

Copyright © 2017 by THE SOCIETY OF
MOTION PICTURE AND TELEVISION ENGINEERS
3 Barker Avenue, White Plains, NY 10601

(914) 761-1100

Approved
February 27, 2017

Table of Contents Page

Foreword ... 3

Intellectual Property .. 3

Introduction.. 3

1 Scope .. 7

2 Conformance Notation .. 7

3 Normative References .. 7

4 Definitions ... 9

5 Storage Media Types .. 13
 5.1 Media with File Systems .. 14
 5.2 Media without File Systems ... 14
 5.3 File Marks ... 15
 5.4 Relationships Between AXF Structures and Storage Media Types 15

6 Archive eXchange Format (AXF) Structure .. 16
 6.1 Form of Data Expression ... 16
 6.2 Byte Order .. 17
 6.3 General AXF Concepts .. 17
 6.4 AXF Data Structures .. 18

7 General Usage Considerations ... 36
 7.1 File Naming .. 36
 7.2 Media Preparation .. 36
 7.3 AXF Object Index Structures ... 37
 7.4 Creating, Reading, Writing, Copying, and Transferring AXF Objects 38
 7.5 Nesting AXF Objects .. 39

8 Spanning ... 39
 8.1 Spanning Linkages ... 39
 8.2 Encountering a Spanning Situation .. 43
 8.3 Recovery of Spanned AXF Objects ... 43
 8.4 Spanning Rules .. 43

9 Collected Sets ... 44
 9.1 Collected Set Linkages .. 44
 9.2 Collected Set Structure .. 45
 9.3 Add/Replace/Delete Processes ... 45
 9.4 Tracking Versions .. 46

Page 1 of 101 pages

SMPTE ST 2034-1:2017
Revision of

SMPTE ST 2034-1:2014

SMPTE STANDARD

Archive eXchange Format (AXF) —
Part 1: Structure & Semantics

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 2 of 101 pages

10 AXF Data Model .. 48
 10.1 AXF Medium Identifier .. 49
 10.2 Object Header ... 52
 10.3 Object Fragment Header .. 58
 10.4 File Footer .. 61
 10.5 Object Fragment Footer ... 63
 10.6 Object Footer ... 68
 10.7 AXF Object Index ... 74
 10.8 UUID .. 78
 10.9 PositionInteger ... 78
 10.10 FileFolder ... 79
 10.11 Folder ... 81
 10.12 File ... 84
 10.13 Symlink ... 87
 10.14 FileTree .. 90
 10.15 Application .. 91
 10.16 Entity .. 93
 10.17 Location .. 95
 10.18 Identifiers .. 97
 10.19 Checksums .. 97
 10.20 Identifier ... 97
 10.21 Checksum .. 98
 10.22 ByteOrder ... 100
 10.23 Media Type .. 101
 10.24 Structure Version ... 101

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 3 of 101 pages

Foreword

SMPTE (the Society of Motion Picture and Television Engineers) is an internationally-recognized standards
developing organization. Headquartered and incorporated in the United States of America, SMPTE has
members in over 80 countries on six continents. SMPTE’s Engineering Documents, including Standards,
Recommended Practices, and Engineering Guidelines, are prepared by SMPTE’s Technology Committees.
Participation in these Committees is open to all with a bona fide interest in their work. SMPTE cooperates
closely with other standards-developing organizations, including ISO, IEC and ITU.

SMPTE Engineering Documents are drafted in accordance with the rules given in its Standards Operations
Manual.

SMPTE ST 2034-1 was prepared by Technology Committee 31FS on File Formats and Systems.

Intellectual Property

At the time of publication, no notice had been received by SMPTE claiming patent rights essential to
the implementation of this Engineering Document. However, attention is drawn to the possibility that some of
the elements of this document may be the subject of patent rights. SMPTE shall not be held responsible for
identifying any or all such patent rights.

Introduction

This section is entirely informative and does not form an integral part of this Engineering Document.

The Archive eXchange Format (AXF) is an open format that supports interoperability among disparate data
storage systems and ensures long–term availability of data, no matter how storage or file system technologies
evolve. AXF inherently supports interoperability between existing, discrete storage systems, irrespective of
the operating and file systems used, and also future–proofs digital storage by abstracting the underlying
technology so that content remains available across generations of technology development.

At the most basic level, AXF is a file container that can encapsulate any number, size, and type of files in a
fully self–contained and self–describing package. The package contains its own light-weight file system,
which establishes independence from underlying operating systems, storage technologies, and file systems
and can store any type of data on any type of storage media. Inside its packaging, AXF can contain metadata
of any format, applicable to either AXF Objects or to individual files contained within AXF Objects; AXF also
carries key preservation information, such as provenance, fixity, and the like — all key to ensuring long-term
robustness and recoverability.

Historically, digital archive systems have used media data storage formats that are proprietary to their
manufacturers, either intentionally or due to the lack of established standards. There have been neither
interchange of media nor interoperability of archive systems between manufacturers and in some cases
between different archive systems from the same manufacturer. Archives could be orphaned due to support
ending for the systems used to create data archives. End users and manufacturers recognized that the
proprietary nature of archive systems and the data stores that they create result in significant costs of
operation that are unnecessary. These costs could be avoided if there were standardization of the format
used for storage of the data on media and for transfer of the data between systems and locations. AXF
permits separating the stored content from the systems that create and recover sets of data, thereby enabling
refreshing of storage technology, recovering sets of data that otherwise would have been orphaned, and
transferring sets of data between systems and locations.

This standard specifies a structure for data that can be written to any current or future data storage
subsystem, regardless of the type of media on which it is stored. The data can include any types of files and
associated metadata that are stored and transferred together in a structure called an “AXF Object.” A single
AXF Object can be spanned across multiple physical media, can be copied from one set of physical media to

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 4 of 101 pages

another, and is agnostic to the Storage Media Type on which it is stored, e.g., spinning disc or linear tape.
Regardless of the Storage Media Types on which they are stored, AXF Objects are identically structured and
formatted for any given set and relationship of contained files and metadata.

AXF initially arose from the storage needs of the audiovisual production and archiving communities but
quickly encompassed any type of file-based data. The transition to file-based workflows led to a new set of
requirements throughout pre-production, production, distribution, storage, and preservation processes.
Those requirements included long-term archiving of finished and unfinished materials, writing data to any type
of storage subsystem using a standard scheme, transporting formatted archives between systems and
locations using either media or networks, and allowing extensibility sufficient to accommodate any type of file,
of any size, from any source, as well as adoption of any future storage technologies. AXF was created to
address these requirements.

Audiovisual content archiving spans a wide range of content and data archiving systems and practices. At
the time this standard was written, many different methods and media were commonly used to store file-
based audiovisual content and its supporting information. Examples range from individual hard drives, solid
state drives, and linear magnetic tape drives in small organizations to large spinning disc arrays in
combination with very large robotic systems with multiple robots, each having multiple drives, in very large
cultural, scientific, and legal archives. Applications in other industries that could benefit from the methods
defined herein include medical imaging, geophysical exploration, scientific research, and similar high-volume
producers of data.

The cultural, scientific, and business value of assets stored on these data systems is significant. Methods for
storage, interchange, transport, and preservation of such assets, both locally and remotely, over both short
and very long retention periods, demands a standardized, well-documented, non-manufacturer-specific
method of writing data to any data storage system, from which the data then can be recovered and its
contents used, updated, or transferred to another data storage system. All that would be necessary to achieve
these objectives is a mechanism for recovering data from the media on which it is stored, plus utilities or
applications that implement AXF.

The AXF standard creates a common method of writing individual files or related sets of files, and relevant
metadata, onto data storage subsystems so that the structure of an AXF Object will remain the same no
matter what vendor equipment or Storage Media Type is used. As long as the media remains viable and data
can be read from that media, it will be possible to recover an AXF Object and unwrap its contents with a
suitable utility or application running on whatever platform is current at the time. The AXF Object also has to
be able to be recovered and stored on future data storage systems without requiring any changes to its
contents simply to accomplish the act of medium migration, but it also needs to allow changes to its contents,
in case updating is needed to data that already has been archived.

AXF addresses these needs through a combination of predefined eXtensible Markup Language (XML)
schema fields, defined binary data structures that enable an AXF Object to carry any type of file within its File
Payload, internal file system functionality, and key metadata enabling the spanning of AXF Objects across
multiple physical media. The XML schema also enables essential information about an AXF Object and its
contents to be read without having to process all the information within the AXF Object.

In addition to media interchange, AXF enables the interoperability of disparate systems through networks
because it is structured as a streaming data set. Such interconnections enable seamless movement of AXF
Objects from systems that create them, to systems that do not recognize the AXF protocol but store the AXF
Object files nonetheless (perhaps in “cloud” storage), then to systems that are designed to recover data from
AXF Objects.

Functionally, AXF acts like a file wrapper or a repository for all types of data without constraint. Unlike media-
centric file formats such as MXF, which are similar in that they wrap essences, AXF can contain any number
or types of files of any size encapsulated in an AXF Object. It is applicable across a much broader variety of
file storage user groups than any media-specific file wrapper. Types of data can include media essence files,
related metadata files, production files (such as word processing documents, hypertext documents,
associated essence, applications, spreadsheets, and database copies), or any other type of data that users
wish to store together. Unlike other file wrapper definitions, it is payload agnostic and does not require any
special mappings or adaptations to accept the data an AXF Object carries.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 5 of 101 pages

AXF accommodates very large file sizes and quantities within AXF Objects. In the current version of this
standard, 64-bit numbers are used to define the sizes of various parameters applicable to elements of AXF
Objects. 64-bit numbers can express values up to 18.44674 x 10

18
 (e.g., 18.44674 petabytes). Use of 64-bit

numbers thus can define file sizes in bytes, numbers of files, numbers of media in a spanned set, and similar
characteristics up to 18.44674 x 10

18
 of any particular element. If future requirements exceed the number

spaces provided in this document, there is nothing fundamental that limits any particular parameter to
expression using a 64-bit number. Future revisions of this standard could adopt larger number spaces (e.g.,
96-bit, 128-bit, etc.) for those parameters requiring them. The net result is effectively unlimited storage
capability within AXF Objects, in terms of file sizes, numbers of files in an AXF Object, number of AXF
Objects on a medium, number of media in a spanned set, and the like.

AXF enables updating AXF Objects when additions of, modifications to, or deletions of files or information that
they contain are needed. The functionality to modify AXF Objects is provided by linking “Supplemental” AXF
Objects, written into an archive system at a later time to an original (“Anchor”) AXF Object. A Supplemental
AXF Object updates contents of previous AXF Objects without requiring the original AXF Object itself to be
modified. Since the original content of the AXF Object is retained in its original form, it is possible to restore
either the original or the modified version whenever necessary. Additional Supplemental AXF Objects can be
added in a chain, with restoration of the current or any earlier version possible at any time. When AXF
Objects are refreshed by copying them to new media, it is possible to consolidate an Anchor Object and its
Supplemental Object(s) into a single, new AXF Object. In doing so, it is possible to retain all of the constituent
Objects of the Collected Set to which they belong, so that all earlier versions still can be reconstituted in the
future.

AXF abstracts the storage of data from the applications that create AXF Objects and from the operating
systems, file systems, drivers, and drives that store data on media. By this mechanism, any of the
surrounding hardware and software components of systems can be replaced without affecting the data and its
formatting within AXF Objects. A simplified view of where AXF fits into a basic stack is shown in Figure 1.

AXF-Aware Application

Server/Storage Stack with AXF support

Archive eXchange Format (AXF), Including Internal File System

Block Level Addressing File System

Medium (without File System) Medium (with File System)

Operating System – Hardware Abstraction Layer

Driver

Physical Drive

Figure 1 – Hardware/Software Stack Incorporating AXF Writing to and Reading from Media

AXF is designed so that each AXF Object comprises four main components, regardless of the technology that
is used to store it. These components are:

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 6 of 101 pages

Object Header – Each AXF Object begins with an Object Header, which contains descriptive XML metadata
such as a unique identifier (UUID) for the AXF Object, information regarding its origin, its creation date, and a
full index of all the files and folders contained in the Object, including file permissions and the like.

Generic Metadata Containers – Following an Object Header can be any number of optional Generic Metadata
Containers. Such containers are self–contained, open metadata containers in which applications can place
AXF-Object-specific metadata that is not part of the AXF Object File Payload. The metadata can be structured
or unstructured, open or vendor-specific, binary, XML, plain text, or any other format.

AXF Object File Payload – Following any Generic Metadata Containers is the AXF Object File Payload. It
contains the files encapsulated in the AXF Object. The File Payload consists of any number of triplets: File
Data + File Padding + File Footer. File Padding ensures alignment of all AXF Object elements on the
boundaries of Chunks into which each AXF Object is divided, thereby enabling addressing, by location within
the AXF Object, by its internal file system. File Footer structures contain full information about the preceding
file, along with a file-level checksum designed to be processed on-the-fly, with little or no overhead, during
restore operations by an application. The information in File Footers enhances the resilience of AXF, as it can
be used to recover File Payload data even if Object Header and Footer structures are missing or corrupt.

Object Footer – Completing an AXF Object is an Object Footer. It repeats the information contained in the
Object Header and adds information captured during creation of the AXF Object, including per-file
checksums, precise file sizes, and file positions within the AXF Object. The Object Footer is important to the
interchange of an AXF Object because it allows efficient indexing by foreign systems when the media content
is not previously known, thereby enabling media transport between systems that follow the AXF standard. It is
one of the key structures that support the self-describing nature of AXF.

Other significant structures in the AXF protocol are AXF Medium Identifiers and AXF Object Indices. AXF
Medium Identifiers are used on media to indicate formatting of the media according to the AXF protocol and to
provide unique identification of the media. AXF Object Indices are optional compilations of the information in
all Object Footers preceding each AXF Object Index on a medium, providing a single structure from which it is
possible to obtain complete information on the contents of the preceding portion of a medium. When an AXF
Object Index is the last structure on a medium, complete information about all AXF Objects stored on the
medium can be obtained efficiently in one place.

AXF does not require a system to be fully compliant with this standard for it to be able to use and store AXF-
generated AXF Objects. The initial adoption of AXF is anticipated to be in applications that create AXF
Objects that then are stored on non-AXF-aware storage systems. Because the AXF Objects do not require a
storage system to know that the AXF Objects are AXF-formatted, the AXF Objects will be viewed simply as
files to be stored and retrieved. All that will be necessary to read AXF Objects will be the software and
hardware needed to read the physical storage medium. As adoption grows, files can be moved into and out
of AXF-aware systems as necessary, with the full range of features becoming available on systems that are
AXF compliant. AXF-compliant applications will be able to read stored AXF Objects from any current
operating system without unpacking entire AXF Objects to see critical metadata. Moreover, Archives, or AXF
Objects within archives, also can span different types of media, allowing for flexibility within mixed-media
archives and for AXF Objects to be identical, regardless of the media on which they are stored.

AXF offers resilience to data corruption and loss. AXF Object Indices, repeated identifier instances, and
cryptographic hash checksums on both contents and AXF Objects allow for data corruption to be identified
and mitigated. Even in catastrophic events, such as the loss of an external database containing records of the
contents of an archive, the content database can be recreated by reading the archive and regenerating the
archive-wide database from the records within the AXF Objects. This standard also enables the addition of
more powerful data corruption recovery methods in future revisions by including provisions for incorporating
forward error correction codes. AXF provides key features to identify and treat data corruption and loss across
all types of storage formats. It allows big data and small to be processed in a consistent and standardized
way.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 7 of 101 pages

1 Scope

This standard is Part 1 of a series of documents that specify a general-purpose format for the storage and/or
communication of information in bulk form. The format is named the Archive eXchange Format (AXF). The
format described is intended both for interchange between systems and to serve as a native format within
systems.

This standard identifies two major categories of data storage media and specifies the basic structures of data
stored on those Storage Media Types. It specifies a number of structural elements for use in constructing the
appropriate structures for use on each of the Storage Media Types. It defines the semantics of data contained
within fields specified for use in the structural elements. The structural elements themselves are documents
coded in the eXtensible Markup Language (XML), and this document defines an XML Schema Description
(XSD) file for use in formulating the XML documents to be used for the structural elements of AXF Objects.

2 Conformance Notation

Normative text is text that describes elements of the design that are indispensable or text that contains the
conformance language keywords: "shall," "should," or "may." Informative text is text that is potentially helpful
to the user, but not indispensable, and that can be removed, changed, or added editorially without affecting
interoperability. Informative text does not contain any conformance keywords.

All text in this document is, by default, normative, except: the Introduction, any section explicitly labeled as
"Informative," or individual paragraphs that start with "Note:”.

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to conform to the
document and from which no deviation is permitted.

The keywords, "should" and "should not" indicate that, among several possibilities, one is recommended as
particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but
not necessarily required; or that (in the negative form) a certain possibility or course of action is deprecated
but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of the document.

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used, and may be
defined in the future. The keyword “forbidden” indicates “reserved” and, in addition, indicates that the
provision never will be defined in the future.

A conformant implementation according to this document is one that includes all mandatory provisions
("shall") and, if implemented, all recommended provisions ("should") as described. A conformant
implementation need not implement optional provisions ("may") and need not implement them as described.

Unless otherwise specified, the order of precedence of the types of normative information in this document
shall be as follows: Normative prose shall be the authoritative definition; tables shall be next, followed by
formal languages, then figures, and then any other language forms.

3 Normative References

The following standards contain provisions that, through reference in this text, constitute provisions of this
standard. At the time of publication, the editions indicated were valid. All standards are subject to revision,
and parties to agreements based on this standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 8 of 101 pages

XML 1.0, World Wide Web Consortium (W3C) (2008, November) Extensible Markup Language 1.0 (Fifth
Edition)

XML Namespaces 1.0, World Wide Web Consortium (W3C) (8 December 2009) Namespaces in XML 1.0
(Third Edition)

XML Schema Part 1 — World Wide Web Consortium (W3C) (28 October 2004), XML Schema Part 1:
Structures (Second Edition)

XML Schema Part 2 — World Wide Web Consortium (W3C) (28 October 2004), XML Schema Part 2:
Datatypes (Second Edition)

ISO/IEC 10646:2012, Information Technology — Universal Coded Character Set (UCS), Third Edition (1 June
2012)

ISO/IEC 19505-1:2012, Object Management Group (OMG) (August 2011), Unified Modeling Language:
Infrastructure, v2.4.1

ISO/IEC 19505-2:2012, Object Management Group (OMG) (August 2011), Unified Modeling Language:
Superstructure, v2.4.1

IETF RFC 1494, Equivalence Between 1988 X.400 and RFC-822 Message Bodies (August 1993)

IETF RFC 2231, MIME Parameter Value and Encoded Word Extensions: Character Sets, Languages, and
Continuations. (November 1997)

IETF RFC 3629, UTF-8, A Transformation Format of ISO 10646 (November 2003)

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace. (July 2005)

IETF RFC 6657, Update to MIME Regarding “Charset” Parameter Handling in Textual Media Types (July
2012)

IETF RFC 6838, Media Type Specifications and Registration Procedures

ISO/IEC 1001:2012(E) (VOL1), Information Technology — File Structure and Labeling of Magnetic Tapes for

Information Interchange (2012-08-01)

ISO/IEC 13239:2012 (CRC), Information Technology — Telecommunications and Information Exchange

Between Systems -- High-Level Data Link Control (HDLC) Procedures

FIPS PUB 180-4, Federal Information Processing Standards Publication, Secure Hash Standard *SHS),
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD,
March 2012

UTC, Coordinated Universal Time, ITU-R Recommendation TF 460-6, Standard-Frequency and Time-Signal
Emissions, International Telecommunications Union, Radio Sector, Geneva, Switzerland, February 2002

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 9 of 101 pages

4 Definitions

The following terms shall have the definitions specified for them below, both throughout this document and in
related Parts of this SMPTE standard.

4.1 Anchor Object

The first AXF Object in a Collected Set of AXF Objects, the SetSequence value of which is 1. It is the AXF Object
from which all Subsequent Objects in the Collected Set differentiate the contents of the Product Object.

