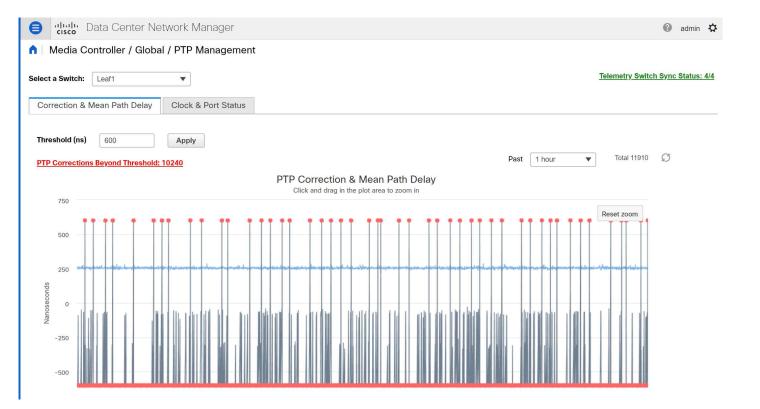
PTP Packet Counters of Interface Eth1/36:

Packet Type	ТХ	RX
Announce	66	0
Sync	523	0
FollowUp	523	0
Delay Request	0	131
Delay Response	131	0
PDelay Request	0	0
PDelay Response	0	0
PDelay Followup	0	0
Management	0	0

Spine1# sh ptp corrections

PTP past corrections

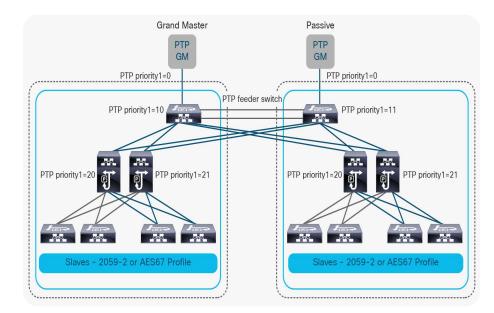
Clavia Day		Correction(no)	Maan Dath	Deley(ne)
Slave Por	t SUP Time		MeanPath	Delay(ns)
Eth1/33	Tue Jun 11 19:37:08 2019	988176	24	184
Eth1/33	Tue Jun 11 19:37:08 2019	738202	2	184
Eth1/33	Tue Jun 11 19:37:08 2019	487105	16	184
Eth1/33	Tue Jun 11 19:37:08 2019	235536	16	176
Eth1/33	Tue Jun 11 19:37:07 2019	991135	56	176
Eth1/33	Tue Jun 11 19:37:07 2019	733451	-85	176
Eth1/33	Tue Jun 11 19:37:07 2019	486743	-12	176
Eth1/33	Tue Jun 11 19:37:07 2019	233045	40	180
Eth1/33	Tue Jun 11 19:37:06 2019	982194	16	180
Eth1/33	Tue Jun 11 19:37:06 2019	736855	-1	180
Eth1/33	Tue Jun 11 19:37:06 2019	481447	32	180
Eth1/33	Tue Jun 11 19:37:06 2019	230463	0	172
Eth1/33	Tue Jun 11 19:37:05 2019	979343	40	172
Eth1/33	Tue Jun 11 19:37:05 2019	733087	-57	172
Eth1/33	Tue Jun 11 19:37:05 2019	477642	8	172
Eth1/33	Tue Jun 11 19:37:05 2019	228712	24	188
Eth1/33	Tue Jun 11 19:37:04 2019	981574	16	188
Eth1/33	Tue Jun 11 19:37:04 2019	727055	-2	188
Eth1/33	Tue Jun 11 19:37:04 2019	476039	36	188


Logging PTP state change

From Boundary Clock Switch

2020	Mar	3	13:48:57	PTPstackA	<pre>%PTP-2-PTP_HIGH_CORR: Slave port Eth1/1 High correction -98302(nsec)</pre>
2020	Mar	3	13:48:57	PTPstackA	<pre>%PTP-2-PTP HIGH CORR: Slave port Eth1/1 High correction 110720(nsec)</pre>
2020	Mar	3	14:14:45	PTPstackA	<pre>%PTP-2-PTP HIGH CORR: Slave port Eth1/1 High correction -32759(nsec)</pre>
2020	Mar	3	14:14:45	PTPstackA	<pre>%PTP-2-PTP HIGH CORR: Slave port Ethl/1 High correction 55334(nsec)</pre>
2020	Mar	3	14:14:46	PTPstackA	%PTP-2-PTP HIGH CORR: Slave port Eth1/1 High correction -16304(nsec)
2020	Mar	3	14:18:57	PTPstackA	%VSHD-5-VSHD SYSLOG_CONFIG_I: Configured from vty by admin on 192.168.10.150@pts/0
2020	Mar	3	14:35:49	PTPstackA	<pre>%PTP-2-PTP_HIGH_CORR: Slave port Eth1/1 High correction -32737(nsec)</pre>
2020	Mar	3	14:35:49	PTPstackA	<pre>%PTP-2-PTP HIGH CORR: Slave port Eth1/1 High correction 55350(nsec)</pre>
2020	Mar	3	14:35:49	PTPstackA	<pre>%PTP-2-PTP HIGH CORR: Slave port Eth1/1 High correction -16319(nsec)</pre>
PTPst	ackA	÷			

2019-11-14 17:17:08,859	- Interface in use changed: ETH2	
2019-11-14 17:17:08,859	- Grand master clock id changed: ec:46:70:ff:fe:0a:9b:19	
2019-11-14 17:17:08,859	- Parent clock id changed: 00:3a:9c:ff:fe:6d:77:47	
2019-11-14 17:17:08,859	- Steps removed changed: 5	
2019-11-14 17:17:09,859	- Eth1 ptp status changed: Uncalibrated	
2019-11-14 17:17:09,859	- Eth2 ptp status changed: Listening	
2019-11-14 17:17:09,859	- Interface in use changed: ETH1	
2019-11-14 17:17:09,859	- Grand master clock id changed: 08:00:11:ff:fe:23:19:66	F 0110 ID0
2019-11-14 17:17:09,859	- Parent clock id changed: 00:3a:9c:ff:fe:6d:78:c7	From 2110 IPG
2019-11-14 17:17:09,859	- Steps removed changed: 4	
2019-11-14 17:17:10,958	- Eth1 ptp status changed: Listening	
2019-11-14 17:17:10,958	- Eth2 ptp status changed: Uncalibrated	
2019-11-14 17:17:10,958	- Interface in use changed: ETH2	
2019-11-14 17:17:10,958	- Time source changed: Internal Oscillator	
2019-11-14 17:17:10,959	- Grand master clock id changed: 00:3a:9c:ff:fe:6d:77:47	
2019-11-14 17:17:10,959	- Parent clock id changed: 00:3a:9c:ff:fe:6d:77:47	
	â	


DCNM PTP Monitoring Leveraging Streaming Telemetry

In Conclusion

Conclusion

- PTP provides very precise and accurate time synchronization
- Boundary Clock enables distributed PTP architecture
- Ensure design accounts for failures
- Take Boundary Clock scale into consideration
- Ensure some amount of security is in place
- Leverage operations tools to monitor PTP performance

Useful Links

PTP Design Guide

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/guide-c07-742142.html

IPFM Design Guide https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-seriesswitches/white-paper-c11-738605.html