4.2 Archive Object

An AXF Object.

4.3 Attribute

An XML markup construct consisting of a name/value pair that describes an element.

4.4 AXF

Archive eXchange Format.

4.5 AXF-Aware

Capable of reading, interpreting, and/or writing AXF Objects and other AXF data structures.

4.6 AXF Media

Multiple media prepared to carry AXF Objects.

4.7 AXF Medium

A medium prepared to carry AXF Objects.

4.8 AXF Medium Identifier

A data structure at the start or root of a medium that indicates that it has been prepared for storage of AXF
Objects and that provides information about the identification, formatting, and history of the medium.

4.9 AXF Object

A group of data elements that are stored as a unit and that are contained within a single data structure.

4.10 AXF Object Index

A data structure, stored on a medium, that is a collection of the complete information about all previously-
stored AXF Objects on that medium and the contents of those AXF Objects, as well as the locations of the
content files stored within those AXF Objects.

4.11 Base Name

The fundamental name of a file; the portion of a file name prior to any file name extension that identifies the
type of file or structure.

4.12 Big Endian

The order in which the bytes of a multi-byte number are transmitted with the most significant byte first.

4.13 Binary Structure Container

A data structure that is formed using easily identifiable binary data patterns of UTF-8 characters and that
carries a payload of a specified type for the purpose of providing structural elements for AXF Objects and for
the files contained within them.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 10 of 101 pages

4.14 Binary Structure Container Payload

The data contained within the Payload field of a Binary Structure Container.

4.15 Block

A section of data of uniform size (measured in bytes) as stored on a physical medium that is independently
addressable for write and read operations, and which is defined as a “block” on certain Storage Media Types
and as a “sector,” a “page” or some other term on other Storage Media Types.

4.16 Block-Based

Media that enable direct access to Blocks of data stored thereon and that do not incorporate or depend upon
File Systems.

4.17 Block Position

The location on a medium of a block of data, measured as the number of blocks from the beginning of the
medium, as counted by the drive on which the medium is carried.

4.18 Block Size

A parameter that defines the size of Blocks contained on a medium. Some Storage Media Types can
accommodate varying block sizes across the storage space of a medium.

4.19 Byte Order Mark

A small sequence of bytes carried within a file from which it is possible to determine the byte ordering (Big
Endian or Little Endian) of the contents of the file. (Abbreviated BOM.)

4.20 Chunk

A section of data of uniform size (measured in bytes) within an AXF Object.

4.21 Chunk Size

A parameter that defines the size of all of the Chunks within an AXF Object.

4.22 Collected Set

A group of AXF Objects, consisting of an Anchor Object and one or more Subsequent Objects, that, when
compiled, produce a Product Object differing from the Anchor Object as a result of additions, replacements, or
deletions of files.

4.23 Content File

A File of any type that is stored as part of the File Payload within an AXF Object. Also a Payload File.

4.24 Data Element

A file or data structure that forms part of the overall data stored within an AXF Object or on a medium.

4.25 Element

An XML logical document component bounded by matching start and end tags and including any content
between the tags plus any associated attributes.

4.26 Embedded File System

A light weight File System having its database contained within an AXF Object.

4.27 Endianness

The ordering of bytes within a multi-byte number. Byte orders typically are Little Endian or Big Endian,
although other, less frequently used byte orders exist.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 11 of 101 pages

4.28 File Mark

A data structure written or read by a Linear Media drive to provide separation between data elements stored
on a medium using the media technology for which the drive is designed.

4.29 File Footer

A Binary Structure Container that carries a payload with information to identify the file that it follows and to
provide detailed information about that file.

4.30 File Padding
Data inserted at the end of a file to completely fill the last Chunk occupied by the file.

4.31 File Payload
The portion of an AXF Object that carries the Payload Files and their associated File Footer Binary Structure
Containers.

4.32 File-System-Based
Media that incorporate and depend upon File Systems and provide no direct access to Blocks of data.

4.33 File System
A type of data store that can be used to store, retrieve, and update a set of files.

4.34 File Tree

A hierarchical structure of folders and files, expressed in XML, that starts at a root point and establishes
relationships between folders and the folders and files that they contain.

4.35 Fixity

Fixity is the property of being constant, steady, and stable. Fixity checking is the process of verifying that a
digital object has not been altered or corrupted. In practice, this is most often accomplished by computing
and comparing cryptographic hash checksums.

4.36 Fragment

A data structure that contains a portion of an AXF Object that is linked to preceding or following Fragments, or
both, through shared UUID values.

4.37 Generic Metadata Container

A Binary Structure Container the payload of which is metadata.

4.38 Linear Media

Media requiring writing and reading sequentially along the length of the medium (typically tape).

4.39 Little Endian

The order in which the bytes of a multi-byte number are transmitted with the least significant byte first. This
might or might not match the order in which numbers are normally stored in memory for a particular
processor.

4.40 Media

Plural of medium.

4.41 Media Class

The general category of Media, that is, Block-Based Media (i.e., both Linear and Non-Linear Media without
File System support) and File-System-Based Media (i.e., both Linear and Non-Linear Media with File System
support).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 12 of 101 pages

4.42 Media Family

A group of related Storage Media Types sharing a common set of media technology but allowing for different
implementation characteristics, such as with respect to storage density.

4.43 Media Technology

A set of techniques used to store data on a particular form of media, including the choice of medium itself and
the methods for such functions as recording bits on a medium, error correction, indicating a separation
between portions of data stored, and the like.

4.44 Media Type

A registered name that describes the format of the content of a file.

4.45 Medium

A physical carrier on which data is stored, which comprises an integer number of Blocks and which can be
either Block-Based or File-System-Based. (Equivalent to Storage Medium.)

4.46 Non-Linear Media

Media that can be written, read, and accessed in a non-sequential manner, enabling data to be accessed
randomly on such a medium.

4.47 Object Footer

A data structure at the end of an AXF Object that provides complete information about the contents of the
AXF Object, the positions within the AXF Object of the files that it contains, and other information about the
AXF Object and its contents.

4.48 Object Fragment

The portion of an AXF Object stored on a single medium when the AXF Object is spanned across multiple
media.

4.49 Object Header

A data structure at the start of an AXF Object that provides some or all of the information about the contents
of the AXF Object, the positions within the AXF Object of the files that it contains, and other information
related to the AXF Object and its contents.

4.50 Padding

Data having a value of 0x00 used to fill data space to maintain the format of a data structure.

4.51 Padding Chunk

A Chunk completely filled with bytes having a value of 0x00.

4.52 Payload File

A file contained within an AXF Object following the Payload Start Binary Structure Container and preceding
the Payload Stop Binary Structure Container, if present.

4.53 Product Object

The compilation of files, directory structure, and other information that results from the combination of the
Anchor Object and all subsequent AXF Objects in a Collected Set.

4.54 Spanned Set

A group of media containing Fragments of a single AXF Object linked together by a shared UUID identifying
the AXF Object and by shared UUID values matching the Span Points of the AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 13 of 101 pages

4.55 Spanning

A process for fragmenting a single AXF Object and storing its fragments on multiple media.

4.56 Span Point

The location within an AXF Object at which the AXF Object contents are fragmented for storage in separate
Fragments.

4.57 Storage Media Type

A specific combination of media technology with parameters for the various data storage characteristics and
data processing methods.

4.58 Storage Medium

A Medium used to store data. (Equivalent to Medium.)

4.59 Subsequent Object

An AXF Object in a Collected Set of AXF Objects other than the Anchor Object, the SetSequence value of
which is greater than 1. It is an AXF Object that differentiates the contents of the Product Object from the
Anchor Object of the Collected Set by indicating additions, replacements, or deletions of files and that carries
any files necessary to effectuate the additions or replacements of files that it indicates.

4.60 Symbolic Link

A pointer contained within a directory structure to a file or folder that may be internal or external to the file
hierarchy described by the directory structure. Symbolic Links are used with certain types of File Systems,
while other types of File Systems use “shortcut” files referenced by the directory structure to perform the
pointer function.

4.61 Symlink

Symbolic Link

4.62 URI

Uniform Resource Identifier – A compact sequence of characters that identifies an abstract or physical
resource.

4.63 UUID

Universally Unique Identifier – An identifier that is unique for all practical purposes and is created according to
an algorithm specified to lead to different values for each such identifier generated.

4.64 VOL1

A label applied at the beginning of data tape media according to the provisions of ISO/IEC 1001 “Information
technology – File structure and labeling of magnetic tapes for information interchange”

5 Storage Media Types

Media that carry AXF Objects in conformance with this standard fall into one of two fundamental categories:
Block-Based and File-System-Based. The formatting of each of these Storage Media Types is according to
specific arrangements described generally in this section and in greater detail below in other sections. As also
described below, AXF Objects stored on the respective Storage Media Types do not differ in their basic
formats, but certain indexes and pointers do differ somewhat in the values they carry depending upon the
Storage Media Types upon which their AXF Objects are stored. Mechanisms are provided herein and in other
Parts of this document suite for the storage, transfer and processing of AXF Objects between Storage Media
Types in a transparent manner and using minimal processing. Block-Based and File-System-Based Media
are either Linear or Non-Linear.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 14 of 101 pages

Linear Media are media that only can be written and read sequentially, from end to end. In the drives that
write and read them, Linear Storage Media Types include mechanisms for writing and reading File Marks or
similar identifiers of points of separation between sequential sections of data stored on the media. Linear
Storage Media Types include in the drives that write and read them at least the capability to search for File
Marks, to count File Marks over the length of a medium, and to advance in either direction by a specified
number of File Marks. Typical Linear Storage Media Types are based upon the use of electromagnetic tape
for the storage of data. Linear Media carry File Systems (e.g., LTFS) or do not carry File Systems.

Non-Linear Media do not use File Marks and instead are addressed using logical block addresses that point
to specific locations where data are stored. Non-Linear Media provide the ability to move directly from any
place on the medium to any other place on the medium. Typical Non-Linear Storage Media Types are based
upon the use of magnetic or optical disks or flash memory devices for the storage of data. Non-Linear Media
generally are expected to be File-System-Based, but the AXF protocol will support Block-Based variants as
well.

Within AXF Objects, pointers are provided in several data structures to enable retrieval of files stored within
the AXF Objects. The pointers indicate the locations of files within AXF Objects using either relative or
absolute addresses based on Chunk counts within the AXF Objects. Relative addressing is used when
pointing to all structures contained within an AXF Object. Absolute addressing is used when pointing to the
starting location of an AXF Object. Combining relative and absolute addresses enables determining absolute
locations of all structures within an AXF Object on the medium on which it is stored.

5.1 Media with File Systems

In the AXF context, File-System-Based Media shall be media that store the necessary indexes for the files
that they contain and operate with file system software that manages those indexes and the data storage and
recovery processes on the media. File systems provide services that include at least indexing mechanisms for
files and their storage locations on media, management of the locations of files when writing to the media, and
recovery of files with their data presented in the order in which they were stored.

Example: File Systems that can be used to store AXF Objects include the File Allocation Table (FAT), the
New Technology File System (NTFS), Universal Disk Format (UDF), Distributed File System (DFS), Network
File System (NFS), Hierarchical File System Plus (HFS+), Linear Tape File System (LTFS), and many others.
On any File System, AXF Objects are stored as files, providing a constant AXF Object format, thus isolating
the contents of the AXF Objects from the File Systems.

On File-System-Based Media, the locations of AXF Objects are managed by the File Systems; thus, it is
unnecessary to include absolute addresses of the starting locations of AXF Objects within those AXF Objects.
Consequently, in the storage of AXF Objects on Media having File Systems, the fields that otherwise would
carry the absolute addresses of the AXF Object starting locations should be set to a value of -1. When
transferring AXF Objects between Storage Media Types, the values in such fields normally will have to be
modified to meet this requirement. Such transfers are discussed in more detail in Section 7.4.

5.2 Media without File Systems

Media without File Systems do not provide File-Based references to the content they carry and are referred to
as Block-Based Media. They are based on storage of data in blocks of specific sizes, but many of these
Storage Media Types lack means for determining the numbering of blocks on a medium. These media either
can be Linear or Non-Linear in nature. On Linear Media, File Marks or similar mechanisms typically are used
to enable systems writing to them to place specific reference points along media. Writing of File Marks can be
a time-consuming process, however, on many Storage Media Types without File Systems. For this reason,
the AXF protocol eliminates use of File Marks in all but two instances at the start of each linear AXF Medium.

The fundamental requirement for inclusion of File Systems on Linear Media is the ability of the media to be
partitioned. Versions of Linear Storage Media Types that do have the capability for partitioning of the media
nevertheless can be used without File Systems when applications can benefit from such utilization. Early

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 15 of 101 pages

generations of many Linear tape families are incapable of being partitioned and consequently cannot support
File Systems, while later generations of those families of Linear tape types are capable of such support.

On Block-Based AXF Media, the locations of AXF Objects are not managed by file systems. Consequently,
AXF Objects include fields for the absolute addresses of Object Headers on such AXF Media. The absolute
addressing used requires the system writing to or reading from a medium to keep track of the block count
along the medium as it writes to it or reads from it. In the storage of AXF Objects on Block-Based Media, the
fields carrying the absolute addresses of the AXF Object starting locations are set to the positions of the
blocks containing the first bytes of the Object Header binary structure containers, the locations of which are
being identified. When transferring AXF Objects between Storage Media Types, the values in the fields
containing the Object Header absolute addresses should be modified to point to the correct locations. Such
transfers are discussed in more detail in Section 7.4.

5.3 File Marks

File Marks are data patterns that can be placed on magnetic Linear Media (e.g., data tape) by drives, upon
instructions to do so from controlling applications. The data patterns are predetermined for each particular
type of medium and are intended to be easily recognized by drive subsystems when reading or scanning a
medium at high speed.

The AXF protocol avoids the use of File Marks to the extent possible to improve the efficiency of tape
operations. Only two are used: One following the VOL1 identifier and the other following the AXF Medium
Identifier on a Linear Block-Based AXF Medium. See Section 5.4 for the designation of Storage Media Types
on which File Marks shall be applied.

5.4 Relationships Between AXF Structures and Storage Media Types

Fundamentally the same AXF Object data structures are stored on all Storage Media Types, but certain
media formatting and identification data structures shall be applied to particular Storage Media Types
according to the relationships shown in Table 1. There are four categories of media to which the formatting or
identification structures are applied: Block-Based and File-System-Based Linear Media and Block-Based and
File-System-Based Non-Linear Media, as represented by the four columns in the right-hand portion of the
table. The various structures listed in the leftmost column are described in the sections of this standard
enumerated in the next-to-leftmost column of the table.

In Table 1, structures are indicated as being required, not applicable, or optional. Structures indicated as
“Required” shall be employed on media in the specified media categories, except that File Marks shall be
required only in instances in which the hardware media drives support them. Structures indicated as “Not
Applicable” shall not be employed on media in the specified media categories. Structures indicated as
“Optional” may be employed on media in the specified media categories.

Note: The VOL1 and File Mark structures are shown in Table 1 as “Not Applicable” in certain instances. They are

not applied according to the AXF protocol, but they nevertheless can be present on a medium carrying AXF
structures if applied by an underlying file system or other media management protocol.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 16 of 101 pages

Table 1 — Relationships between AXF Structures and Storage Media Types

AXF Structure

 Linear Media Non-Linear Media

Section Block-Based
File-System-

Based
Block-Based

File-System-
Based

VOL1 Label 6.4.2.1 √+ – √ –

File Mark 5.3 √* – – –

AXF Medium Identifier 0 √+ O √ O

AXF Object 6.4.3.1 √ √ √ √

AXF Object Index 6.4.2.3 O O O O

Example
Block-Based
Data Tape

LTFS-
Formatted
Data Tape

Block-Based
Disk or Flash

Drive

NTFS Disk or
FAT32 Flash

Drive

√ = Required, – = Not Applicable, O = Optional, + = Followed by File Mark, * = When Supported

6 Archive eXchange Format (AXF) Structure

The Archive eXchange Format (AXF) describes a protocol that includes an Archive Object (hereinafter “AXF
Object”) data structure in which related content and information about that content are encapsulated and
stored when interchanged between storage systems and in which data can be stored internally within systems
that make use of the protocol. AXF also describes a storage arrangement for AXF Objects and other data that
is applied to media used for the carriage of AXF Objects. Associated with the AXF Objects and storage
arrangement are a number of identifiers, metadata, and data structures that are used to construct specific
instances of AXF Objects stored on AXF Media. Included among the identifiers, metadata, and data
structures are those that permit the spanning of single AXF Objects across multiple AXF Media and others
that allow for indexing of AXF Media by systems.

All of the AXF Object data structures and File Payload data are Chunk-aligned internally. This enhances
resiliency and assists in the recoverability of packages in the event of corruption of the embedded indexing
structures. The Chunk size may be one byte in length; however this practice normally should be avoided, as
it increases index and recovery complexity. Nevertheless, it can be applied when it is necessary for systems
to avoid certain restrictions of Chunk-aligned structures. As a result of the internal Chunk alignment and
indexing structures, AXF Objects are said to include Embedded File Systems that assist in the abstraction of
the underlying storage technology, medium, File System, and operating system.

AXF Objects are constructed so that they can be transferred sequentially when necessary (e.g., to a Linear
medium or from an archive system to a remote storage sub-system over a data circuit or communications
link). Sequential transfers allow AXF Objects to be streamed to media in write-once fashion, supporting, for
example, linear and write-once media as well as processing during transfers across data circuits prior to
completion of the transfers of complete AXF Objects.

6.1 Form of Data Expression

The Payloads carried within Binary Structure Containers (see Section 6.4.1.2) to form all of the AXF data
structures contained on AXF Media and/or within AXF Objects formatted according to this standard shall be
expressed in the form of documents in the eXtensible Markup Language (XML), as specified in XML 1.0 and
XML Namespaces 1.0. XML documents created according to this standard shall be generated using the XML
Schema Description (XSD) files described in Section 10. The XML Schema Description (XSD) method is
specified in XML Schema Part 1, and XML Schema Part 2.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 17 of 101 pages

6.2 Byte Order

The byte order of the Binary Structure Container (see Section 6.4.1.2) other than the binary Structure
Container Payload and those fields that are of the UTF-8 data type shall be little endian. The byte order of a
Binary Structure Container Payload shall be indicated by the Payload Format field as specified in Table 2.
The byte order of a Payload File (see Section 6.4.3.7) may be signaled in the associated File metadata (in the
XML File data structure); it may be signaled by a Byte Order Mark contained within the Payload File; or it may
be unknown. When a Byte Order Mark is known to be contained within a Payload File, that information also
may be signaled in the associated File metadata. In cases in which the byte order or the presence of a Byte
Order Mark is unknown, no entry with respect to the byte order shall be made in the File metadata.

6.3 General AXF Concepts

AXF deals with the limitations of legacy storage formats through application of multiple solutions, employed in
parallel with one another: AXF employs a variable length FileTree structure that can list an unlimited number
of files. The sizes of files stored within an AXF Object are expressed as XML integers, and XML integers have
no fundamental limit in their size. AXF establishes hierarchical relationships between files and folders through
inclusion of a FileTree structure and can include an unlimited number of entries on an unlimited number of
levels within a hierarchy. AXF expresses file names as XML strings of unlimited size in UTF-8, and UTF-8 can
express all Unicode characters in single bytes or multiple-byte groups. AXF provides a mechanism for
exceeding the physical limits of the media on which AXF Objects are stored through provisions for Spanning
to an unlimited number of media, thereby avoiding any potential limitation on the aggregated size of an AXF
Object. AXF provides a mechanism for altering previously-stored AXF Objects, even on write-once media,
through use of Collected Sets, which enable additions to, deletions from, and replacements of files in the File
Payloads of AXF Objects, without the need to reconstruct or rewrite any previously written AXF Objects.

These concepts are discussed in general terms in this Section (6.3) and in detailed terms in Section 6.4.

6.3.1 Embedded File System / File Tree / File Payload

The combination of a File Tree structure and the Payload Files of an AXF Object form an Embedded File
System, wholly contained within the AXF Object. AXF establishes relationships between the files in AXF
Object File Payloads and folders in which they are contained, through a File Tree structure expressed in XML.
Folders in AXF Objects exist solely as listed entries within the File Tree XML structure. The File Tree structure
of an AXF Object lists all of the folders and the files within the folders, numbering them in such a way that
their relationships can be determined by reading the FileTree data type. Multiple copies of the FileTree data
type are stored within an AXF Object and, optionally, elsewhere on the medium on which the AXF Object is
stored, to provide redundancy and to support resilience of Payload File recovery. Within an AXF Object, the
FileTree data type is stored in the Object Header and Object Footer; external to the AXF Object, the FileTree
data type can be stored in one or more Object Indices stored on the medium on which the AXF Object
resides, as appropriate for the medium. In the File Payload, files are followed by File Footer XML structures
that both demark the separation between one file and the next and provide all of the detailed information
about the files that they follow.

6.3.2 Spanning

When an AXF Object contains too much content to fit in the remaining space on a medium, it can be divided
into two or more fragments that can be stored on multiple media. The process is called Spanning and results
in a Spanned Set of AXF Objects, each Object containing one fragment of the overall AXF Object. The
Spanned Set is structured in such a way that the overall AXF Object can be reconstructed easily from its
fragments. The reconstruction is aided by a series of linkages between the fragments using specialized
headers and footers that carry identifiers for their respective fragments and the links between them.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 18 of 101 pages

6.3.3 Collected Sets

When it is desired to modify an AXF Object, through addition, substitution, or deletion of Payload Files, it is
possible to do so through creation of a Subsequent Object that carries instructions on the modifications to be
made and any additional Payload Files that can be necessary when carrying out the instructions. In such a
case, the original AXF Object becomes known as an Anchor Object, and one or more Subsequent Objects
can be added to what becomes a Collected Set of AXF Objects. Through compilation of the AXF Objects in a
Collected Set in sequence, it is possible to produce a Product Object at any level of revision of the Collected
Set that is needed. This mechanism permits modification of AXF Objects written on media that are not
rewritable and also preserves all versions of the Collected Sets without loss of any content.

6.4 AXF Data Structures

Data structures generally utilized within the AXF protocol, and described in the following sections, are divided
into these categories:

 General Data Structures (see Section 6.4.1)

o Chunk (see Section 6.4.1.1)

o Binary Structure Container (see Section 6.4.1.2)

 Media Data Structures (see Section 6.4.2)

o VOL1 Label (see Section 6.4.2.1)

o AXF Medium Identifier (see Section 6.4.2.2)

o AXF Object Index (see Section 6.4.2.3)

 AXF Object Data Structures (see Section 6.4.3)

o File Tree (see Section 6.4.3.3)

o Object Header (see Section 6.4.3.4)

o Object Footer (see Section 6.4.3.10)

o Generic Metadata Container (see Section 6.4.3.5)

o File Payload Start (see Section 6.4.3.6)

o File Payload (see Section 6.4.3.7)

o File Footer (see Section 6.4.3.8)

o File Payload Stop (see Section 6.4.3.9)

o Fragment Footer (see Section 6.4.3.11)

o Fragment Header (see Section 6.4.3.12)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 19 of 101 pages

6.4.1 General Structures

General structures are part of the AXF protocol that transcend AXF Media- and AXF Object-specific structures,
as defined in subsequent sections of this standard. These general structures have a wide applicability and are
intended to ensure uniformity, regardless of the particulars of the specific implementation, Storage Media
Type, or AXF Object to which they apply.

6.4.1.1 Chunks

Requirements for the sizes and alignment of Chunks on media are different for Block-Based and File-Based
systems.

6.4.1.1.1 Block-Based Systems

In Block-Based systems, Chunk boundaries shall be aligned to Block boundaries. The first byte of an AXF
Object shall align with the first byte of a Block. All AXF Objects on a given Medium shall have the same
Chunk size, matching the Block size of the Medium.

Note: When reading or writing AXF Objects on Block-Based systems, chunk or block realignment only can be
performed by AXF–aware applications.

6.4.1.1.2 File-System-Based Systems

In File-System-Based systems, Chunk Boundaries need not be aligned with Media internal structures.
Different AXF Objects on the same medium may have different Chunk sizes. Applications that read or write
AXF Objects on File-System-Based systems need not be AXF aware with respect to AXF Chunk or Block
realignment.

Note: On File-System-Based Media, it is possible for an AXF-aware application to tune Chunk sizes of AXF Objects
for best efficiency based upon minimum, maximum, and average file sizes.

6.4.1.2 Binary Structure Container

A Binary Structure Container is a mechanism, expressed in binary form, for encapsulating payloads for the
multiple data structures that comprise the overall AXF protocol. It is used to create both AXF Media data
structures and AXF Object data structures, providing a universal approach to creating, storing, interpreting,
and parsing them. A Binary Structure Container can be seen as a well-defined and predictable encapsulation,
or wrapper, for each structure (payload) that can be contained within it. Binary Structure Containers are
applied to all AXF Media and AXF Object data structures except Payload File data itself.

Binary Structure Containers are used to avoid the complexities associated with raw storage of XML and other
data types on various types of media and to ensure bit fixity and the ability to validate these structures during
processing. Binary Structure Containers add resiliency to the overall AXF protocol, allowing applications to
detect, and potentially recover, key structures independent of other index and metadata structures that are
part of an AXF Object or AXF Medium. A Binary Structure Container is a generic container that can contain
any type of data in its Payload. A Binary Structure Container also serves as the foundation for a Generic
Metadata Container, as described in Section 6.4.3.5.

Binary Structure Containers shall be structured as defined in Table 2 and illustrated in Figure 2. Unless
otherwise stated, all values in Table 2 shall be mandatory.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 20 of 101 pages

St
ru

ct
u

re
 Id

en
ti

fi
er

 1

St
ru

ct
u

re
 V

er
si

o
n

C
h

u
n

k
Si

ze
 1

U
U

ID

D
at

e
C

re
at

ed

P
ay

lo
ad

 D
es

cr
ip

ti
o

n
 C

h
ar

se
t

P
ay

lo
ad

 D
es

cr
ip

ti
o

n
 L

en
gt

h

B
in

ar
y

St
ru

ct
u

re
 C

o
n

ta
in

er

P
ay

lo
ad

P
ay

lo
ad

 D
es

cr
ip

ti
o

n

P
ay

lo
ad

 F
o

rm
at

 L
en

gt
h

N Chunks

Chunk
Boundary

Start

Chunk
Boundary

End

P
ay

lo
ad

 F
o

rm
at

P
ay

lo
ad

 L
en

gt
h

P
ay

lo
ad

P
ad

d
in

g

C
h

ec
ks

u
m

 T
yp

e

C
h

ec
ks

u
m

St
ru

ct
u

re
 Id

en
ti

fi
er

 2

C
h

u
n

k
Si

ze
 2

St
ru

ct
u

re
 S

ta
rt

 P
o

si
ti

o
n

Figure 2 – Binary Structure Container Overview

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

 SMPTE ST 2034-1:2017

Page 21 of 96 pages

Table 2 – Structural Elements of Binary Structure Containers

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Structure Identifier 1 0 32 UTF-8 AXF_OBJECT_HEADER The Structure Identifier 1 value shall be a string of UTF-8
characters identifying the type of data structure within
the Payload of the structure. Specified character strings
shall be used by applications to identify contained data
structures. The string shall be padded with UTF-8 NUL
characters to the field boundary. UTF-8 NUL characters
shall not be used within structure identifier values. A
duplicate of this information is contained in the Structure
Identifier 2 field.

The first bit of each Structure Identifier 1 shall coincide
with the first bit of the Chunk in which it is contained.

NOTE: The following values identify the AXF data
structures defined in this standard:

AXF_OBJECT_HEADER
AXF_OBJECT_FOOTER
AXF_OBJECT_METADATA
AXF_OBJECT_FILE_PAYLOAD_START
AXF_OBJECT_FILE_PAYLOAD_STOP
AXF_OBJECT_INDEX
AXF_OBJECT_FRAGMENT_HEADER
AXF_OBJECT_FRAGMENT_FOOTER
AXF_MEDIUM_IDENTIFIER
AXF_FILE_FOOTER

Structure Version

32 4 Unsigned
32-bit
integer

1 The Structure Version shall be the version identifier for
the container. This particular version information is
specific only to Binary Structure Containers. All Binary
Structure Containers within an AXF Object shall be of the
same Structure Version. Binary Structure Containers
constructed according to this version of this standard shall
have a Structure Version value of 1).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 22 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Chunk Size 1

36 8 Unsigned
64-bit
integer

100000h The Chunk Size 1 shall indicate in bytes the Chunk size
used for the current AXF Object. The same value is
duplicated in the Chunk Size 2 field.

Example: A value of 100000h indicates all Chunks within
the associated AXF Object have a size of 1,048,576
(decimal) bytes.

UUID 44 16 Unsigned
128-bit
integer

90997230098211E289
2E0800200C9A66(h)

The UUID value shall be equal to the AXF Object UUID, as
specified in the associated XML payload carried within the
Binary Structure Container, when the Binary Structure
Container applies to AXF Object-specific structures such
as Object Header, Object Footer, File Footer, etc. All
Binary Structure Containers associated with the same AXF
Object shall contain the same AXF Object UUID value.

The UUID value shall be equal to the AXF Medium UUID,
as specified in the associated XML payload carried within
the Binary Structure Container, when the Binary Structure
Container applies to AXF Media-specific structures, i.e.,
AXF Medium Identifiers and AXF Object Indices. All Binary
Structure Containers associated with the same AXF
Medium shall contain the same AXF Medium UUID value.

Date Created 60 8 Signed 64-
bit integer

1348846975
representing "Fri Sep
28 11:42:55 EDT 2012"

The Date Created value shall indicate the time at which
the Binary Structure Container in which it is found was
created. Its value shall be the elapsed time, since
00:00:00 UTC on January 1, 1970, expressed as a number
of seconds.

Payload Description
Encoding Form

68 40 UTF-8 UTF-8 The Payload Description Encoding Form field shall
provide the designation of the encoding form used in the
Payload Description field to encode the scalar values of
the characters contained in the payload description.
Allowed values shall be: UTF-8, UTF-16, UTF-16BE, UTF-
16LE, UTF-32, UTF-32LE, and UTF-32BE. The encoding
form shall be as defined in ISO/IEC 10646, as shall be the
scalar values associated with the characters and
ideographs.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 23 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Payload Description
Length

108 2 Unsigned
16-bit
integer

128 The Payload Description Length field shall indicate the
length of the Payload Description field expressed in
bytes.

Payload Description 110 Variable
length,
defined by
the Payload
Description
Length field

Binary data
encoded as
specified in
Payload
Description
Encoding
Form

Migration Metadata,
Proxy, Vendor
Metadata, JPEG Cover
Art, etc.

The Payload Description field shall contain user-provided
information about the contents of the Payload field. This
field can be left blank, but it can be useful when a user
includes Generic Metadata payloads and wishes to help
classify and identify such packages to systems into which
AXF Objects are recovered. The examples given for this
field apply to such Generic Metadata applications.

The encoding of the scalar values representing characters
and ideographs shall be as specified in the Payload
Description Encoding Form field. The correspondence
between scalar values and the characters and ideographs
that they represent shall be as defined in ISO/IEC 10646.

Payload Format Length 110 +
Payload Description Length

2 Unsigned
16-bit
integer

128 The Payload Format Length field shall indicate the length
of the Payload Format field expressed in bytes.
When the Structure Identifier value is
AXF_OBJECT_FILE_PAYLOAD_START or
AXF_OBJECT_FILE_PAYLOAD_STOP, the Payload Format
Length shall have a value of zero.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 24 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Payload Format 112 +
Payload Description Length

Variable
length,
defined by
the Payload
Format
Length field

UTF-8 application/xml The Payload Format field shall indicate the format of the
payload contained within the Payload field. The purpose
of the Payload Format value is to assist in processing of
the Binary Structure Container’s payload.

The Payload Format field shall carry a comma (“,”)-
separated list of one or more Media Types, as defined by
RFC 6838, to specify a nested set of containers carrying
the payload content. If only one Media Type is specified, it
shall be that of the payload data. If more than one Media
Type is specified, the Media Types shall specify the format
of the payload containers, with the first Media Type
specifying the outermost container and with each
successive Media Type describing the format of that
container’s contents. The last Media Type in the list shall
indicate the Media Type of the payload data.

The Media Type values used to define the Payload
Format often include an implicit or explicit byte ordering
specification, which, when present, shall specify the byte
ordering of the payload contained within the Payload
field. To the extent possible, Media Types that indicate
byte ordering of the associated payloads should be used.
If a Media Type value that indicates the payload format
and the byte ordering of the payload is not available for a
particular payload type or the byte ordering is unknown,
then the Media Type value “application/octet stream,”
according to RFC 1494, should be used.

When the Structure Identifier value is
AXF_OBJECT_FILE_PAYLOAD_START or
AXF_OBJECT_FILE_PAYLOAD_STOP, the Payload Format
field shall be omitted (i.e., have a length of zero).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 25 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Payload Length 112 +
Payload Description Length +
Payload Format Length

8 Unsigned
64-bit
integer

1a2b3c4d5e6f7a8b(h) The Payload Length field shall indicate the size of the
(possibly compressed) Payload expressed in bytes.

When the Structure Identifier value is
AXF_OBJECT_FILE_PAYLOAD_START or
AXF_OBJECT_PAYLOAD_STOP, the Payload Length field
shall have a value of zero.

Payload 120 +
Payload Description Length +
Payload Format Length

Variable
Length
Defined by
the Payload
Length field

As indicated
by Payload
Format

N/A The Payload field shall contain the payload encapsulated
by the Binary Structure Container.

When the Structure Identifier value is
AXF_OBJECT_FILE_PAYLOAD_START or
AXF_OBJECT_PAYLOAD_STOP, the Payload shall be empty
and may be ignored by receiving applications.

Padding

120 +
Payload Description Length +
Payload Format Length +
Payload Length

Chunk Size –
((696 +
Payload
Description
Length +
Payload
Format
Length +
Payload
Length) Mod
Chunk Size)

UTF-8 NUL
characters

0x00 Padding added to align the entire data structure on
Chunk-size boundaries defined for the particular AXF
Object shall consist of 0x00 values.

Padding shall extend the Binary Structure Container by
the minimum amount necessary to cause the last byte of
the final field of the Binary Structure Container to appear
in the byte position immediately preceding a Chunk
boundary.

When the Structure Identifier value is
AXF_OBJECT_FILE_PAYLOAD_START or
AXF_OBJECT_FILE_PAYLOAD_STOP, the Payload will be
empty, and Padding shall be applied to correctly position
the last byte of the final field of the Binary Structure
Container.

The byte length of the Padding is referred to as Padding
Length and is used for Byte Offset Calculations of
subsequent fields in the Binary Structure Container.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 26 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Checksum Type 120 +
Payload Description Length +
Payload Format Length +
Payload Length +
Padding Length

16 UTF-8 SHA-1 The Checksum Type field shall define the checksum
algorithm used for structure verification. The Checksum
Type value shall be drawn from the checksum algorithms
specified in the list of examples in Section 10.21.1.3.

The following values shall be permitted:

CRC64
MD5
SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

Checksum 136 +
Payload Description Length +
Payload Format Length +
Payload Length +
Padding Length

512 Unsigned
4096-bit
integer

12fe456d89c76562
5df9df9812fe456d
89c765625df9df98
3345678964ab500
000000 …. 0000(h)

The Checksum field shall carry the value of the checksum
of the Payload field contained within the Binary Structure
Container, determined using the algorithm specified in
the Checksum Type field. It shall carry the value in the
number of left-most bytes specified for the Checksum
Type used and shall be padded in its right-most bytes with
NUL values to a length of 512 bytes.

Structure Identifier 2 648 +
Payload Description Length +
Payload Format Length +
Payload Length +
Padding Length

32 UTF-8 AXF_OBJECT_HEADER The Structure Identifier 2 field shall carry a duplicate copy
of the value contained in the Structure Identifier 1 field.

Chunk Size 2

680 +
Payload Description Length +
Payload Format Length +
Payload Length +
Padding Length

8 Unsigned
64-bit
integer

100000(h) The Chunk Size 2 shall indicate in bytes the Chunk size
used for the current AXF Object. The same value is
duplicated in the Chunk Size 1 field.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 27 of 101 pages

Field Name Byte Offset Length
(Bytes)

Data Type Example Description and Requirements

Structure Start Position 688 +
Payload Description Length +
Payload Format Length +
Payload Length +
Padding Length

8 Signed 64-
bit integer

1a2b3c4d5e6f7a8b(h) The Structure Start Position field shall specify the relative
number of Chunks from the location of the Structure
Start Position field to the first Chunk of the current Binary
Structure Container. (Note: If the Binary Structure
Container is contained in one Chunk, the value of
Structure Start Position will be zero. Otherwise, the
value of Structure Start Position always will be negative.)

Implementation note: SMPTE ST 2034-1:2014 specified
the Data Type of Structure Start Position as an Unsigned
64-bit integer. AXF Objects created using that version will
have positive values for Structure Start Position. On
encountering positive values for Structure Start Position,
AXF-aware applications compliant with this version should
interpret them as negative values or zero to conform with
the current definition of Structure Start Position. At the
time that such AXF Objects are refreshed in storage,
adjustment of the values to comply with the definition
above is recommended.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 28 of 101 pages

6.4.2 Media Data Structures

Each medium formatted according to this standard shall include specific data structures that define it as a
valid AXF Medium. Depending upon the Storage Media Type with respect to Block-Based or File-System-
Based media, certain structures are either required or optional (see Section 5.4 and Table 1).

One or more AXF Object may be stored on a single medium, and a single AXF Object may be stored on one
or more media through use of the Spanning process (see Section 8). The layout of the various data structures
on a medium is specific to the type of medium as described above. The general layout of AXF Objects on an
AXF Medium is shown in Figure 3, which is representative of Block-Based Media – the most complex
example.

B
e

g
in

n
in

g
 o

f
M

e
d

iu
m

E
n

d
 o

f
M

e
d

iu
m

…

...

M
e

d
iu

m
Id

e
n

ti
fi
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

V
O

L
1

F
ile

 M
a

rk

F
ile

 M
a

rk

AXF Object (1) AXF Object (N)

O
b

je
c
tI
n

d
e

x
.x

m
l
(O

p
ti
o

n
a

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

…..

O
b

je
c
tI
n

d
e

x
.x

m
l
(O

p
ti
o

n
a

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

AXF Object

Figure 3 – AXF Structure Layout on Block-Based Media

The following sections detail AXF Media-specific structures. Section 5 defines which media data structures
are applicable to each particular Storage Media Type.

6.4.2.1 VOL1 Label

The VOL1 Label is an ISO/ANSI standard volume label (“VOL1”) structure as specified in ISO/IEC
1001:2012(E). This label is included to maintain compatibility with legacy applications for Storage Media
Types that benefit from its use. The VOL1 Implementation Identifier indicates to applications with AXF
compatibility that the medium has been properly prepared for AXF read/write activities. The VOL1 Label shall
not be encapsulated inside a Binary Structure Container. The VOL1 Label shall be stored on a medium so
that the first byte of the label is carried in the first byte of the first available block on the medium. Applications
shall write the VOL1 Label structure when preparing a medium for AXF use and shall read the VOL1 Label, in
combination with the AXF Medium Identifier (see Section 6.4.2.2), to detect whether the medium has been
prepared for AXF Objects before any are stored.

To maintain compatibility with non-AXF applications, the VOL1 Label shall be followed by a device-specific
File Mark on applicable media. The fields of the VOL1 Label are structured as defined in Table 3. See Table 1
for designations of the Storage Media Types on which the VOL1 Label shall be applied.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 29 of 101 pages

Table 3 – Structural Elements of a VOL1 Label as Applied to AXF Media

Field Name Byte
Offset

Length
(Bytes)

Data
Type

1

Example Description

VOL1LabelIdentifier 0 3 ISO
646

VOL Identifies the label as a volume label.
Per ISO/IEC 1001:2012(E), this field is
set to “VOL”

VOL1LabelNumber 3 1 ISO
646

1 Identifies the label as the first volume
header label. Per ISO/IEC
1001:2012(E), this field is set to “1”

VOL1VolumeIdentifier 4 6 ISO
646

ABC001 Carries an identification of the volume

VOL1VolumeAccessibility 10 1 ISO
646

Space Indicates access restrictions.

(Reserved) 11 13 ISO
646

Spaces Per ISO/IEC 1001:2012(E), reserved
for future standardization

VOL1ImplementationIdentifier 24 13 ISO
646

AXF Indicates the implementation that
created the Volume Header Label.

VOL1OwnerIdentifier 37- 14 ISO
646

CreatorC
ompany

Indicates the owner of the volume.

(Reserved) 51 28 ISO
646

Spaces Per ISO/IEC 1001:2012(E), reserved
for future standardization

VOL1LabelStandardVersion 79 1 ISO
646

4 Indicates the version of the Label
standard. Per ISO/IEC 1001:2012(E),
this field is set to “4” for the 2012
version of the ISO/IEC 1001 standard.

1
 A limited set of ISO 646 characters is permitted, described as “a-characters” in ISO/IEC 1001, Section 8.1.1
and Annex A.1.

The VOL1VolumeAccessibility field shall be set to a SPACE character to indicate unrestricted access, and the
VOL1ImplementationIdentifier shall be set to “AXF”.

6.4.2.2 AXF Medium Identifier

An AXF Medium Identifier is an XML structure, carried as a Binary Structure Container Payload, that contains
specific information relating to the AXF Medium itself. The AXF Medium Identifier shall be a Binary Structure
Container Payload having a Structure Identifier value of AXF_MEDIUM_IDENTIFIER. The detailed XML
structure of the AXF Medium Identifier can be found in Section 110.1.1 and in the XSD file associated with
this document. The AXF Medium Identifier structure includes information key to the accurate recovery of AXF
Objects contained on the AXF Medium, including a unique identifier, label, or human-readable identifier of the
medium, as well as the block size used on the medium.

Refer to Section 5.4 and Table 1 for designation of the Storage Media Types on which the AXF Medium
Identifier shall be applied.

On Block-Based media, the Medium Identifier shall be stored so that the first byte of the Binary Structure
Container carrying the Medium Identifier is carried in the first byte of the first available block after the device-
specific File Mark that follows the VOL1 label. The Medium Identifier shall itself be followed by a device-
specific File Mark.

On File-System-Based media, virtualization of physical media is indicated by the presence of an AXF Medium
Identifier within a File-System folder at a level lower than the root. The File-System folder containing the AXF
Medium Identifier shall be the topmost folder of that virtual AXF Medium.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 30 of 101 pages

Note: This version of this standard does not specify the treatment of multiple partitions on a single physical Block-
Based medium. Future revisions of this standard might do so.

6.4.2.3 AXF Object Index

An AXF Object Index is an optional XML structure, carried as a Binary Structure Container Payload that
contains a collection of the Object Footer structure data for AXF Objects contained on an AXF Medium. The
information contained in an AXF Object Index is sufficient to recover and reconstruct the entire catalog of all
AXF Objects listed within the AXF Object Index. In the case of a Block-Based Medium, an AXF Object Index
contains a collection of Object Footer structures for all AXF Objects stored at locations prior to that at which
the particular AXF Object Index is stored (i.e., at lower-ordered addresses on the medium). For a File-
System-Based Medium, an AXF Object Index contains a collection of Object Footers for all AXF Objects
stored on the medium and shall appear only once in the topmost folder of the AXF Medium. When an AXF
Object Index is present on a File-System-Based medium, AXF-aware systems shall update and maintain it.

On Block-Based Media AXF Object Indices with higher-ordered addresses on the medium shall supplant
those having lower-ordered addresses. AXF Object Index data only relates to AXF Objects preceding a
particular AXF Object Index on a medium, and applications implementing AXF should ensure that AXF
Objects stored on a medium following the last AXF Object Index on that medium are indexed along with those
included in the last AXF Object Index. The Structure Identifier of a Binary Structure Container shall indicate
carriage of an AXF Object Index in the Payload of the Binary Structure Container by having
AXF_OBJECT_INDEX as its field value. The detailed XML structure of the AXF Object Index is given in
Section 10.7 and in the XSD file associated with this document.

Although relevant and applicable in all scenarios and for all Storage Media Types, the use of AXF Object
Index structures is most beneficial in cases of Block-Based Media. For File-System-Based Media,
applications also can implement use of AXF Object Index structures, but, to reconstruct a medium’s content
index, it typically is just as fast for an application to scan the entire medium and then to process individually
each of the Object Footer structures, except in special cases in which a File System is included on a Linear
Medium. To facilitate reconstruction of the contents of any particular storage medium, it is not necessary for
an application to include regular AXF Object Index structures, but doing so will assist in the speed of recovery
operations, if they become necessary.

6.4.3 AXF Object Data Structures

Each AXF Object is a fully self-contained, encapsulated set of files, metadata, and any other ancillary
information that adds context, relevance, or value to its contents. AXF is designed to handle encapsulation of
a single file as easily as encapsulation of hundreds or millions of files. AXF Objects are structurally identical
regardless of whether they are written to data tape, spinning disk, solid state media, or optical media – either
Block-Based or File-System-Based.

6.4.3.1 AXF Object Overview

Each AXF Object includes several data structures wrapped in Binary Structure Containers. These include an
Object Header structure, any number of optional Generic Metadata structures, a File Payload Start structure,
zero or more content files together with an associated AXF File Footer for each file, an optional File Payload
Stop structure, and an Object Footer structure. Each AXF Object also can contain spanning information that
relates the portion of the AXF Object stored on a particular medium with the remainder of that AXF Object
stored on another medium or on other media and associative information that relates the AXF Object to other
AXF Objects in a Collected Set. The overall structure of an AXF Object is diagrammed in Figure 4.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 31 of 101 pages

Figure 4 – AXF Object Structure Overview

6.4.3.2 AXF Object Structural Components

Each AXF Object shall begin with an Object Header and end with an Object Footer. The Object Header and
Footer structures contain descriptive XML metadata describing the contents of the AXF Object. Applications
may use Object Headers and Object Footers as anchor points while parsing AXF Objects. Although following
sections describe the general ordering of internal AXF structures, other structures can be expected to be
embedded in these locations in future versions of this standard, and therefore applications should verify the
Binary Structure Container type before processing each Binary Structure Container, ignoring unexpected or
unknown Binary Structure Containers.

Following each Object Header may be zero or more Generic Metadata Containers. Each Generic Metadata
Container shall comprise a Binary Structure Container, the payload of which is metadata associated with the
AXF Object.

Following any Generic Metadata Containers shall be the File Payload portion of an AXF Object. The File
Payload portion of an AXF Object shall begin with a File Payload Start structure. Immediately following the
File Payload Start structure shall be any number of File Data + File Padding + File Footer triplets, the last of
which may be followed by a File Payload Stop structure. File Padding shall be used to align the File Data on
AXF Chunk boundaries to enable easy description of the locations and retrieval of the contents of the files
contained within the AXF Object. Because the files in an AXF Object are not encapsulated in Binary Structure
Containers, the File Payload Start and File Payload Stop structures enable locating the File Payload of an
AXF Object while scanning at high speed.

The final Binary Structure Container of an AXF Object always shall be an Object Footer.

6.4.3.3 File Tree

A File Tree structure shall be included in each Object Header and Object Footer, as they are more fully
described below. Each File Tree structure shall include the names of the files and symbolic links contained in
the related AXF Object File Payload; the paths, if any, through a folder structure to each of the contained files
and symbolic links; and detailed information related to the folders, the files, the symbolic links, and their
relationships to one another. The File Tree structure shall be expressed in XML, as described in detail in
Section 10.14, and shall be composed of four data types: FileFolder, Folder, SymLink, and File, as described
in Sections 10.10 through 10.13, respectively.

The File Tree within an AXF Object shall traverse from a root folder down a hierarchy within which all of the
File Tree members shall be contained. The File Tree shall relate files, symbolic links, and the folders in which
they are contained by establishing a path structure from the root folder to each contained folder, file, and
symbolic link within the structure, as described in the XML listing within the File Tree of the associated AXF

...

F
ile

 1

...

O
b

je
c
tH

e
a

d
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

M
e

ta
d

a
ta

 (
O

p
ti
o

n
a

l)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(1

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

P
a

y
lo

a
d

 S
ta

rt

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

M
e

ta
d

a
ta

 (
O

p
ti
o

n
a

l)

F
ile

 2

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(2

)

F
ile

 N

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(N

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

o
o

te
r.

x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

P
a

y
lo

a
d

 S
to

p
 (

O
p

ti
o

n
a

l)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 32 of 101 pages

Object. Folders never actually exist physically; they are represented only within File Tree listings and as items
in path descriptions. Mechanisms are provided in the XML structure of the File Tree for indicating folders that
are nested within other folders and folders that are peers with other folders and files and nested within a
folder at a higher level in the folder hierarchy.

Index numbers shall be applied to each folder, symbolic link, and file in the File Tree of an AXF Object. The
Index numbers within an AXF Object shall be scoped to the folders, symbolic links, and files contained within
that AXF Object. Index numbering shall start with a value of ‘1’ applied to the root folder of the File Tree. The
Index number shall increment by one for each step in traversing the File Tree. The value of the final Index
number in a File Tree shall equal the total number of files, symbolic links, and folders contained within the File
Tree (including the root folder).

Along with each file listed in the File Tree structure, nested checksum type/value pairs, file identifiers of any
type and number, and various file attributes also may be included. To promote compatibility across a broad
spectrum of applications and technologies, multiple instances of checksums, identifiers, and attributes of
different types may be associated with each file or symbolic link, both in the File Tree and elsewhere.

An example File Tree structure is shown in Figure 5. In that figure, on the left side, a hierarchical structure of
folders, files, and symbolic links is shown in a file tree diagram. On the right side, the corresponding structure
of files and symbolic links within an AXF Object is shown. On the left side, index numbers are given for
folders, files, and symbolic links, as they would appear in FileTree structures, while on the right side the index
numbers for only files and symbolic links are shown, as only the information related directly to files and
symbolic links is included in File Footers and Symbolic Link Footers. The paths to all of the files and symbolic
links are shown on both sides, as they would be expressed both in the FileTree structure and in the File
Footer of each file or symbolic link. Paths are not explicitly expressed for folders in the File Tree structure;
rather their presence is denoted by the XML structures naming them and assigning Index numbers to them.
In the event of loss of all FileTree structures on a medium, the File Tree can be reconstructed by reading the
paths in the File Footers and Symbolic Link Footers, in which case the existence of empty folders can be
inferred from the Index numbering sequence, but the names of empty folders cannot be determined.

Note: The nature of the target of a symbolic link, i.e., a file or a folder, is not directly indicated by the data
included in the Symbolic Link Footer. Determination of the nature of the target requires following the link and
examining the data and/or structure found at the target of the link.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 33 of 101 pages

Object Header

Generic Metadata Container(s)

Payload Start

File: f1

Footer: Index 3, Path = /Fa/f1

File: f2

Footer: Index 4, Path = /Fa/f2

File: f3

Symbolic Link Padding: /s2

Payload End

Object Footer

AXF File/Stream

Footer: Index 8, Path = /Fa/Fc/f3

Footer: Index 9, Path = /Fa/Fc/s2, Target = /Fa/f1

Symbolic Link Padding: /s1

Footer: Index 5, Path = /Fa/s1, Target = /Fa/Fc/f3

(Root) Type: Folder, Index: 1, Path = /

Type: Folder, Index: 2, Path = /Fa

Type: File, Index: 3, Path = /Fa/f1

Type: File, Index: 4, Path = /Fa/f2

Type: Symlink, Index = 5, Path = /Fa/s1, Target = /Fa/Fc/f3

Type: Folder, Index: 6, Path = /Fa/Fb

Type: Folder, Index: 7, Path = /Fa/Fc

Type: File, Index: 8, Path = Fa/Fc/f3

Type: Symlink, Index = 9, Path = /Fa/Fc/s2, Target = /Fa/f1

Type: Folder, Index: 10, Path = /Fd

/Fa

/f1

/f2

/Fb

/Fc

/Fd

/s1

/s2

File PayloadFile Tree

AXF Archive Object 1

/f3

Figure 5 – File Tree Structure Overview

6.4.3.4 Object Header Structure

An Object Header is an XML structure, carried as a Binary Structure Container Payload, that provides
structural information about the AXF Object itself and information about the contents of the AXF Object,
including such items as file names, file paths, checksum data when available, provenance information, and
the like. Because an Object Header is written before much of the detailed information about the File Payload
is known, much of the data that it contains is optional. Not optional are such details as the Chunk size of the
AXF Object, and other data necessary to the accurate recovery of the AXF Object contents. To help enhance
the robustness of the AXF Object, the Object Header also serves to provide redundancy of information carried
in complete form in the corresponding Object Footer. In addition, data in Object Headers is used in the
processing of linkages in Spanned Sets (see Section 8) and Collected Sets (see Section 9). The Structure
Identifier of a Binary Structure Container shall indicate carriage of an Object Header in the Payload of the
Binary Structure Container by having AXF_OBJECT_HEADER as its field value. The detailed XML structure
of the Object Header shall be as given in Section 10.2 and in the XSD file associated with this document.

6.4.3.5 Generic Metadata Container Structure

A Generic Metadata Container provides an optional, open, and extensible space for the direct association of
free-form metadata with an AXF Object. It applies at the AXF Object level and can be used to carry metadata
related to the AXF Object itself and/or to its contents. The metadata in such a container can be extracted from
an AXF Object without having to restore any of the files contained in the associated File Payload.

Within a Binary Structure Container that denotes the carriage of generic metadata, the metadata may be in
the form of an XML structure, plain text, binary data, or any other form of data expression. No specification is
provided herein for the metadata carried within a Generic Metadata Container; any form of metadata
described in other documents or privately defined may be carried in a Generic Metadata Container. Such
information also may be stored in one or more files in the File Payload, but the generic metadata space is

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 34 of 101 pages

provided for situations in which storage of metadata separate from the File Payload but carried with the
associated AXF Object can be beneficial to particular applications. The Structure Identifier of a Binary
Structure Container shall indicate carriage of Generic Metadata in the Payload of the Binary Structure
Container by having AXF_OBJECT_METADATA as its field value.

In the case in which there is no generic metadata associated with an AXF Object, there shall be no Generic
Metadata Container structures included within the AXF Object. Use of a Generic Metadata payload without
additional definition of that payload, however, does not guarantee downstream usability. Different types of
metadata associated with a single AXF Object should be carried in separate Generic Metadata Containers.

6.4.3.6 File Payload Start Structure

The File Payload Start structure shall be an empty Binary Structure Container signifying that the Chunk
immediately following the File Payload Start structure shall contain either the first portion (or all) of the first file
of the AXF Object File Payload or an associated File Payload Stop structure (see Section 6.4.3.9). The File
Payload Start structure may be used by applications that do not need to access other AXF structures but do
need to perform any of a variety of operations on Payload Files. By locating the File Payload Start structure,
an application can find the File Payload, which commences with the following Chunk. Using just the
information stored in the associated File Footers, such an application can fully restore all Payload Files of an
AXF Object, without the use of the Object Header or Object Footer. The Structure Identifier of a Binary
Structure Container shall indicate the presence of a File Payload Start Binary Structure Container by having
AXF_OBJECT_FILE_PAYLOAD_START as its field value.

6.4.3.7 File and Symbolic Link Payloads

When present, each Content File shall be stored as a sequence of bytes, from beginning to end. Each
Content File shall be stored with its first byte coinciding with the first byte of a Chunk. Each Content File shall
occupy as many sequential Chunks as necessary to contain all of its data. A Content File shall not be
wrapped in a Binary Structure Container. Each Content File shall be followed by sufficient File Padding to
completely fill the last Chunk occupied by the Content File, thereby maintaining Chunk alignment of the File
Payload structure. File Padding shall consist of bytes having a value of 0x00. Should a Content File fully fill
an integer number of Chunks, then no File Padding shall be added. The final Chunk carrying a Content File
(and any associated File Padding) shall be followed by a File Footer (see Section 6.4.3.8).

Byte ordering of File Payload files can be indicated in metadata related to the File Payload files, carried in
multiple places within an AXF Object, in particular the related File Footer. See Section 6.2 for details.

The File Payload of an AXF Object may be spanned across multiple media, as described in Section 8. When
spanning is applied, a Content File may be split into two or more fragments, the lower-ordered of which at
each span point will be terminated with a Fragment Footer and the higher-ordered of which at each span point
will be preceded by an Object Header followed by a Fragment Header. In such instances, the sequential
storage of the Content File in Chunks shall bridge across as many media as necessary to fully contain the
Content File.

When a Symbolic Link is included in a FileTree to reference a file or a folder using an alias, a single chunk of
padding data (called a “Padding Chunk”) shall be inserted into the File Payload to enable use of a footer
structure for the Symbolic Link equivalent to a File Footer. To enable operation of the FileTree path structure
with respect to the Symbolic Link, the Padding Chunk shall be named in the same way that files are named.
All bytes in the Padding Chunk shall have a value of 0x00. The Padding Chunk for a particular Symbolic Link
shall be followed by a related Symbolic Link Footer structure, as described in Section 6.4.3.8.

6.4.3.8 File and Symbolic Link Footer Structures

A File Footer shall be an XML structure, carried as a Binary Structure Container Payload, written following
each Content File in a File Payload. A File Footer structure contains detailed information regarding the
associated Content File, including the size of the associated Content File and an optional file-level checksum,

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 35 of 101 pages

designed to be processed by an application on the fly during restore operations to ensure bit fixity. The
Structure Identifier of a Binary Structure Container shall indicate carriage of a File Footer in the Payload of
the Binary Structure Container by having AXF_FILE_FOOTER as its field value. The detailed XML structure
of a File Footer shall be as given in Section 10.4 and in the XSD file associated with this document; in turn, it
depends on the FileFolder XML structure described in Section 10.10 and also in the XSD file.

A Symbolic Link Footer shall be an XML structure, carried as a Binary Structure Container Payload, written
following each Symbolic Link Padding Chunk in a File Payload. A Symbolic Link Footer structure contains
detailed information regarding the Target of the Symbolic Link. The Structure Identifier of a Binary Structure
Container shall indicate carriage of a Symbolic Link Footer in the Payload of the Binary Structure Container
by having AXF_FILE_FOOTER as its field value. The detailed XML structure of a Symbolic Link Footer shall
be as given in Section 10.4 and in the XSD file associated with this document; in turn, it depends on the
Symlink XML structure described in Section 10.13 and also in the XSD file.

6.4.3.9 File Payload Stop Structure

The File Payload Stop structure shall be an empty Binary Structure Container signifying that the previous
Chunk contains the File Footer of the last file in the AXF Object File Payload. The File Payload Stop structure
can be used by applications that do not need to access other AXF structures but do need to perform a variety
of operations on Payload Files. By locating the File Payload Stop structure, an application readily can find the
end of the File Payload. The File Payload Stop Structure provides symmetry with the File Payload Start
Structure, thereby enabling an application to locate the bounds of the AXF Object File Payload. Using just the
information in the associated File Footers, such an application can fully restore all Content Files contained in
the File Payload of an AXF Object, without relying on the use of the Object Header or Object Footer. The
Structure Identifier of a Binary Structure Container shall indicate the presence of a File Payload Stop Binary
Structure Container by having AXF_OBJECT_FILE_PAYLOAD_STOP as its field value.

6.4.3.10 Object Footer Structure

An Object Footer may be used in similar fashion to an Object Header, and can be used by applications to
locate and process the files and other information contained within the AXF Object. Each Object Footer shall
contain a collection of metadata that describes the contents of the AXF Object. The Object Header and Object
Footer data structures are fundamentally identical; however, some fields that are optional in the Header are
mandatory in the Footer. The Structure Identifier of a Binary Structure Container shall indicate carriage of an
Object Footer in the Payload of the Binary Structure Container by having AXF_OBJECT_FOOTER as its field
value. The detailed XML structure of the Object Footer shall be as given in Section 10.6 and in the XSD file
associated with this document.

Object Footers serve two purposes: They provide updated information about the contents of an AXF Object
that was not available when its Object Header was created, and they provide redundancy by duplicating
specific information from the corresponding Object Header and from the File Footers of all of the files
contained within the AXF Object. In addition, data in Object Footers may be used in the processing of
linkages in Collected Sets, as explained later in Section 9.

6.4.3.11 Fragment Footer Structure

AXF Object Fragment links consist of Fragment Footer and Fragment Header pairs that carry pair-bond
identifiers when an AXF Object is spanned across multiple storage media. A Fragment Footer is an XML
structure, carried as a Binary Structure Container Payload that provides linkage information between two
fragments of an AXF Object. A Fragment Footer shall be inserted at the end of a section of File Payload that
is being spanned to a following medium in a Spanned Set. The Fragment Footer shall occupy the last active
Chunk on a medium; there shall be no Object Footer included at the end of a section of File Payload that
does not complete the File Payload of the Spanned Set. The Fragment Footer shall include a Fragment Pair
UUID value matching the Fragment Pair UUID value carried in the corresponding Fragment Header that
begins the File Payload section carried on the immediately following, higher-ordered medium in the Spanned
Set. The Structure Identifier of a Binary Structure Container shall indicate carriage of a Fragment Footer in

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 36 of 101 pages

the Payload of the Binary Structure Container by having AXF_OBJECT_FRAGMENT_FOOTER as its field
value.The detailed XML structure of the Fragment Footer shall be as given in Section 10.5 and in the XSD file
associated with this document.

6.4.3.12 Fragment Header Structure

AXF Object Fragment links consist of Fragment Footer and Fragment Header pairs that carry pair-bond
identifiers. A Fragment Header is an XML structure, carried in a Binary Structure Container Payload, that
provides linkage information between two fragments of an AXF Object. A Fragment Header shall be inserted
at the beginning of a section of File Payload that has been spanned from a previous medium in a Spanned
Set. The Fragment Header shall follow an Object Header that duplicates the Object Header(s) carried in the
lower-ordered fragment(s) in the Spanned Set. The Object Fragment Header shall include a Fragment Pair
UUID value matching the Fragment Pair UUID value carried in the corresponding Fragment Footer that ended
the File Payload section carried on the immediately preceding, lower-ordered medium in the Spanned Set.
The Structure Identifier of a Binary Structure Container shall indicate carriage of a Fragment Header in the
Payload of the Binary Structure Container by having AXF_OBJECT FRAGMENT_HEADER as its field value.
The detailed XML structure of the Fragment Header shall be as given in Section 10.3 and in the XSD file
associated with this document.

7 General Usage Considerations

General usage considerations include methods such as file naming conventions necessary to the interchange
of stored content and practices intended to assure fast and reliable retrieval of such content. They apply
when creating, reading, writing, parsing, recovering, or indexing AXF Objects and/or AXF Media.

7.1 File Naming

When stored on File-System-Based Media, files containing AXF Objects and files associated with the AXF
protocol shall be identified with specific file name extensions. The file name extensions shall be applied as
specified in Table 4.

Table 4 – AXF Protocol Filename Extensions

AXF Protocol Component Filename Extension Example Filenames

AXF Object .axf Object UUID.axf

AXF Object Index .axfi Medium UUID.axfi

AXF Medium Identifier .axfm Medium UUID.axfm

The Base Names of files containing AXF Objects, AXF Object Indices, and AXF Medium Identifiers are not
constrained by this standard. Nevertheless, the Base Names of the files containing the associated structures
should be the UUIDs that are carried in those structures to uniquely identify them. For those character sets
where applicable, both Base Names and extensions shall be treated in a case–insensitive manner by readers
of the structures; i.e., fully upper case, fully lower case, and mixed case names having the same alphabetic
characters shall be interpreted as the same names.

7.2 Media Preparation

Media Preparation shall include the addition of an AXF Medium Identifier structure to the medium and also
shall include the addition of a VOL1 label (see Section 6.4.2.1) prior to the AXF Medium Identifier as indicated
in Table 1 — Relationships between AXF Structures and Storage Media Types.

Note: The absence of their formatting as AXF Media does not preclude the storage of AXF Objects on certain
Storage Media Types.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 37 of 101 pages

Despite the requirement for media preparation to enable the medium identification functionality of the AXF
protocol, AXF-aware systems retrieving AXF Objects from media are expected to recover AXF Objects
despite the absence of, or corruption of, an AXF Medium Identifier; e.g., when that portion of a medium has
become damaged.

The AXF Medium Identifier shall be written by an application when preparing a medium for first-time use or
subsequent reuse, followed by a device specific File Mark, as applicable (see Table 1). It generally is not
expected that the AXF Medium Identifier will be updated by an application following the preparation of a
medium for AXF utilization, except in the case in which the medium has been erased and is being prepared
again for use as an AXF Medium. Although some storage media allow easy random access to the AXF
Medium Identifier structure, it should not be updated once created.

Physical media can be subdivided into multiple virtual media, when supported by the particular storage
technology used (e.g., partitions or sub-directories). In such cases, multiple, virtual AXF Media can appear on
individual physical media. A virtual AXF Medium shall be created by placing an AXF Medium Identifier at the
beginning of a partition or in a sub-directory. In an instance of a virtual AXF Medium, the structure that
contains the AXF Medium Identifier shall serve as the top level of the virtual AXF Medium.

7.2.1 Block-Based Media

Block-based media shall be prepared for use as AXF Media prior to first utilization. Such preparation shall
consist of placing VOL1 labels and AXF Medium Identifiers on the media, as specified in Sections 6.4.2.1 and
6.4.2.2. Once AXF Objects are stored on media, it can become quite difficult to insert VOL1 labels and
Medium Identifiers after the fact, leading to the requirement for initial preparation of block-based media.

7.2.2 File-System-Based Media

On File-System-Based Media, medium preparation operations shall include creation of AXF Medium
Identifiers and their placement at the root locations of the storage media being prepared. It is possible for
different AXF-aware applications to have different root entry points into the file structure of a storage medium,
resulting in multiple Medium Identifiers being placed on a medium. Consequently, during the media
preparation process on file-system-based media, AXF-aware systems shall not remove or modify any AXF
Medium Identifiers found elsewhere on storage media unless done intentionally as part of the media
preparation process.

7.3 AXF Object Index Structures

AXF Object Indices are optional structures that can be used to assist in the rapid recovery and indexing of
AXF Media and the AXF Objects they contain. Such structures shall be supported on both Block-Based and
File-System-Based Media.

AXF Object Index structures are defined in Section 6.4.2.3 and include collections of Object Footer data for all
AXF Objects contained on Media prior to the locations at which the AXF Object Indices are stored in the case
of Block-Based Media and for all AXF Objects contained on the Media for File-System-Based Media. AXF-
aware applications can utilize AXF Object Index structures to speed the indexing of Media when those Media
are accessed without prior knowledge of their contents by the applications.

On File-System-Based Media, AXF Object Indices (if used) shall be updated following each successful write
or delete operation performed, allowing for immediate rebuilding by an application of its internal index simply
by reading an AXF Object Index structure. Since such a Medium might have been written by non-AXF-aware
applications, either adding non-AXF files or deleting AXF Objects, an application should rely upon AXF Object
Indices only to provide a quick view of all AXF Objects and their contents contained on a given Medium. For
certainty about the AXF Objects contained on the Medium, the application should scan all files contained on
the Medium, determine whether each represents a valid AXF Object, and reconcile Object Footer structures
to provide a validated view of the AXF Objects and the AXF Object contents contained on the Medium.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 38 of 101 pages

In the case of a Block-Based Medium, to ensure that other AXF-aware applications can quickly and easily
index it and to provide maximum redundancy of critical data structures, an AXF-aware application should
write a current AXF Object Index structure on the medium periodically during the addition of AXF Objects to it
and just prior to transporting it. Although not necessary to enable indexing of and access to stored AXF
Objects and their content by other applications, inclusion of current AXF Object Indices on AXF Media helps
to assure quick and reliable retrieval of AXF Objects and the files that they contain.

7.4 Creating, Reading, Writing, Copying, and Transferring AXF Objects

AXF features only can be fully utilized in cases in which applications performing operations have implemented
the AXF protocol. It is possible, however, for some applications to complete certain operations on AXF
Objects and AXF Media with no awareness of AXF. Many of the benefits of this standard can be lost in such
cases, but they do allow for wider application of AXF in situations in which the AXF protocol is not fully
implemented.

7.4.1 AXF-Aware Applications

During copy and move operations, AXF-aware applications shall unpack and repack AXF Objects. These
processes allow the updating of important provenance metadata, realignment with destination Media Block
boundaries, updating of Chunk and Block relative and absolute position information, and validation of all File
Payload data and AXF Object data structures to ensure that bits remain unaltered while streaming. During
these operations, AXF-aware applications shall ensure the updating of Object Header metadata to align with
that contained in corresponding Object Footers, assuring agreement within the structure pairs. An AXF-aware
application shall determine whether a destination Medium has been prepared as an AXF Medium and
whether AXF Object Index structures have been enabled and maintained on it. If they have, the AXF Object
Index on the target Medium shall be updated to indicate the existence of all newly added AXF Objects
following a successful copy or move operation.

AXF-aware applications shall ensure that proper reference and pointer information is maintained for each
AXF Object and AXF Media data structure during all creation, copy and move operations. AXF-aware
applications shall validate this information during read operations to ensure its integrity and shall attempt to
recover inconsistent information automatically or shall provide notification in cases where unrecoverable
inconsistencies or other issues are detected.

7.4.2 Non-AXF-Aware Applications

By design, applications that have not implemented the AXF protocol are permitted to copy and move AXF
Objects when File-System-Based Media are involved. This is possible because each AXF Object is fully self-
contained, is deterministically constructed, and does not mandate Chunk alignment on File-System-Based
Media to permit subsequent access, recovery, copy, or move operations by both AXF-aware and -unaware
applications.

Although not absolutely necessary, by intentional design to facilitate wider applicability of the AXF protocol,
applications should ensure that provenance metadata and some of the resiliency characteristics (such as AXF
Object Index structures) are employed and maintained.

Applications that have not implemented the AXF protocol can read AXF Objects contained on Block-Based
Media, but Block and Chunk data need to be known a priori as these cannot be parsed from the AXF Media
or AXF Object data structures without awareness of the AXF protocol. It is not possible for non-AXF-aware
applications to write compliant AXF Objects to Block-Based Media, as key position data internal to the AXF
Objects have to be updated to allow subsequent indexing and recovery of File Payload data by other
systems.

Any application can delete AXF Objects from File-System-Based Media. For Block-Based Media, deletion
typically involves removal of database records or pointers to data on the Media that contain the AXF Objects

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 39 of 101 pages

but not deletion of actual AXF Objects data. Thus, for Block-Based Media, short of fully erasing the Media, it
only is possible for any application to remove references to AXF Objects, effectively deleting them, but those
AXF Objects will reappear on the Media should it be reindexed without knowledge of prior deletions.

7.5 Nesting AXF Objects

The AXF protocol fully supports nested AXF Objects, which are AXF Objects contained within other AXF
Objects. Such inclusion is possible because each constituent AXF Object data structure contains the UUID
assigned to the AXF Object of which it is a component. This UUID inclusion allows an AXF-aware application
to identify specifically which structures are components of the AXF Object currently being processed and to
ignore other structures that might be part of Generic Metadata Container or File Payload data of another AXF
Object either that it contains or that contains it.

8 Spanning

Spanning is a segmentation and reassembly process for storing AXF Objects across multiple media,
providing the necessary linkages to reconnect with one another the fragments of a spanned AXF Object
(stored on a set of Media known as a “Spanned Set”).

There is no limit to the number of Media and there is no limit to the types or generations of Media that can be
employed to store a spanned AXF Object.

The AXF spanning structure establishes linkages between the segments of a spanned AXF Object and
between the storage media containing the spanned AXF Object, as storage of the spanned AXF Object
moves from one Medium to the next. An AXF-aware application shall use the linkage data stored within the
AXF spanning structures to reassemble the AXF Object from its spanned segments.

Segments of AXF Objects are identified as “Fragments” in the definition of Spanning. Fragments have
headers and footers, as described below. Fragment footers, in particular, have been designed to take up no
more than a single Block on any Medium (or on Media having moderate- or larger-sized Chunks, no more
than a single Chunk) so that they can be placed in the remaining space at the end of a Medium when it
becomes apparent to the system writing to the Medium that the Medium capacity is about to run out.

8.1 Spanning Linkages

To connect the fragments in a Spanned Set, a number of linkages are provided at each span point in the
Spanned Set. The linkages consist of shared FragmentPairUUID values that connect successive fragments
in the Spanned Set.

To connect Media, the Medium preceding a Span Point may include, in the Fragment Footer at the end of the
Medium, the UUID that identifies the next Medium in the Spanned Set. Similarly, the Medium following a Span
Point may include, in the Fragment Header at the start of the Medium, the UUID that identifies the preceding
Medium in the Spanned Set.

The first Fragment in a Spanned Set shall not contain a Fragment Header — only a Fragment Footer.
Correspondingly, the last fragment in a Spanned Set shall contain a Fragment Header but not a Fragment
Footer. Each fragment in a Spanned Set shall begin with an Object Header, which shall precede the
Fragment Header when it is present.

To connect the Fragments of a spanned AXF Object, each Fragment shall contain, in the Object Header that
begins it, a single AXF Object UUID that identifies all of the Fragments of the AXF Object. Additionally, the
Fragment Footer at the end of a Fragment preceding a Span Point and the Fragment Header at the start of
the fragment following the Span Point each shall contain a shared UUID (the Fragment Pair UUID) that
identifies the pair of Fragments that abut the Span Point. Each Fragment also shall be given a sequential
number that identifies its position in the Spanned Set (the Fragment Number). These relationships and their
connections are shown in Figure 6.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 40 of 101 pages

Figure 6 – Linkages between Fragments of a Spanned Set

Medium 1 (Initial Medium of a Spanned Set)

Medium Identifier: MediumUUID = Um1

Object Header: ObjectUUID = Uo1

Fragment Footer:

 FragmentPairUUID = Uf1

 FragmentNumber = 1

 NextMediumUUID = Um2

Medium 2 (Intermediate Medium of a Spanned Set)

Medium Identifier: MediumUUID = Um2

Object Header: ObjectUUID = Uo1

Fragment Header:

 FragmentPairUUID = Uf1

 FragmentNumber = 2

 PreviousMediumUUID = Um1

Fragment Footer:

 FragmentPairUUID = Uf2

 FragmentNumber = 2

 NextMediumUUID = Um3

Medium Content

Medium Content

Medium 3 (Final Medium of a Spanned Set)

Medium Identifier: MediumUUID = Um3

Object Header: ObjectUUID = Uo1

Fragment Header:

 FragmentPairUUID = Uf2

 FragmentNumber = 3

 PreviousMediumUUID = Um2

Medium Content

Object Footer: ObjectUUID = Uo1

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 41 of 101 pages

A more complete depiction of the Media, AXF Objects, files, and structures involved in a Spanned Set is
provided in Figure 7. It shows three Media and represents the structure when three or more media are
included in a Spanned Set. In Figure 7, files #2 and #4 reached the ends of their Media. Both files were
spanned to other Media to complete their storage.

When only two Media are included in a Spanned Set, the structures used are those only of Medium 1 and
Medium 3, as enumerated in both Figure 6 and Figure 7.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 42 of 101 pages

Figure 7 – Multiple Medium Spanning

B
e

g
in

n
in

g
 o

f
M

e
d

iu
m

 #
1

E
n

d
 o

f
M

e
d

iu
m

 #
1

...

M
e

d
iu

m
Id

e
n

ti
fi
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

V
O

L
1

F
ile

 M
a

rk

F
ile

 M
a

rk

Archive Object Archive Object (N)

O
b

je
c
tI
n

d
e

x
.x

m
l

(O
p

ti
o

n
a

l)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

….. Archive Object

(Spanned)

B
e

g
in

n
in

g
 o

f
M

e
d

iu
m

 #
2

E
n

d
 o

f
M

e
d

iu
m

 #
2

…..

...

M
e

d
iu

m
Id

e
n

ti
fi
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

V
O

L
1

F
ile

 M
a

rk

F
ile

 M
a

rk

Archive Object

(Spanned)
…..

O
b

je
c
tI
n

d
e

x
.x

m
l

(O
p

ti
o

n
a

l)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

Archive Object

(Spanned)

Archive Object (N)

...

F
ile

 1

O
b

je
c
tH

e
a

d
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

M
e

ta
d

a
ta

 (
O

p
ti
o

n
a

l)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(1

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

P
a

y
lo

a
d

 S
ta

rt

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

M
e

ta
d

a
ta

 (
O

p
ti
o

n
a

l)

F
ile

 2
 (

S
p

a
n

n
e

d
 F

ile
)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(2

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(N

)

F
ile

 3

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

ra
g

m
e

n
tF

o
o

te
r.

x
m

l

F
ile

 2
 (

S
p

a
n

n
e

d
 F

ile
)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

ra
g

m
e

n
tH

e
a

d
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tH

e
a

d
e

r.
x
m

l

F
ile

 4
 (

S
p

a
n

n
e

d
 F

ile
)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

ra
g

m
e

n
tF

o
o

te
r.

x
m

l

B
e

g
in

n
in

g
 o

f
M

e
d

iu
m

 #
3

...

M
e

d
iu

m
Id

e
n

ti
fi
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

V
O

L
1

F
ile

 M
a

rk

F
ile

 M
a

rk

E
n

d
 o

f
M

e
d

iu
m

 #
3

Fragment UUID 1

Fragment UUID 2
Fragment UUID 1

Fragment UUID 2

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(2

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

F
ile

F
o

o
te

r.
x
m

l
(N

)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

o
o

te
r.

x
m

l

F
ile

 N

...

F
ile

 2
 (

S
p

a
n

n
e

d
 F

ile
)

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tF

ra
g

m
e

n
tH

e
a

d
e

r.
x
m

l

B
in

a
ry

 S
tr

u
c
tu

re
 C

o
n

ta
in

e
r

O
b

je
c
tH

e
a

d
e

r.
x
m

l

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 43 of 101 pages

8.2 Encountering a Spanning Situation

An application creating an AXF Object has the option either to keep track itself of the writing location on the
Medium as the AXF Object is being written to the Medium or to allow the Medium to notify the application
when the Medium is at full capacity. If the application relies on the Medium to indicate full capacity, then the
application has to instruct the Media drive to back up two blocks from the end of the Medium to position the
writing of the fragment footer at the end of the Medium.

When an application determines that a Media span is necessary, linkage is necessary between the current
and next Media. The first decision for the application is to choose the next Medium type. Once that is
determined, a Fragment Header and Fragment Footer pair are built to provide the linkage. The connections
between the header/footer pair were shown in Figure 6 above for a 3-or-more-medium Spanned Set. When
only two media are involved in a Spanned Set, the formats of Medium 1 and Medium 3 are used together,
with the format of Medium 2 omitted from the Spanned Set.

8.3 Recovery of Spanned AXF Objects

When an application recovering an AXF Object encounters a Fragment Footer, the presence of the Fragment
Footer indicates that the current AXF Object is spanned to another Medium. The application shall use the
information provided in the Fragment Footer to determine the identity of the succeeding Medium as well as
several linkages to the next Fragment.

Note: The next Fragment might have been stored on a Storage Media Type different from that carrying the
current fragment. It is the responsibility of the system managing recovery of the AXF Object or of the end
user to enable the application to access succeeding Fragments on different Storage Media Types.

For systems having Media already registered in their databases, it is the responsibility of those systems to
control drive loading with succeeding Media in Spanned Sets and to manage reassembly of the Fragments of
the spanned AXF Objects into their original forms.

For systems importing AXF Objects into their databases, it is the responsibility of those systems to identify
succeeding Media containing subsequent Fragments in Spanned Sets and to provide needed indications to
operators or to automated loaders so that the media can be made available when they are needed. This
process can be aided by inclusion of a mechanism for pre-reading Media for identification and database
registration purposes.

8.4 Spanning Rules

The first structure of an AXF Object shall be an Object Header. This requirement also shall apply to the
Fragments of Spanned Sets.

When spanning is necessary, the last structure in a Fragment at the end of a medium shall be a Fragment
Footer, and the next Fragment in the Spanned Set shall begin with an Object Header followed by a Fragment
Header.

Fragments shall not be created without inclusion of Fragment Footers and linked Fragment Headers at the
ends and beginnings, respectively, of successive fragments.

Note: This rule explicitly prohibits creation of Fragments during copying without following the Spanning procedures
defined herein. Splitting a Fragment into smaller pieces during a copying process, without application of the
necessary formatting elements, will result in some or all of the data following and possibly preceding the new split
point becoming irretrievable.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 44 of 101 pages

File Footers shall be contained on the same media as the ends of their associated files; i.e., files never shall
be separated from their associated File Footers by a span, with the file on one medium and its File Footer on
the next.

If a File and its File Footer will not fit on a single Medium, the file itself shall be spanned across two Media, so
that the File Footer always occupies the block immediately following the last byte of the file.

Any number of Fragments shall be permitted in a Spanned Set.

Fragments may start at locations on a Medium other than the beginning. Fragments may end at locations on
a medium other than the end.

Multiple Fragments from a single Spanned Set may be stored on the same Medium. An example of this
situation can occur when Fragments originally stored on separate Media are copied to a single Medium
without a defragmentation process.

Note: Although permitted, this practice is not recommended.

9 Collected Sets

A Collected Set is a structure that enables adding files to, replacing files in, and deleting files from an AXF
Object created at an earlier time. A Collected Set shall comprise an Anchor Object, having a
CollectedSetSequence value of 1, and one or more subsequent AXF Objects having higher
CollectedSetSequence values. A Product Object shall comprise the compilation of the Anchor Object of the
Collected Set and subsequent AXF Objects, applied sequentially according to their CollectedSetSequence
values. AXF Objects added to a Collected Set subsequent to the Anchor Object shall modify the complement
of files included in the Product Object that results from combining the AXF Objects of the Collected Set having
lower CollectedSetSequence values than the AXF Object being added. The Collected Set structure provides
the necessary linkages to connect its AXF Objects with one another to produce a different complement of files
within the Product Object than initially existed in the Anchor Object. The AXF Objects in a Collected Set shall
have a specific order, with AXF Objects in the Collected Set having higher CollectedSetSequence values
being read after AXF Objects having lower CollectedSetSequence values. As a result of the accumulation of
contents and processing instructions of the sequence of subsequent AXF Objects, the contents of the Product
Object produced by the Collected Set are altered with the addition of each successive AXF Object to the
sequence in the Collected Set.

There is no limit to the number of AXF Objects that can be included in a Collected Set.

Linkages between the AXF Objects in a Collected Set are established by Object Header and Object Footer
structures. During compilation of the Product Object of a Collected Set, the application reading the AXF
Objects in the Collected Set, using the linkage data, mounts media in the order necessary to assemble the
Collected Set and applies the processes indicated for its constituent files. This assembly procedure includes
making changes to the FileTree structure, adding, replacing, and deleting files, as necessary.

9.1 Collected Set Linkages

To support assembly of the files in a Collected Set into a final Product Object, a number of linkages are
provided in each Object Header and Object Footer in the Collected Set. The linkages shall consist of a shared
UUID value that connects AXF Objects in the Collected Set plus CollectedSetSequence values to place
successive AXF Objects in sequential order. The shared UUID value shall be the ObjectUUID of the first AXF
Object in a Collected Set, which UUID value shall be duplicated in the CollectedSetUUIDs of all AXF Objects
that are members of the same Collected Set.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 45 of 101 pages

9.2 Collected Set Structure

To enable modification of AXF Objects after their creation in an Anchor Object, subsequent AXF Objects in a
Collected Set shall contain instructions as to what is to be done with respect to individual files contained in
AXF Objects in the Collected Set having lower CollectedSetSequence values, and those subsequent AXF
Objects also may contain files to be added to the Product Object of the Collected Set or to be substituted for
files previously included in the Product Object.

Figure 8 shows the relationships between AXF Objects in a Collected Set. As seen in the Object Header and
Object Footer structures, each AXF Object has its own AXF ObjectUUID for identification. The
CollectedSetUUID in the Anchor Object shall equal the AXF ObjectUUID of that AXF Object, and the
CollectedSetSequence value of the Anchor Object shall be set to 1. Subsequent Objects in the Collected
Set (those having higher CollectedSetSequence values than 1) shall have CollectedSetUUID values equal
to the CollectedSetUUID (and AXF ObjectUUID) value of the Anchor Object, as indicated by the arrow in
Figure 8, and those Subsequent Objects shall have CollectedSetSequence values starting at 2 and
incrementing by 1 from one to the next in sequence in the order of their creation.

9.3 Add/Replace/Delete Processes

Three processes are defined for modifications of Product Objects that can be made by Subsequent Objects in
a Collected Set. They are ADD, REPLACE, and DELETE. ADD means that the file to which it applies shall be
added to the Product Object of the Collected Set, without deletion of a corresponding file. Such added files
shall be uniquely identified within the scopes of the Collected Sets within which they reside. REPLACE means
that the file to which it applies shall be added to the Product Object of the Collected Set, while a
corresponding file having identical identification parameters shall be removed from the preceding Product
Object when creating the next Product Object. DELETE means that the file to which it applies shall be
removed from the preceding Product Object when creating the next Product Object. The preceding Product
Object is the one that results from the compilation of all members of the Collected Set having
CollectedSetSequence values lower than the CollectedSetSequence value of the AXF Object in which the
process instructions are found. The next Product Object is the one that results from the compilation of all
members of the Collected Set having CollectedSetSequence values lower than the CollectedSetSequence
value of the AXF Object in which the process instructions are found with inclusion in the compilation of the
AXF Object in which the process instructions are found.

Figure 8 portrays an example of making modifications to the contents of an AXF Object. When first created,
the upper AXF Object in the figure is a standalone AXF Object, but nevertheless its CollectedSetUUID is
matched to its AXF ObjectUUID. When it becomes desirable to modify the upper AXF Object, another AXF
Object (the lower one in Figure 8) is created and given the same CollectedSetUUID value as the upper AXF
Object. At the time of creation of the second AXF Object, the first AXF Object becomes the Anchor Object for
what is now a Collected Set, and the CollectedSetSequence values of the second and all following AXF
Objects are numbered sequentially.

The Anchor Object in Figure 8 contains one Video file, Video1, and two Audio files, Audio1 and Audio2.
With the addition of the Subsequent Object to the Collected Set, the new audio file Audio1 contained in the
second AXF Object is marked as a replacement for the Audio1 file that is contained in the Anchor Object,
audio file Audio2 is marked as deleted from the Product Object per the instructions in the second AXF Object,
and closed caption file Closed Caption1, also contained in the second AXF Object, is added to the Product
Object of the Collected Set.

Note: When a file is marked as deleted in a Subsequent Object, the file is not physically removed from the original
AXF Object in which it was contained; rather it is removed from inclusion in the Product Object when it is compiled,
as described in Section 9.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 46 of 101 pages

9.4 Tracking Versions

When files are removed from the Product Object of a Collected Set, either through replacement or deletion,
they are not physically removed from the AXF Objects in which they are contained. Instead, in response to
instructions included in one or more Subsequent Objects in the Collected Set, they are deleted from the
compilation process that assembles the Product Object. As a consequence of this method, it is possible to
compile earlier Product Object versions from a Collected Set by applying only the Anchor Object and the
sequence of Subsequent Objects through and including the Subsequent Object that completed the version of
interest. In such cases, the CollectedSetSequence value serves as a version number for the Collected Set.

When multiple members of a Collected Set are created over time, they can be stored on a multiplicity of
Media. Later, it can be desirable to combine the members of the Collected Set onto a single Medium while
retaining the Collected Set members to permit recompilation of any of its versions. Retention of multiple
versions of Collected Sets can be facilitated in such instances through use of nesting of AXF files, which are
the containers of AXF Objects, as described in Section 7.5 Nesting AXF Objects .

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 47 of 101 pages

Figure 8 – Linkages and Processing Instructions in Collected Sets

Anchor Object (Initial Object of a Collected Set)

Medium Identifier: MediumUUID = Um1

Object Header:

 ObjectUUID = Uo1

 CollectedSetUUID = Uo1

 CollectedSetSequence = 1

File: Video1

(processing=default)

File: Audio1

(processing=default)

File: Audio2

(processing=default)

Object Footer:

 ObjectUUID = Uo1

 CollectedSetUUID = Uo1

 CollectedSetSequence = 1

Subsequent Object (Final Object of a Collected Set)

Medium Identifier: MediumUUID = Um1

Object Header:

 ObjectUUID = Uo2

 CollectedSetUUID = Uo1

 CollectedSetSequence = 2

Object Footer:

 ObjectUUID = Uo2

 CollectedSetUUID = Uo1

 CollectedSetSequence = 2

File: Audio1

(processing=REPLACE)

File: Audio2

(processing=DELETE)

File: Closed Caption1

(processing=ADD)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 48 of 101 pages

10 AXF Data Model

The following subsections delineate the XML constructs that comprise the various structures of AXF-
formatted media and AXF Objects. Each major subsection describes one structural element of the AXF
system and includes a UML diagram that shows the structure of that structural element. Each UML diagram
was constructed according to the provisions of the ISO/IEC 19505-1 and ISO/IEC 19505-2 standards. Major
subsections that describe XML structures of the complex, but not mixed, type then are divided into two further
subsections — one describing the XML attributes of the structure and the other describing the XML child
elements of the structure. Within the subsections on XML attributes and XML elements, each of the data
points is described in the form of an XSD snippet and a semantics description. In major subsections
describing complex type XML structures in the mixed types category, there are attributes associated with the
structure but no child elements — only a value. In the descriptions of those mixed structures, there are lower-
level subsections for the attributes and for the value of the structure. In subsections describing XML structures
of simple type, there are no subsidiary attributes or elements. Thus, no subdivision is necessary, and only an
XSD snippet and a semantic description of the entire structure are provided.

Associated with this standard is an XML Schema Definition (XSD) file, named <ST2034-1a,xsd>, which
provides complete descriptions of the XML data structures in machine and (almost) human-readable form.
The XSD file comprises an element of this standard, and a link to it can be found at <http://www.smpte-
ra.org/ns/2034-1/2017/AXF>. The Version attribute in the schema header of the XSD file associated with
this version of ST 2034-1, AXF Part 1, has a value of 1.1. The XSD file includes comments that fully describe
the semantics of each data point and are derived from the normative requirements in this section. The prose
descriptions in this section shall express the normative semantics for each XML attribute or element; the text
documentation in the XSD file is for information purposes only. This section also includes snippets derived
from the XSD file that is an element of this standard. The XSD file shall be the normative expression of the
XML structures defined in this standard; the XSD snippets contained herein are for informational and
contextual purposes only. With respect to the existence of specific XML structures, attributes, and/or
elements, the XSD file that is an element of this standard shall take precedence over this text document.

In the UML diagrams following, notes appear for each of the attributes and elements included in each
structure. The notes are derived from the comments included in the XSD file. When there is more material
included in a description in the XSD file than fits in the space available for a corresponding note in the UML
diagram, the note ends with an ellipsis (…). In such cases, see the XSD file for the complete, non-normative
documentation provided to aid understanding of the XSD file structure.

Note: Prior versions of the XSD file did not include a Version attribute in the schema header. It is suggested
that AXF parsers finding AXF Objects without the Version attribute present consider the AXF Object to be
constructed according to Version 1.0.

Note: The headers of XML files generated in accordance with the XSD file that is an element of this standard
are required to include an XML namespace that is defined in the XSD file. It is known to the authors of this
standard that some implementations of earlier versions of this standard did not generate XML files that
included the required namespace.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 49 of 101 pages

10.1 AXF Medium Identifier

The AXF Medium Identifier data structure provides information that identifies a medium and its characteristics.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 50 of 101 pages

10.1.1 AXF Medium Identifier Attributes

The AXF Medium Identifier attribute is: version

10.1.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the AXF
Medium Identifier in which it is found. The AXF Medium Identifier Structure Version applicable to this edition
of this standard shall be 1.0.

10.1.2 AXF Medium Identifier Elements

The AXF Medium Identifier elements are: UUID, Label, BlockSize, PreparedTime, Application, Identifier,
MediumPreparer, MediumOwner.

10.1.2.1 UUID

The Universally Unique IDentifier (UUID) contained within an AXF Medium Identifier shall specify a unique
identifier of the medium on which the AXF Medium Identifier is recorded. The UUID shall be reused for the life
of the medium, even if the medium is reformatted. The UUID shall be generated using the methods defined in
RFC 4122 or ISO/IEC 9834-8.

10.1.2.2 MediumLabel

The MediumLabel contained within an AXF Medium Identifier shall be a physical identifier of the medium,
such as the value of a barcode label applied to the medium on which it is found, a disk array volume label, a
solid state memory device label, or some other identifying data specific to the medium at the time of its
preparation.

Consideration should be given to minimizing the length of the MediumLabel element to the extent practical,
as its value is repeated in the PreviousMediumLabel and NextMediumLabel elements of Fragment
Headers and Fragment Footers, respectively.

10.1.2.3 BlockSize

The BlockSize contained within an AXF Medium Identifier shall indicate the size, in bytes, of the data blocks
recorded on the medium on which it is found.

10.1.2.4 PreparedTime

The PreparedTime value contained within an AXF Medium Identifier shall indicate the date and time at which
the medium on which it is found last was prepared.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 51 of 101 pages

10.1.2.5 Application

The Application element contained within an AXF Medium Identifier shall identify the application that last
prepared the medium on which it is found. The Application element should contain the name, version, and
publisher of the relevant software application.

10.1.2.6 Identifiers

The Identifiers element contained within an Object Header shall comprise zero or more Identifier data types
defined by the author of the AXF Object in which it is found.

10.1.2.7 MediumPreparer

The MediumPreparer element contained within an AXF Medium Identifier shall identify the Entity that last
prepared the medium on which it is found. The MediumPreparer element shall contain the name of the
Entity, should contain the name of the operator, and may contain other information pertaining to the Entity that
last prepared the medium.

10.1.2.8 MediumOwner

The MediumOwner element contained within an AXF Medium Identifier shall identify the Entity that owned
the medium on which it is found when it last was prepared. The MediumOwner element shall contain the
name of the Entity, should contain the name of the facility, and may contain other information pertaining to the
Entity that owned the medium when it last was prepared.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 52 of 101 pages

10.2 Object Header

The Object Header data structure provides information about the AXF Object in which it is found. Each AXF
Object shall have an Object Header as the first data structure of the AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 53 of 101 pages

10.2.1 Attributes

The Object Header attribute is: version

10.2.1.1 Version

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 54 of 101 pages

The version attribute shall identify the Structure Version of the data structure used to compose the Object
Header in which it is found. The Object Header Structure Version applicable to this edition of this standard
shall be 1.1.

10.2.2 Elements

The Object Header elements are: UUID, ChunkSize, InstanceTime, CollectedSetSequence,
CollectedSetUUID, PreviousObjectIndexPosition, FooterPosition, PreviousHeaderPosition,
PreviousFooterPosition, Application, Identifier, ObjectOwner, ContentOwner, CreatedBy, ModifiedBy,
ObjectDescription, ObjectName, ChecksumTypes, and FileTree.

10.2.2.1 UUID

The Universally Unique IDentifier (UUID) contained within an Object Header shall specify a unique identifier
for the AXF Object in which it is found. The identifier shall apply to the AXF Object and to any and all copies
thereof that are unchanged in their content from the original. The UUID shall be generated using the methods
defined in RFC 4122 or ISO/IEC 9834-8.

10.2.2.2 ChunkSize

The ChunkSize contained within an Object Header shall indicate the size in bytes of the data Chunks
recorded within the AXF Object in which it is found.

10.2.2.3 CreationTime

The CreationTime contained within an Object Header shall indicate the date and time at which the Object
Header was written for the first instance of the AXF Object in which it is found. The CreationTime value shall
be unchanged in all subsequent instances (copies) of the AXF Object. The element name Creationtime shall
be interpreted as identical to CreationTime but shall be deprecated. For newly-created AXF Objects, the
element name CreationTime shall be applied. When AXF Objects are spawned from previously existing AXF
Objects that used the element name Creationtime, whether while producing a Product Object from a
Collected Set or while purposely updating and/or correcting an existing AXF Object, only the term
CreationTime shall be used. At the time that AXF Objects using the form Creationtime are refreshed in
storage, generation of a replacement AXF Object to permit adjustment of the element name to CreationTime
is recommended.

10.2.2.4 InstanceTime

The InstanceTime contained within an Object Header shall indicate the date and time at which the particular
instance (copy) of the Object Header of the AXF Object in which it is found was written. In the Object Header
of the first instance of the AXF Object, the values of CreationTime and InstanceTime shall be equal.

10.2.2.5 CollectedSetSequence

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 55 of 101 pages

The CollectedSetSequence contained within an Object Header shall contain a non-negative, integer index of
the AXF Object in which it is found within a Collected Set. The index shall begin with 1 and increment by 1 for
each AXF Object added to the Collected Set. The element name CollectionSetSequence shall be
interpreted as identical to CollectedSetSequence but shall be deprecated. For newly-created AXF Objects,
the element name CollectedSetSequence shall be applied. When AXF Objects are spawned from previously
existing AXF Objects that used the element name CollectionSetSequence, whether while producing a
Product Object from a Collected Set or while purposely updating and/or correcting an existing AXF Object,
only the term CollectedSetSequence shall be used. At the time that AXF Objects using the form
CollectionSetSequence are refreshed in storage, generation of a replacement AXF Object to permit
adjustment of the element name to CollectedSetSequence is recommended.

10.2.2.6 CollectedSetUUID

The CollectedSetUUID contained within an Object Header shall specify a unique identifier for the Collected
Set of which the AXF Object in which it is found is a part. The CollectedSetUUID value shall be set equal to
the UUID of the first AXF Object in the Collected Set; i.e., the AXF Object having the lowest Collected Set
Sequence Number. When an AXF Object is created that is not part of a Collected Set, its CollectedSetUUID
value shall equal the UUID value of that AXF Object, and its CollectedSetSequence number shall be set to
1. The element name CollectionSetUUID shall be interpreted as identical to CollectedSetUUID but shall be
deprecated. For newly-created AXF Objects, the element name CollectedSetUUID shall be applied. When
AXF Objects are spawned from previously existing AXF Objects that used the element name
CollectionSetUUID, whether while producing a Product Object from a Collected Set or while purposely
updating and/or correcting an existing AXF Object, only the term CollectedSetUUID shall be used. At the
time that AXF Objects using the form CollectionSetUUID are refreshed in storage, generation of a
replacement AXF Object to permit adjustment of the element name to CollectedSetUUID is recommended.

10.2.2.7 PreviousObjectIndexPosition

The PreviousObjectIndexPosition contained within an Object Header shall indicate the absolute block
position of the last AXF Object Index on the medium that precedes the AXF Object in which it is found.

10.2.2.8 FooterPosition

The FooterPosition contained within an Object Header shall indicate the Chunk position of the beginning of
the Object Footer relative to the beginning of the AXF Object in which it is found. The first byte of the Object
Header shall be position 0.

10.2.2.9 PreviousHeaderPosition

The PreviousHeaderPosition contained within an Object Header shall indicate the absolute block position of
the Object Header structure of the preceding AXF Object on the same medium on which is stored the AXF
Object in which it is found. This item is used to assist in the recovery and indexing of media and is optional, as
File-System-Based Storage Media Types might not be able to provide the information necessary to its
formation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 56 of 101 pages

10.2.2.10 PreviousFooterPosition

The PreviousFooterPosition contained within an Object Header shall indicate the absolute block position of
the Object Footer structure of the preceding AXF Object on the same medium on which is stored the AXF
Object in which it is found. This item is used to assist in the recovery and indexing of media and is optional, as
File-System-Based Storage Media Types might not be able to provide the information necessary to its
formation.

10.2.2.11 Application

The Application complex data type contained within an Object Header shall identify the application that first
created the AXF Object in which it is found. The Application complex data type should contain the name,
version, and publisher of the relevant software application.

10.2.2.12 Identifiers

The Identifiers element contained within an Object Header shall comprise zero or more Identifier data types
defined by the author of the AXF Object in which it is found.

10.2.2.13 ObjectOwner

The ObjectOwner element contained within an Object Header shall identify the Entity that held ownership of
the AXF Object in which it is found when that AXF Object was created. The ObjectOwner element shall
contain the name of the Entity, should contain the name of the facility, and may contain other information
pertaining to the Entity that held ownership of that AXF Object when it was created.

10.2.2.14 ContentOwner

The ContentOwner element contained within an Object Header shall identify the Entity that held ownership of
the content stored within the AXF Object in which it is found when that AXF Object was created. The
ContentOwner element shall contain the name of the Entity and may contain other information pertaining to
the Entity that held ownership of the content stored in that AXF Object when it was created.

10.2.2.15 CreatedBy

The CreatedBy element contained within an Object Header shall identify the Entity that created the AXF
Object in which it is found. The CreatedBy element shall contain the name of the Entity, should contain the
name of the facility, and may contain other information pertaining to the Entity that created that AXF Object.

10.2.2.16 ModifiedBy

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 57 of 101 pages

The ModifiedBy element contained within an Object Header shall identify the Entity that last modified the
AXF Object in which it is found. The ModifiedBy element shall contain the name of the Entity, should contain
the name of the facility, and may contain other information pertaining to the Entity that last modified the AXF
Object.

10.2.2.17 ObjectDescription

The ObjectDescription element contained within an Object Header shall contain a human-readable
description of the AXF Object in which it is found.

10.2.2.18 ObjectName

The ObjectName element contained within an Object Header shall contain a human-readable name for the
AXF Object in which it is found.

10.2.2.19 ChecksumTypes

The ChecksumTypes element contained within an Object Header shall contain a list of all the checksum
algorithms specified within the FileTree and/or FileFooter structures of the related AXF Object.

10.2.2.20 FileTree

The FileTree element contained within an Object Header shall describe the hierarchical structure of Files and
Folders stored within the AXF Object in which it is found.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 58 of 101 pages

10.3 Object Fragment Header

The Object Fragment Header contains the information necessary to connect the beginning of an AXF Object
Fragment to the end of the preceding AXF Object Fragment in a Spanned Set. It should be recognized that
spanning occurs on file boundaries or within files; folders cannot be spanned because they exist only in the
File Tree data structure. An Object Fragment Header shall be placed at the start of an AXF Object Fragment
when that fragment is not the first fragment in an AXF Object and immediately shall follow an Object Header.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 59 of 101 pages

10.3.1 Attributes

The Object Fragment Header attribute is: version.

10.3.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the Object
Fragment Header in which it is found. The Object Fragment Header Structure Version applicable to this
edition of this standard shall be 1.0.

10.3.2 Elements

The Object Fragment Header elements are: FragmentNumber, FragmentPairUUID, SpannedFileIndex,
SpannedFileOffset, FilePath, PreviousMediumLabel, and PreviousMediumUUID.

10.3.2.1 FragmentNumber

The FragmentNumber element contained within an Object Fragment Header shall contain a positive integer
number indicating the index of the AXF Object fragment in which it is found within the overall AXF Object,
starting at 1 and incrementing by 1 for each successive AXF Object Fragment.

10.3.2.2 FragmentPairUUID

The FragmentPairUUID element contained within an Object Fragment Header shall contain a UUID that
uniquely identifies a pair of successive AXF Object Fragments of a single AXF Object, in which pair the
Fragment Numbers of the pair of Fragments differ by 1. The FragmentPairUUID shall be placed in the Object
Fragment Footer of the lower-ordered Fragment and in the Object Fragment Header of the higher-ordered
Fragment of the Fragment pair.

10.3.2.3 SpannedFileIndex

The SpannedFileIndex element contained within an Object Fragment Header shall contain a positive integer
value indicating the File Index, within the File Tree of the AXF Object within which it is found, of the file
bridging, or starting immediately following, the span; i.e., immediately following the Object Fragment Header
in which the SpannedFileIndex is found.

10.3.2.4 SpannedFileOffset

The SpannedFileOffset element contained within an Object Fragment Header shall contain a positive integer
value indicating the total number of bytes of a file contained within all preceding AXF Object Fragments of the
AXF Object within which the SpannedFileOffset element is found. The file to which the SpannedFileOffset
element shall apply is the file identified by the SpannedFileIndex carried in the same Object Fragment
Header as that in which the SpannedFileOffset is found.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 60 of 101 pages

10.3.2.5 FilePath

The FilePath element contained within an Object Fragment Header shall contain a string indicating the path
within the File Tree to the file indicated by the SpannedFileIndex contained in the same Object Fragment
Header as that in which the FilePath element is found, relative to the root of the AXF Object. The string
contained in the FilePath element shall express the File Path starting at the root of the AXF Object and shall
include the names of all folders on the path from the AXF Object root to and including the file indicated by the
SpannedFileIndex. The root shall be indicated with a virgule (“/”), and all nested folder names and the name
of the file indicated by the SpannedFilelndex shall be separated by virgules.

10.3.2.6 PreviousMediumLabel

The PreviousMediumLabel element contained within an Object Fragment Header shall contain a string
specifying the Label contained within the AXF Medium Identifier data structure of the medium carrying the
preceding AXF Object Fragment in the set of spanned Fragments of the AXF Object in which it is found.

10.3.2.7 PreviousMediumUUID

The PreviousMediumUUID element contained within an Object Fragment Header shall contain a string
specifying the UUID contained within the AXF Medium Identifier data structure of the medium carrying the
preceding AXF Object Fragment in the set of spanned Fragments of the AXF Object in which it is found.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 61 of 101 pages

10.4 File Footer

The File Footer complex data type structure describes the file in the File Payload that precedes it. The File
Footer is located within the File Payload section of the AXF Object in the Chunk immediately following the file
that it describes.

10.4.1 File Footer Attributes

The File Footer attribute is: version.

10.4.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the File
Footer in which it is found. The File Footer Structure Version applicable to this edition of this standard shall be
1.1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 62 of 101 pages

10.4.2 File Footer Elements

The File Footer elements are: FilePath, File, Symlink, and SourceFile.

10.4.2.1 FilePath

The FilePath element contained within a File Footer shall contain the path to the file relative to the root of the
AXF Object. The string contained in the FilePath element shall express the File Path starting at the root of the
AXF Object and shall include the names of all folders on the path from the AXF Object root to and including
the file followed by the File Footer. The root shall be indicated with a virgule (“/”), and all nested folder names
and the name of the file followed by the File Footer in which the FilePath element is found shall be separated
by virgules.

10.4.2.2 File

The File element contained within a File Footer shall contain the File information provided by the File data
type for the file indicated by the File Footer in which it is found.

10.4.2.3 Symlink

The Symlink element contained within a File Footer shall contain the Symlink information provided by the
Symlink data type for the symbolic link indicated by the File Footer in which it is found.

10.4.2.4 SourceFile

The SourceFile element contained within a File Footer shall contain a URL pointing to the source file from
which the file to which the File Footer relates was copied into the AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 63 of 101 pages

10.5 Object Fragment Footer

The Object Fragment Footer complex data type contains the information necessary to connect the end of an
AXF Object Fragment to the beginning of the following AXF Object Fragment in a Spanned Set. An Object
Fragment Footer shall substitute for an Object Footer at the end of an AXF Object Fragment when that
Fragment is not the last Fragment in the AXF Object.

Note: Spanning occurs on file boundaries or within files; folders cannot be spanned because they exist only in the
File Tree data structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 64 of 101 pages

10.5.1 Object Fragment Footer Attributes

The Object Fragment Footer attribute is: version.

10.5.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the Object
Fragment Footer in which it is found. The Object Fragment Footer Structure Version applicable to this edition
of this standard shall be 1.0.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 65 of 101 pages

10.5.2 Object Fragment Footer Elements

The Object Fragment Footer elements are: FragmentNumber, FragmentPairUUID, SpannedFileIndex,
SpannedFileOffset, FilePath, PreviousMediumLabel, PreviousMediumUUID, NextMediumLabel,
NextMediumUUID, PreviousObjectIndexPosition, FragmentHeaderPosition, HeaderPosition,
PreviousHeaderPosition, and PreviousFooterPosition.

10.5.2.1 FragmentNumber

The FragmentNumber element contained within an Object Fragment Footer shall contain a positive integer
number indicating the index of the AXF Object Fragment within the overall AXF Object, starting at 1 and
incrementing by 1 for each successive AXF Object Fragment.

10.5.2.2 FragmentPairUUID

The FragmentPairUUID element contained within an Object Fragment Footer shall contain a UUID that
uniquely identifies a pair of successive AXF Object Fragments within a single AXF Object, in which pair the
Fragment Numbers of the pair of Fragments differ by 1. The FragmentPairUUID shall be placed in the Object
Fragment Footer of the lower-ordered Fragment and in the Object Fragment Header of the higher-ordered
Fragment of the Fragment pair.

10.5.2.3 SpannedFileIndex

The SpannedFileIndex element contained within an Object Fragment Footer shall contain a positive integer
value indicating the File Index, within the File Tree of the AXF Object within which it is found, of the file
bridging, or starting immediately following, the span.

10.5.2.4 SpannedFileOffset

The SpannedFileOffset element contained within an Object Fragment Footer shall contain a positive integer
value indicating the total number of bytes of the file identified by the SpannedFileIndex that are contained
within the current and all preceding AXF Object Fragments.

10.5.2.5 FilePath

The FilePath element contained within an Object Fragment Footer shall contain a string indicating the path
within the File Tree to the file indicated by the Spanned File Index. The string contained in the FilePath
element shall express the File Path starting at the root of the AXF Object and shall include the names of all
folders on the path from the AXF Object root to and including the file indicated by the SpannedFileIndex.
The root shall be indicated with a virgule (“/”), and all nested folder names and the name of the file indicated
by the SpannedFilelndex shall be separated by virgules.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 66 of 101 pages

10.5.2.6 PreviousMediumLabel

The PreviousMediumLabel element contained within an Object Fragment Footer shall contain a string
specifying the Label contained within the AXF Medium Identifier data structure on the medium carrying the
preceding AXF Object fragment in the set of spanned fragments.

10.5.2.7 PreviousMediumUUID

The PreviousMediumUUID element contained within an Object Fragment Footer shall contain a string
specifying the UUID contained within the AXF Medium Identifier data structure on the medium carrying the
preceding AXF Object fragment in the set of spanned fragments.

10.5.2.8 NextMediumLabel

The NextMediumLabel element contained within an Object Fragment Footer shall contain a string specifying
the Label contained within the AXF Medium Identifier data structure on the medium carrying the following AXF
Object fragment in the set of spanned fragments.

10.5.2.9 NextMediumUUID

The NextMediumUUID element contained within an Object Fragment Footer shall contain a string specifying
the UUID contained within the AXF Medium Identifier data structure on the medium carrying the following AXF
Object fragment in the set of spanned fragments.

10.5.2.10 PreviousObjectIndexPosition

The PreviousObjectIndexPosition element contained within an Object Fragment Footer shall provide the
absolute block position of the last valid AXF Object Index on the medium preceding the current AXF Object.

The FragmentFooterPosition element contained within an Object Fragment Footer shall provide the chunk
position of the Object Fragment Footer relative to the chunk position of the Object Header preceding the
current fragment of the AXF Object.

10.5.2.11 FragmentHeaderPosition

The FragmentHeaderPosition element contained within an Object Fragment Footer shall provide the
absolute block position of the Binary Structure Container wrapping the Object Fragment Header of the current
fragment of the current AXF Object or of the Object Header of the current AXF Object when the current
fragment is the first fragment in an AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 67 of 101 pages

10.5.2.12 HeaderPosition

The HeaderPosition element contained within an Object Fragment Footer shall provide the absolute block
position of the Binary Structure Container wrapping the Object Header of the current AXF Object if the current
Object Fragment is the first fragment of the AXF Object. For Object Fragments other than the first fragment
of an AXF Object, the HeaderPosition value shall be set to -1 to indicate invalid or unknown data.

10.5.2.13 PreviousHeaderPosition

The PreviousHeaderPosition element contained within an Object Fragment Footer shall provide the
absolute block position pointing to the Object Header structure for the previous AXF Object on a Linear
Medium. This information is optional, as it does not exist on File-System-Based Storage Media Types and is
used only to assist in the recovery and indexing of Media.

10.5.2.14 PreviousFooterPosition

The PreviousFooterPosition element contained within an Object Fragment Footer shall provide the absolute
Block position pointing to the Object Footer structure for the previous AXF Object on a Block-Based Medium.
This information is optional, as it does not exist on File-System-Based Storage Media Types and is used only
to assist in the recovery and indexing of Media.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 68 of 101 pages

10.6 Object Footer

The Object Footer complex data type structure provides information about the AXF Object and the files
contained therein. The Object Footer shall be the last structure of an AXF Object, closing the AXF Object, and
exactly one Object Footer shall be present for each AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 69 of 101 pages

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 70 of 101 pages

10.6.1 Object Footer Attributes

The Object Footer attribute is: version

10.6.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the Object
Footer in which it is found. The Object Footer Structure Version applicable to this edition of this standard
shall be1.1.

10.6.2 Object Footer Elements

The Object Footer elements are: UUID, ChunkSize, InstanceTime, CollectedSetSequence,
CollectedSetIUUID, PreviousObjectIndexPosition, FooterPosition, HeaderPosition,
PreviousFooterPosition, PreviousHeaderPosition, Application, Identifiers, ObjectOwner,
ContentOwner, CreatedBy, ModifiedBy, ObjectDescription, ObjectName, ChecksumTypes, and
FileTree.

10.6.2.1 UUID

The Universally Unique IDentifier (UUID) element contained within an Object Footer shall specify a unique
identifier for this AXF Object. The identifier shall apply to the AXF Object and to any and all copies thereof
that are unchanged in their content from the original. The UUID shall be generated using the methods defined
in RFC 4122 or ISO/IEC 9834-8.

10.6.2.2 ChunkSize

The ChunkSize element contained within an Object Footer shall indicate the size in bytes of the data Chunks
recorded within this AXF Object.

10.6.2.3 CreationTime

The CreationTime element contained within an Object Footer shall indicate the date and time at which the
Object Header was written for the first instance of the AXF Object. The CreationTime value shall be
unchanged in all subsequent instances (copies) of the AXF Object. The element name Creationtime shall be
interpreted as identical to CreationTime but shall be deprecated. For newly-created AXF Objects, the
element name CreationTime shall be applied. When AXF Objects are spawned from previously existing AXF
Objects that used the element name Creationtime, whether while producing a Product Object from a
Collected Set or while purposely updating and/or correcting an existing AXF Object, only the term
CreationTime shall be used. At the time that AXF Objects using the form Creationtime are refreshed in
storage, generation of a replacement AXF Object to permit adjustment of the element name to CreationTime
is recommended.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 71 of 101 pages

10.6.2.4 InstanceTime

The InstanceTime element contained within an Object Footer shall contain the date and time value of the
InstanceTime element of the Object Header of the AXF Object that is ended by the Object Footer in which it
is found.

10.6.2.5 CollectedSetSequence

The CollectedSetSequence element contained within an Object Footer shall contain a non-negative integer
index of the AXF Object within a Collected Set. The index shall begin with 1 and increment by 1 for each AXF
Object added to the Collected Set.

10.6.2.6 CollectedSetUUID

The CollectedSetIUUID element contained within an Object Footer shall specify a unique identifier for the
Collected Set of which the current AXF Object is a part. The CollectedSetUUID shall be set equal to the
UUID of the first AXF Object in the Collected Set, i.e., the AXF Object with the lowest CollectedSetSequence
value. When an AXF Object is created that is not part of a Collected Set, its CollectedSetUUID shall equal
the UUID of the AXF Object, and its Collected Set Sequence number shall be set to 1.

10.6.2.7 PreviousObjectIndexPosition

The PreviousObjectIndexPosition element contained within an Object Footer shall provide the absolute
Block position of the last AXF Object Index on the medium that precedes the current AXF Object.

10.6.2.8 FooterPosition

The FooterPosition element contained within an Object Footer shall provide the Chunk position, relative to
the start of the AXF Object, pointing to the Object Footer structure for the current AXF Object.

10.6.2.9 HeaderPosition

The HeaderPosition element contained within an Object Footer shall provide the absolute Block position of
the Binary Structure Container wrapping the Object Header of the current AXF Object if the AXF Object is not
fragmented, or of the Object Header preceding the current fragment if the fragment that the Object Footer
follows is the last fragment of the AXF Object.

Note: There is no Object Footer structure following fragments of an AXF Object other than the last.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 72 of 101 pages

10.6.2.10 PreviousHeaderPosition

The PreviousHeaderPosition element contained within an Object Footer shall provide the absolute Block
position pointing to the Object Header structure of the previous AXF Object. This information is optional, as it
does not exist on File-System-Based Storage Media Types and is used only to assist in the recovery and
indexing of Media.

10.6.2.11 PreviousFooterPosition

The PreviousFooterPosition element contained within an Object Footer shall provide the absolute block
position pointing to the Object Footer structure for the previous AXF Object. This information is optional, as it
does not exist on File-System-Based Storage Media Types and is used only to assist in the recovery and
indexing of Media.

10.6.2.12 Application

The Application element contained within an Object Footer shall define the application information for the
application that first created this AXF Object. The application information should be the name and version of
the software application that first prepared the medium.

10.6.2.13 Identifiers

The Identifiers element contained within an Object Footer shall specify zero or more identifiers defined by the
author of the AXF Object. The Identifiers can be standardized identifiers (e.g., UMID or EIDR) or can be user-
defined identifiers (e.g., Tape Number or Database Primary Key).

10.6.2.14 ObjectOwner

The ObjectOwner element contained within an Object Footer shall identify the Entity that held ownership of
the AXF Object when it was created.

10.6.2.15 ContentOwner

The ContentOwner element contained within an Object Footer shall identify the Entity that held ownership of
the content stored within the AXF Object when it was created.

10.6.2.16 CreatedBy

The CreatedBy element contained within an Object Footer shall provide information identifying the entity that
first created the Object Header in which it is found.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 73 of 101 pages

10.6.2.17 ModifiedBy

The ModifiedBy element contained within an Object Footer shall provide information identifying the entity that
last modified the Object Header in which it is found.

10.6.2.18 ObjectDescription

The ObjectDescription element contained within an Object Footer shall contain a human-readable
description of the AXF Object.

10.6.2.19 ObjectName

The ObjectName element contained within an Object Footer shall contain a human-readable name for the
AXF Object.

10.6.2.20 ChecksumTypes

The ChecksumTypes element contained within an Object Footer shall contain a list of all the checksum
algorithms specified within the FileTree and/or FileFooter structures of the related AXF Object.

10.6.2.21 FileTree

The FileTree element contained within an Object Footer shall contain the hierarchy of Files and Folders
contained within the AXF Object.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 74 of 101 pages

10.7 AXF Object Index

The AXF Object Index complex data type structure provides information about the AXF Objects on the
medium and their physical Block locations. The AXF Object Index shall contain a copy of the Object Footer
from each AXF Object preceding the AXF Object Index on the medium.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 75 of 101 pages

10.7.1 AXF Object Index Attributes

The AXF Object Index attribute is: version

10.7.1.1 Version

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 76 of 101 pages

The version attribute shall identify the Structure Version of the data structure used to compose the AXF
Object Index in which it is found. The AXF Object Index Structure Version applicable to this edition of this
standard shall be 1.1.

10.7.2 AXF Object Index Elements

The AXF Object Index elements are: UUID, MediumLabel, BlockSize, PreparedTime, Application,
Identifiers, MediumPreparer, MediumOwner, CreatedBy, ModifiedBy, ObjectCount,
ObjectFooterSet, FragmentFooterSet.

10.7.2.1 UUID

The Universally Unique IDentifier (UUID) element contained within an AXF Object Index shall specify a
unique identifier for the Medium on which the AXF Object Index is found. The identifier shall be reused for the
life of the Medium, even if the Medium is reformatted. The UUID shall be generated using the methods
defined in RFC 4122 or ISO/IEC 9834-8.

10.7.2.2 MediumLabel

The MediumLabel element contained within an AXF Object Index shall be the business identifier for the
medium, such as the value of the barcode label or some other medium identifying data field specific to the
Medium and the particular instantiation of the Medium.

10.7.2.3 BlockSize

The BlockSize element contained within an AXF Object Index shall indicate the size, in bytes, of the Blocks
recorded on the medium.

10.7.2.4 PreparedTime

The PreparedTime element contained within an AXF Object Index shall indicate the date and time at which
the Medium on which it is found first was prepared.

10.7.2.5 Application

The Application element contained within an AXF Object Index shall provide information identifying the
application that first prepared the Medium on which it is found. The application information should be the
name and version of the software application that first prepared the Medium.

10.7.2.6 Identifiers

The Identifiers element contained within an Object Index shall specify zero or more identifiers defined by the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 77 of 101 pages

author of the AXF Object. The Identifiers can be standardized identifiers (e.g., UMID or EIDR) or can be user-
defined identifiers (e.g., Tape Number or Database Primary Key).

10.7.2.7 MediumPreparer

The MediumPreparer element contained within an AXF Object Index shall identify the Entity that last
prepared the Medium on which it is found.

10.7.2.8 MediumOwner

The MediumOwner element contained within an AXF Object Index shall identify the Entity that owned the
Medium at the time at which it last was prepared.

10.7.2.9 CreatedBy

The CreatedBy element contained within an AXF Object Index shall identify the Entity that first created the

AXF Object Index in which it is found.

10.7.2.10 ModifiedBy

The ModifiedBy element contained within an AXF Object Index shall identify the Entity that last modified the
AXF Object Index in which it is found.

10.7.2.11 ObjectCount

The ObjectCount element contained within an AXF Object Index shall indicate the number of Object Footers,
copies of which are contained in the Object Footer Collection.

Note: Only the final fragments in Spanned Sets are included in Object Counts, as only final fragments are
followed by Object Footers.

10.7.2.12 ObjectFooterCollection

The ObjectFooterCollection element contained within an AXF Object Index shall be a collection of one copy
of each of the valid, non-deprecated Object Footers that resided on the Medium at the time the AXF Object
Index was created.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 78 of 101 pages

Note: A copy of the footer of the final fragment of a spanned set is not included in the
FragmentFooterCollection, but rather in the ObjectFooterCollection, as it concludes with an Object Footer, not
a Fragment Footer.

10.7.2.13 FragmentFooterCollection

The FragmentFooterCollection element contained within an AXF Object Index shall be a collection of one
copy of each of the valid, non-deprecated Object Fragment Footers that resided on the Medium at the time
the AXF Object Index was created.

Note: A copy of the footer of the final fragment of a spanned set is not included in the
FragmentFooterCollection, but rather in the ObjectFooterCollection, as it concludes with an Object Footer, not
a Fragment Footer.

10.8 UUID

The Universal Unique IDentifier (UUID) structure shall define the simple data type that represents RFC 4122
or ISO/IEC 9834-8-compliant Universal Unique IDentifiers (UUIDs).

10.9 PositionInteger

The PositionInteger simple data type shall be an extension of the XML integer type that ranges from -1 to
positive infinity. The PositionInteger is used to represent absolute or relative positions, with a value of -1
indicating the absence of, or invalid, position information.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 79 of 101 pages

10.10 FileFolder

The FileFolder complex data type shall define the base attributes shared by the File and the Folder data
structures.

10.10.1 FileFolder Attributes

The FileFolder attributes are: name, index, owner, group, and permission.

10.10.1.1 name

The name attribute of the FileFolder data structure shall contain the human-readable name of a File or
Folder.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 80 of 101 pages

10.10.1.2 index

The index attribute of a FileFolder data structure shall contain a numerical value indexing the File Folder in
which it is found and its files within its File Tree. The Index shall start at 1 and increment by 1 for each entry in
the File Tree. Starting at the root, each path extending from a node shall be fully numbered (including both
Folders and Files) in sequence, before proceeding to the next path extending from the same node. At any
node, Folders shall be numbered at lower values than files.

10.10.1.3 owner

The owner attribute of a FileFolder data structure shall contain the name of the entity that owned the File or
Folder referenced by the FileFolder data structure when the FileFolder data structure was created.

10.10.1.4 group

The group attribute of a FileFolder data structure shall contain the name of the group assigned to the File or
Folder referenced by the FileFolder data structure when the FileFolder data structure was created.

10.10.1.5 permission

The permission attribute of a FileFolder data structure shall contain the permissions assigned to the File or
Folder referenced by the FileFolder data structure when the Folder data structure was created.

10.10.2 FileFolder Elements

The FileFolder element is: Identifier

10.10.2.1 Identifiers

The Identifiers element contained within a FileFolder complex data type shall specify zero or more identifiers
defined by the author of the AXF Object. The Identifiers can be standardized identifiers (e.g., UMID or EIDR)
or can be user-defined identifiers (e.g., Tape Number or Database Primary Key).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 81 of 101 pages

10.11 Folder

The fields contained within the Folder complex data type shall apply to entities referenced by higher level
data structures into which the Folder data type is incorporated.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 82 of 101 pages

10.11.1 Folder Attributes

The Folder attributes are: processing, creation_time, last_modified_time, and last_accessed_time.

10.11.1.1 processing

The processing attribute of a Folder data structure shall specify the treatment of a folder already existing in
an AXF Object or to be added to an AXF Object. Choices are ADD or DELETE. If the attribute is not present,
the default treatment shall be ADD.

10.11.1.2 creation_time

The creation_time attribute of a Folder data structure shall contain the date and time at which the folder
referenced by the Folder data structure initially was created.

10.11.1.3 last_modified_time

The last_modified_time attribute of a Folder data structure shall contain the date and time at which the
folder referenced by the Folder data structure last was modified.

10.11.1.4 last_accessed_time

The last_accessed_time attribute of a Folder data structure shall contain the date and time at which the
folder referenced by the Folder data structure last was accessed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 83 of 101 pages

10.11.2 Folder Elements

The Folder elements are: File and Folder

10.11.2.1 File or Folder

The File and Folder elements within a Folder data type structure shall be File or Folder data type structures
themselves, representing files or folders that are children one level lower in the folder hierarchy than the
subject folder in which they are contained.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 84 of 101 pages

10.12 File

The fields contained within the File complex data type shall apply to entities referenced by higher-level data
structures into which the File data type is incorporated.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 85 of 101 pages

10.12.1 File Attributes

The File attributes are: size, position, processing, byte_order, media_type, creation_time,
last_modified_time, and last_accessed_time.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 86 of 101 pages

10.12.1.1 size

The size attribute of a File data structure shall indicate the total size of the file in bytes.

10.12.1.2 position

The position attribute of a File data structure shall be a positive integer value identifying the relative Chunk
position of the first Chunk of the file in relation to the Chunk containing the first byte of the AXF Object.

10.12.1.3 processing

The processing attribute of a File data structure shall specify the treatment of a file already existing in an
AXF Object or to be added to an AXF Object. Choices are ADD, REPLACE, and DELETE. If the attribute is
not present, the default treatment shall be ADD. (See Section 9.3.)

10.12.1.4 byte_order

The byte_order attribute of a File data structure shall indicate the byte ordering of the associated Payload
File. “LE” shall indicate Little Endian; “BE” shall indicate Big Endian; “BOM” shall indicate that a Byte Order
Mark is contained within the associated Payload File. The byte_order attribute shall be omitted either when
the specific byte order is unknown or when it is unknown whether the associated file contains its own Byte
Order Mark.

10.12.1.5 media_type

The media_type attribute of a File data structure shall indicate the Media Type of the associated file, in
accordance with RFC 6838.

10.12.1.6 creation_time

The creation_time attribute of a File data structure shall contain the date and time at which the File
referenced by the File data structure initially was created.

10.12.1.7 last_modified_time

The last_modified_time attribute of a File data structure shall contain the date and time at which the file
referenced by the File data structure last was modified.

10.12.1.8 last_accessed_time

The last_accessed_time attribute of a File data structure shall contain the date and time at which the file
referenced by the File data structure last was accessed.

10.12.2 File Elements

The File element is: Checksums

10.12.2.1 Checksums

The Checksums element within a File data structure shall contain a list of zero or more Checksum data
types, each of which shall include the value of a checksum of the file referenced by the File data structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 87 of 101 pages

10.13 Symlink

The Symlink complex data type specifies the target location of a Symbolic Link, for which the name of the
Symbolic Link in the FileTree structure is an alias. The target location may be local (internal to the AXF
Object) or remote (external to the AXF Object).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 88 of 101 pages

10.13.1 Symlink Attributes

The Symlink attributes are: target, position, processing, creation_time, last_modified_time, and
last_accessed_time.

10.13.1.1 target

The target attribute shall identify the location of a file or folder for which the name of the Symbolic Link is
intended to be an alias. The target location shall be either internal to the AXF Object or external. When the
target location is internal to the AXF Object, the location shall be expressed as another location in the
FileTree path structure from the location of the Symbolic Link. When the target location is external to the
AXF Object, the location shall be expressed as a URI.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 89 of 101 pages

10.13.1.2 position

The position attribute of a Symlink data structure shall be a positive integer value identifying the relative
Chunk position of the Padding Chunk of the Symbolic Link in relation to the Chunk containing the first byte of
the AXF Object.

10.13.1.3 processing

The processing attribute of a Symlink data structure shall specify the treatment of a Symbolic Link already
existing in an AXF Object or to be added to an AXF Object. Choices are ADD, REPLACE, and DELETE. If
the attribute is not present, the default treatment shall be ADD. (See Section 9.3.)

10.13.1.4 creation_time

The creation_time attribute of a Symlink data structure shall contain the date and time at which the Symlink
data structure initially was created.

10.13.1.5 last_modified_time

The last_modified_time attribute of a Symlink data structure shall contain the date and time at which the
Symlink data structure last was modified.

10.13.1.6 last_accessed_time

The last_accessed_time attribute of a Symlink data structure shall contain the date and time at which the
Symlink data structure last was accessed.

10.13.2 Symlink Elements

The Symlink element is: Checksums.

10.13.2.1 Checksums

The Checksums element within a Symlink data structure shall contain a list of zero or more Checksum data
types, each of which shall include the value of a checksum of the Padding Chunk preceding the Symlink data
structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 90 of 101 pages

10.14 FileTree

The FileTree complex data type specifies a relative File/Folder hierarchy starting from an arbitrary root.

10.14.1 FileTree Attributes

The FileTree attribute is: version.

10.14.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the File Tree
in which it is found. The File Tree Structure Version applicable to this edition of this standard shall be1.1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 91 of 101 pages

10.14.2 FileTree Elements

The FileTree elements are: File, Symlink, and Folder.

10.14.2.1 File, Symlink, or Folder

The File, Symlink, and Folder elements contained within a FileTree data structure shall be File, Symlink, or
Folder data types that provide information about their associated files and folders.

10.15 Application

The Application data structure describes a software application that was used in the construction of an AXF
Medium or an AXF Object. The fields contained within the Application complex data type shall apply to
entities referenced by higher-level data structures into which the Application data type is incorporated.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 92 of 101 pages

10.15.1 Application Attributes

The Application attribute is: version

10.15.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the
Application data structure in which it is found. The Application Structure Version applicable to this edition of
this standard shall be 1.0.

10.15.2 Application Elements

The Application elements are: Licensee, Licensor, SerialNumber, ApplicationName, ApplicationVersion,
and ApplicationDescription.

10.15.2.1 Licensee

The Licensee element contained within an Application data structure shall contain the human readable name
of the licensee of the application described by this structure.

Note: The authors of this standard are aware that certain early implementations of the AXF technology
included as the Licensee element value only a string carrying the name of the licensee instead of the full
complement of information implicit in the Entity data structure.

10.15.2.2 Licensor

The Licensor element contained within an Application data structure shall contain the human readable name
of the organization that issues licenses for the application described by this structure.

Note: The authors of this standard are aware that certain early implementations of the AXF technology
included as the Licensor element value only a string carrying the name of the licensor instead of the full
complement of information implicit in the Entity data structure.

10.15.2.3 SerialNumber

The SerialNumber element contained within an Application data structure shall contain the serial number of
the application instance.

10.15.2.4 ApplicationName

The ApplicationName element contained within an Application data structure shall contain the human
readable name of the application described by this structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 93 of 101 pages

10.15.2.5 ApplicationVersion

The ApplicationVersion element contained within an Application data structure shall contain the version
number of the application instance as published by its author.

10.15.2.6 ApplicationDescription

The ApplicationDescription element contained within an Application data structure shall contain a human
readable description of the application described by this structure.

10.16 Entity

The Entity data structure represents a person or thing. The fields contained within the Entity complex data
type shall apply to entities referenced by higher level data structures into which the Entity data type is
incorporated.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 94 of 101 pages

10.16.1 Entity Attributes

The Entity attribute is: version.

10.16.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the Entity
data structure in which it is found. The Entity Structure Version applicable to this edition of this standard shall
be 1.0.

10.16.2 Entity Elements

The Entity elements are: EntityName, OperatorName, FacilityName, Description, and Location

10.16.2.1 EntityName

The EntityName element contained within an Entity data structure shall contain the human readable name of
the Entity.

10.16.2.2 OperatorName

The OperatorName element contained within an Entity data structure shall contain the human readable name
of the Operator.

10.16.2.3 FacilityName

The FacilityName element contained within an Entity data structure shall contain the human readable name
of the Facility.

10.16.2.4 Description

The Description element contained within an Entity data structure shall contain the human readable
description of the Entity.

10.16.2.5 Location

The Location element contained within an Entity data structure shall contain the information regarding the
location of the described Entity.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 95 of 101 pages

10.17 Location

The fields contained within the Location complex data type shall apply to entities referenced by higher level
data structures into which the Location data type is incorporated. Specification of the Geolocation shall be in
accordance with RFC 5870 — Uniform Resource Identifier for Geographic Locations.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 96 of 101 pages

10.17.1 Location Attributes

The Location attribute is: version

10.17.1.1 Version

The version attribute shall identify the Structure Version of the data structure used to compose the Location
data type in which it is found. The Location Structure Version applicable to this edition of this standard shall
be 1.0.

10.17.2 Location Elements

The Location elements are: LocationName, AddressLine1, AddressLine2, City, Province, State,
PostalCode, Country, and Geolocation.

10.17.2.1 LocationName

The LocationName element contained within a Location data structure shall specify the name of the
Location.

10.17.2.2 AddressLine1

The AddressLine1 element contained within a Location data structure shall specify the first address line of
the Location.

10.17.2.3 AddressLine2

The AddressLine2 element contained within a Location data structure shall specify the second address line
of the Location.

10.17.2.4 City

The City element contained within a Location data structure shall specify the city of the Location.

10.17.2.5 Province

The Province element contained within a Location data structure shall specify the province of the Location.

10.17.2.6 State

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 97 of 101 pages

The State element contained within a Location data structure shall specify the state of the Location.

10.17.2.7 PostalCode

The PostalCode element contained within a Location data structure shall specify the postal code of the
Location.

10.17.2.8 Country

The Country element contained within a Location data structure shall specify the human readable name of
the country of the Location.

10.17.2.9 Geolocation

The Geolocation element contained within a Location data structure shall specify the geolocation in
accordance with RFC 5870.

10.18 Identifiers

The Identifiers data type shall contain zero or more Identifier mixed data types referenced by higher level
data structures into which the Identifiers data type is incorporated.

10.19 Checksums

The Checksums data type shall contain zero or more Checksum mixed data types referenced by higher
level data structures into which the Checksums data type is incorporated.

10.19.1 Checksum Alias

The alias of Checksums is ChecksumTypes.

10.19.1.1 Checksum Types

The ChecksumTypes data type is an alias for the Checksums data type that shall contain a list of zero or
more ChecksumType elements.

10.20 Identifier

The fields contained within the Identifier mixed data type shall apply to identifiers encapsulated within the
Identifiers data type. The identifiers contained within Identifier elements can be standardized identifiers
(e.g., UMID or EIDR) or can be user-defined identifiers (e.g., Tape Number or Database Primary Key).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 98 of 101 pages

10.20.1 Identifier Attributes

The Identifier attributes are Name and Authority.

10.20.1.1 name

The name attribute of the Identifier data structure shall contain the name of the identifier.

10.20.1.2 authority

The authority attribute of the Identifier data structure shall specify the name of the authoritative source for
the formatting and meaning of the identifier.

10.20.2 Identifier Value

The value of the Identifier element shall contain the textual value of the identifier.

10.21 Checksum

The fields contained within the Checksum mixed data type shall carry the product of applying a cryptographic
hash algorithm to payload data, plus the identifying name for the algorithm, the authoritative body that
published the algorithm, and the document in which the algorithm was published. It shall be encapsulated
into the Checksums data type for inclusion in higher level structures.

Note: The authors of this standard are aware that some implementations of earlier versions of this standard
may generate XML documents that include Checksum mixed data types that omit the authority and uri
attributes, that include the value of the computed checksum as an attribute named value, and that specify the
name of the checksum algorithm as an attribute named type.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 99 of 101 pages

10.21.1 Checksum Attributes

The Checksum attributes are: algorithm, authority, and uri.

10.21.1.1 algorithm

The algorithm attribute of the Checksum data structure shall contain the name of the checksum algorithm.

10.21.1.2 authority

The authority attribute of the Checksum data structure shall contain the name of the authoritative body that
published the algorithm identified by the algorithm attribute.

10.21.1.3 uri

The uri attribute of the Checksum data structure shall identify the document published by the authoritative
body in which the algorithm identified by the algorithm attribute is defined.

Examples: The values shown in the following table can be used to populate the algorithm, authority, and uri
attributes of the Checksum data type.

algorithm authority uri

CRC32 ISO
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_i
cs.htm?csnumber=37010

CRC64 ISO
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_i
cs.htm?csnumber=37010

MD4 IETF http://tools.ietf.org/rfc/rfc1320.txt

MD5 IETF http://tools.ietf.org/rfc/rfc1321.txt

SHA-1 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-224 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-256 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-384 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-512 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-512/224 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

SHA-512/256 NIST http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 100 of 101 pages

10.21.2 Checksum Value

The value of the Checksum element shall contain the computed value of the checksum determined by
application of the algorithm specified by the Checksum algorithm, authority, and uri attributes. The value of
the Checksum element shall be formatted as a base64Binary data type as specified in the W3C XML
Schema Part 2 — Datatypes document.

10.21.3 Checksum Alias

The alias of Checksum is ChecksumType.

10.21.3.1 Checksum Type

The ChecksumType data type is an alias for the Checksum data type that shall contain only the Checksum
attributes.

10.22 ByteOrder

The ByteOrder simple data type is an enumerated list of the supported byte orderings for Payload Files.

10.22.1 Byte Order

Value Description

LE Little Endian payload

BE Big Endian payload

BOM Byte Order Mark contained within payload

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

SMPTE ST 2034-1:2017

Page 101 of 101 pages

10.23 Media Type

The Media Type simple data type shall identify the format of the content of the file with which it is associated,
using the identification method and value defined in RFC 6838.

10.24 Structure Version

The Structure Version simple data type shall identify the version of the data structure to which it applies. A
Structure Version shall comprise two parts: major and minor version numbers, in the form [major.minor].
Structures of the same type having different minor version numbers but the same major version number shall
indicate compatible differences between structures; structures having different major version numbers shall
indicate incompatible differences between structures.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 25,2020 at 12:26:08 UTC from IEEE Xplore. Restrictions apply.

		2017-05-05T06:22:22-0400
	Certified PDF 2 Signature

